
Session 13a6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

13a6-13

Reflective Essays in Software Engineering

Richard L. Upchurch
CIS Department
rupchurch@umassd.edu

Judith E. Sims-Knight
Psychology Department
jsimsknight@umassd.edu

University of Massachusetts Dartmouth
N. Dartmouth, MA 02747-2300

Abstract - Software engineering education has evolved
over the past ten years as understanding of the issues
related to the practice of developing software systems has
increased. A part of that evolution is an increased
appreciation that learning software development requires
more than participating in a design project. The design
project provides a context in which the social and technical
aspects of software engineering can become visible, but
students often fail to learn the intended lessons. We, like
other academics, believe that active reflection on
experiences during these activities promotes the acquisition
of more meaningful and persistent learning. We further
believe that writing can and should play a critical role in
promoting that reflective learning when the writing
assignments require students to explore connections that
arise during project activity. This will occur, however, only
if the learning environment supports students in the
construction and management of the writing activity, and
supports faculty in providing the necessary feedback to
students regarding their ideas. In this paper, we describe
how our incorporation of writing activities in software
project courses has evolved over the past five years, and a
formative evaluation of our current efforts in software
engineering.

I. Introduction

Shaw [1] suggested, ten years ago, that as the complexity of
software systems grows software engineering encounters
new intellectual bottlenecks. Unfortunately, as Shaw also
indicated, last generation bottlenecks are not eliminated.
Software engineering education must respond to the ever-
changing tapestry of software engineering practice. Part of
that response has been to recognize that learning software
development requires more than writing programs. The
educational focus of software engineering in the last decade
shifted toward the design project [2].

From an educational perspective the design project
exposes students to a more authentic context for learning
software development, including the experience of working
in teams (e. g., [3], [4]). This approach, sometimes referred
to as situated cognition, claims that learning outcomes are
tightly coupled to the problem context, and can only be

learned in that context. Such contexts also enhance student
motivation.

Engaging in large-scale projects may indeed introduce
students to the realities of the software engineering
industry, but what do the students take away from the
experience? The typical instructional focus is to provide the
experiences with little regard to what is actually learned
from those experiences (a criticism leveled at engineering
design education in general by Dixon [5]).

The recognition that simply providing experience on a
large project is not sufficient to ensure learning has led
other software engineering educators to compromise on
realism to permit more focus on the processes underlying
the development activity [6][7]. For instance, Werth [6]
encourages the use of laboratory time for students to
practice team techniques. Other variations of the process-
oriented approach focus on making explicit student roles
and tasks [8]. We argued in [9][10][11] for the integration
of software process concepts and practices in the software
engineering curricula. There we contended that those
software process activities that are incorporated into the
educational program should be modeled after practices
identified as essential to support good software
development efforts, referred to as best practices [12].

II. The Role of Reflective Practice in Learning

The acquisition of expertise (a) takes a long time to
develop, (b) takes intense, focused effort on the part of the
individual, and (c) resists direct tuition. Ten years of
exposure to a field appears to be a necessary, but not
sufficient condition for the development of expertise. The
number of years of experience is a weak predictor of
performance. Practice alone is sufficient to develop a
certain level of competence, but, for most people, will not
result in true excellence. Deliberate practice, defined as
practice in order to improve, has been suggested as the key
to increasing competence. In many studies, the critical
variable was not the amount of time engaged in the activity,
rather it was practice with the intent of figuring out how to
get better [13].

Session 13a6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

13a6-14

What is being learned during deliberate practice?
Certainly students are learning the domain-specific
knowledge that provides experts with their efficient
problem solving of familiar domains, but they are also
learning metacognitive skills. A number of studies have
demonstrated that students who are encouraged to reflect
on what they are learning learn better both on declarative
and procedural tasks (e. g., Pirolli and Recker [14]). It is
also clear that only highly effective students use
metacognitive processing; most students, even at the
university level, do not [15][16]. Finally, simple
interventions in which students are asked to process
metacognitively have been found effective in improving
problem solving and, in particular, transfer to new
problems [15][16]. For example, Berardi-Coletta et al. [14]
presented problem-solving tasks to college students. When
students were asked to explain how they were deciding
what to do next and how they knew that their choice was a
good one before and after every move, they performed
better and were more likely to solve a transfer task. In
addition, the metacognitive process participants were much
less likely to make negative personal evaluations.
Comparable results have been found with training students
to give self explanations both in learning textual material
and in learning problem solving skills [16][17].

One of the implications of the Berardi-Coletta et al.
study is that when students are learning effectively, they are
less negative about themselves. The obverse of that is that
students must believe that they can and will succeed
through their efforts. Bandura [18] has recently reviewed
much evidence that change requires a feeling of self-
efficacy. For example, studies of the effectiveness of
instruction in mathematics have shown that effective
instructional techniques have their major impact through
improving students’ tendencies to persist and their feelings
of self-efficacy.

Providing learning environments in which students
will develop metacognitive processes therefore has four
positive outcomes. They will learn the course material
better. They will learn how to monitor and regulate their
learning. They will learn how to change the way they work
to become better learners. They will develop the positive
attitudes toward themselves and toward persistent learning
that will enable them to engage in the enormous amount of
deliberate practice necessary to acquire expertise in their
field and to engage in lifelong learning.

III. A Framework for Reflective Practice about
Learning

The process approach requires that the practitioner first
devise a plan for a project, then collect measurement data

as the project is done, evaluate the effectiveness of the plan
using the data collected, and, finally, reflect on how to
improve. One technique we believed would be effective in
helping students do this was the learning essay [19][20]. A
learning essay is a written composition prepared by
students in response to an instructional directive. The intent
of the learning essay was to focus the students’ attention on
their current activity, or help them make the connection
between their current activity and some other material. The
writing activity could be as simple as documenting
observations about their current software engineering
process, or describing the manner in which they decided to
perform a task. Whatever the content, it should require that
the students think through their cognitive processes and
make plans on how to improve that process, as suggested in
the last section.

A. Initial Expectations

From this belief, we introduced learning essays into
software engineering/computer science courses several
years ago. In this paper we report our experiences over the
course of six semesters in a total of eight courses. The first
efforts asked students to provide their initial expectations
for the course. We wanted to use this activity in the spirit of
an advanced organizer, asking students to begin to deal
with the purpose of a particular course in their program of
study. The assignment was an unstructured activity without
much guidance. The results were usually submitted via
email to the course instructor. The prompt for the activity
was:

“Write your initial expectations of the
course. From the course title this is
about <topic>. You should consider
comments you may have heard from
others, you may have other insights. As
you begin the semester record your
thoughts and expectations.”

Typically the responses, as seen in Table 1, were what one
would expect. The remarks were very general and
suggested that little thought preceded the writing activity.
In 1998, the median number of words was 80.

The initial expectations were augmented with a set of
surveys. The surveys were intended to capture information
regarding how students developed programs for their
courses, in other words how they worked. The surveys
were implemented as HTML documents and the results
collected in an electronic design notebook maintained for
each student[9].

Session 13a6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

13a6-15

B. Postmortem

This approach seemed on target, but we felt there was
insufficient feedback during the course of a semester for the
students to recognize and articulate any differences. To
alleviate this weakness we instituted project postmortems,
as suggested in [21] as an industrial best practice, in a
sophomore-level computer science course. The postmortem
provided a repeated focus on how student engage the
software development activity to complete the projects
assigned. The goals of the postmortem activity were to:

• Provide an environment that supports openness
and constructive criticism.

• Provide an environment that encourages
improvement.

• Provide situations that use self-reflection.

• Provide an environment that encourages students
to share lessons learned.

• Provide an environment that supports easy
collection and archiving of information.

The students first completed a postmortem survey that
asked them to revisit what happened during the project
(early projects had a 1 or 2 week timeframe), and what
specific tasks they performed to complete the project.
Wherever possible we made use of close-ended questions
students could answer quickly and unambiguously. It also
included estimates of the time they spent in each part of
the project and the importance they attached to it, so it
provided data about how they worked. They were then
asked to identify some of the activities that they found
helpful (would repeat) and detrimental (would avoid) to
their work habits. These two questions were open-ended so
students would have to generate answers.

S1: Since this course is about Software Engineering, I expect to become better at engineering
software. I expect to learn more about the software process and the necessary steps that must be
taken to write code that has quality and efficiency.

S2: I am looking forward to this course. I have heard that it is very tough, but also very rewarding.
I hope to learn the process used to develop quality software.

S3: I am looking forward to the class. It appears to be an interesting class. It will be different from
the 'just' programming aspect. The project will most likely be difficult but it will be interesting
to see the final result.

Table 1: Students’ Initial Expectations

What is does software engineering seem to be about? From the first two lectures and the first
chapter of X, you should have gained some ideas about the issues software engineering treats.

How do the issues addressed in software engineering merge with your career goals? This, of course,
isn't necessarily perfect. You don't have complete information regarding where you go from here.
You do however have some ideas about how industry works and what benefits certain types of
learning may have in the world-of-work.

As a student and potential professional, what is it about software engineering that appears
important? This should be examined from the perspective of "what should you strive to achieve in
this course." You should address the issue of what seems to be the primary learning goals for you
and why these are identified as important. This should be phrased in terms of who you are now
versus who you think you should be by the time you graduate.

Table 2: Scaffolding for Initial Expectations

Students also had collected measurement data on the
project. During the first trial we asked students to collect

size data on the source code developed for the project. The
measurement template included the definitions the students

Session 13a6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

13a6-16

required for SLOC and documentation, specifying what
was included and excluded from each. In subsequent
projects data collection included effort estimates also.

The concluding activity of the postmortem was goal
setting. The students were asked to establish a goal for the
next project and identify activities they thought would help
them achieve their goal.

C. Team reviews

From the essays in the first course, it was clear that
students need as much practice as they can get in
evaluating products and process. Thus, in addition to
setting up the framework for their process improvement
loop and revising the prompts and scaffolding, we also
changed the nature of team reviews from informal and
orally delivered to more formal, written documents [11].
Though an improvement, considerable work needs to be

done to properly formulate this activity for students, thereby
increasing its instructional effectiveness.

D. Culminating Activity

The survey, given at the beginning of the course, was given
again during the last week of the semester. Repeating the
survey was part of a culminating activity. This activity
required an essay in which students compared their
development behaviors prior to the course with those at the
end. This comparison was submitted during the last week
of the semester (see [9] for a more complete report of this
activity). In the software engineering class, these activities
were subsumed as part of the legacy document required of
each project team. The culminating essay from guided by
the prompt: "Provide a narrative from each team member
that summarizes the experience(s) of the semester."
Anecdotes from this activity are provided in Table 4.

Prompt:
What interests me from your responses is how will you know you achieved your goals? One could
argue that successfully completing the course is one method of assessment. Receiving a high letter
grade is some measure of success I suppose. Unfortunately that is an external measure that may or
may not have anything to do with your goal. The way I phrased the statement was in terms of
change. With that phrasing it seems valid to proceed by asking, what behavioral changes would you
expect? These should be observable, and/or measurable. How will you know if you have reached
these objectives?

Scaffold:
What differences in the way you approach software development should result in your study of
software engineering and participation in the project portion of the course?
How will these differences manifest themselves in your behavior? Will these behavioral differences
be evident to others that know you?
What evidence would you suggest to convince me the changes in your development approach are
better?

Table 3: Expectations Follow-up

IV. The Learning Essay
We felt that reflective writing is a critical component
of the software engineering classes. Unfortunately, our
efforts over the years were only partially successful, as
documented in the last section. The expectations
activity, pre/post, did not elicit the depth of reasoning
we expected or wanted. However, the results from the
postmortem activity were encouraging. In reviewing
the manner in which we requested the expectations, we

realized we were getting precisely what we asked for--
nothing. While we expected students to take the
challenge of thinking through the ins and outs of
courses with its rationale, there was really no practical
reason why they should arrive at the outcome we
wanted. This is consistent with the findings in
cognitive and instructional research that students do
not automatically or naturally think reflectively
[15][22]. We wanted students to make connections, yet
we were asking them to determine what is connected

Session 13a6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

13a6-17

and how with very little assistance. Hence, we revised
the activity to provide metacognitive scaffolding
[23][24][25]. In our case, we devised prompts (see
Table 2) to direct students to think about certain issues
in relation to the course and to their program of study.
The results indicate that students provided more
information about their expectations. In the Spring of
1999 the median number of words produced was 215.

We followed the initial expectations assignment
with a second writing assignment, as detailed in Table
3. The scaffolding for the writing is given by a series
of questions under the prompt. These scaffolds give
the students ways to think about the writing task. In
doing so these scaffolds help structure the response.
The median number of words in response to this
assignment was 288. Apparently the restructuring of
the activity to include scaffolding works. The
combination of the two writing assignments had the
students dealing with the issues intended.

Additionally, the students’ responses to the first
writing assignment guided the choice of the second,
and suggested the scaffolding.

Scaffolding was also added to the culminating
essay. In the legacy document required in software
engineering each team member was required to
complete a short essay on technical lessons and
managerial lessons learned. These lessons learned
sections were given with prompts (e.g., Each team
member should write a short narrative regarding what
management lessons were learned during the project.).
Hence, for the software engineering students, the final
essay was informed by:

• Initial expectations
• Initial survey
• Terminal survey
• Technical lessons learned
• Managerial lessons learned

S1: I found that I needed to be more diplomatic in my approach in dealing with team members. To
work well as a team, all members must be open to suggestions, and be able to change portions of what
they are doing, if the team feel this is best. I also found that there is a great skill involved in
explaining to team members about products I developed. This, I feel is one of the most important
lessons that I learned. If I produce something that I feel is what was required and is the best possible
product, I must be able to explain my reasoning, firmly and coherently to a group, and be willing to
reassess if necessary.

S2: While I consider myself a conscientious developer, using modeling techniques and planning, I
was lacking in the area of team coordination. I still think I am lacking somewhat in that area, but I
feel more prepared to encounter the situations associated with being in a development team. I feel
that a course like this one can provide a preview to that, but what we experienced in our project was
quite unlike a real world software project in many ways. But the ways in which it has improved my
approach has made my time here worthwhile.

S3: I can apply the fundamentals of software engineering to any process; ensure complete and
accurate requirements, choose a correct design based on the problem, and create a quality program
that continually refines the process and leads to a better product.

Table 4: Culminating Essay Anecdotes

V. Conclusion
"The greatest danger to software
engineering education curriculum designers
is lack of imagination. If we are too narrow,
too shortsighted, or too low in our

aspirations, we will deprive the field of the
skills it needs to satisfy society's
requirements for broader scope and larger
scale in computer-based systems."[1, p. 10]

Session 13a6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

13a6-18

To be able to apply the software process approach,
students need both to understand how the process works
and to be able to do it. Simply experiencing the process
approach does not ensure that students can do it,
particularly when they must plan their process and
reflect upon the measurement data they have collected
to write an improvement plan. Being required to write a
learning essay before and after every development effort
provides the basis and practice necessary for
improvement. Such assignments alone do not promote
improvement, because inexperienced students have
inadequate metacognitive process skills to succeed.
With elaborated prompts and scaffolding, however,
students begin to ask themselves the right questions and
to monitor their own understanding. This is the type of
activity we believe prepares students with the skills in
response to Shaw.

The learning essays that we have implemented
provide a framework by which students can create their
own process improvement loop, but we have just begun
the process of creating a learning environment that
facilitates the acquisition of metacognitive processes
and the use of the process improvement loop. In
software engineering, the students appeared to accept
the tasks willingly. The remarks seemed to indicate that
the students addressed the issues thoughtfully, though a
thorough analysis is required. It was evident, though
anecdotal, that the students were making the types of
connections we were seeking. The initial expectations
and follow-up essay will be revised or followed by an
essay that requires students to create a plan of how they
will proceed in their first development project.

Our results support several conclusions regarding
postmortems (see [9] for a more complete discussion).
First, students made gains regarding their development
activity. Second, they saw the impact of their practices,
Third, they began to connect their practices with
potential improvement strategies. Finally, they could
articulate the influence between the way they worked
with effort and quality. Such activities helped students
develop a broader, more accurate understanding of a,
and their, software development process, and permitted
them to begin to develop the process skills they need as
professionals.

The project postmortems need to be restructured to
ask students a series of questions to help them evaluate
the measurement data more thoughtfully, i.e.,
scaffolded. This restructuring will then require them to
review their previous plan in light of their evaluation
and to write a revised plan for the next project. The
systematic reviews of designs and programs will
continue and we will experiment with evaluation of the

reviews themselves to make that process more
reflective.

The course postmortem will take the expectations
documents and their postmortems as data to evaluate
and write an improvement plan for their next course as
well as an evaluation of how the course helped or failed
to help them improve their processes. The latter will, of
course, provide the data we need for our curricular
continuous improvement loop.

VI. References

1. Shaw, M. "Education for the Future of Software
Engineering," SEI, Carnegie-Mellon University,
SEI-86-TM-5, 1986.

2. Tomayko, J. “Teaching a Project-Intensive
Introduction to Software Engineering,” SEI,
Carnegie-Mellon Univeristy, 1987.

3. Denning, P., Menasce, D., & Gerstner, J. "Re-
engineering the Engineering School," ASEE
Conference Proceedings, 1995.

4. Moore, M. & Potts, C. "Learning by Doing: Goals
and Experiences of Two Software Engineering
Project Courses," in J. L.Dìaz-Herrera (ed.),
Software Engineering Education: 7th SEI CSEE
Conference. New York: Springer-Verlag. 1994, p.
151-164.

5. Dixon, J. R. "The State of Education," Mechanical
Engineering, February 1991, pp. 64-67.

6. Werth, L. "An Adventure in Software Process
Improvement," In J. L.Dìaz-Herrera (ed.), Software
Engineering Education: 7th SEI CSEE Conference.
New York: Springer-Verlag. 1994, p. 191-210.

7. Robillard, P., Mayrand, J. & Drouin, J. “Process
Self-Assessment in an Educational Context,” in J.
L.Dìaz-Herrera (ed.), Software Engineering
Education: 7th SEI CSEE Conference. New York:
Springer-Verlag. 1994, p. 211-225.

8. Werth, L. "Software Process Improvement for
Student Projects," IEEE 1995 Frontiers in
Education Conference, 1995.

9. Upchurch, R., & Sims-Knight, J. E. “Integrating
Software Process in Computer Science
Curriculum,” Frontiers in Education Conference,
Pittsburgh, PA, November 5-8, 1997.

10. Upchurch, R., & Sims-Knight, J. E. “Designing
Process-Based Software Curriculum,” Proceedings
of the Tenth Conference on Software Education and
Training, Virginia Beach, VA, April 13-16, 1997.
Los Alamitos: IEEE Computer Society Press, pp.
28-38.

Session 13a6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

13a6-19

11. Upchurch, R., & Sims-Knight, J. E. “In Support of
Student Process Improvement,” Proceedings of
CSEE&T'98, Atlanta, Georgia, February 22-25,
1998.

12. Brown, N. “Industrial-Strength Management
Strategies,” IEEE Software, July 1996, pp. 94-103.

13. Ericsson, K. A. (ed.) The Road to Excellence.
Mahwah, NJ: Lawrence Erlbaum, 1996

14. Pirolli, P. & Recker, M. “Learning Strategies and
Transfer in the Domain of Programming,”
Cognition and Instruction, 12, 1994.

15. Berardi-Colletta, B., Buyer, L. S., Dominowski, R.
L., & Rellinger, E. R. “Metacognition and problem
solving: A process-oriented approach,” Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 21, 1995, pp. 205-221.

16. Chi, M., de Leeuw, N., Chiu, M., & LaVancher, C.
“Eliciting self-explanations improves
understanding,” Cognitive Science, 18, 1994, pp.
439-477.

17. Bielaczyc, K., Pirollli, P. & Brown, A. "Training in
Self-Explanation and Self-Regulation Strategies:
Investigating the Effects of Knowledge Acquisition

Activities on Problem Solving," Cognition and
Instruction, 13, 1995, pp. 221-252.

18. Bandura, A. Self-efficacy: The exercise of control.
New York: Freeman, 1997.

19. Turns, J., Newstetter, W., Allen, J. & Mistree, F.
"Learning Essays and the Reflective Learner:
Supporting Reflection in Engineering Design
Education," ASEE, 1997.

20. Turns, J. "Learning Essays and the Reflective
Learner: Supporting Assessment in Engineering
Design Education," Frontiers in Education
Conference, Pittsburgh, PA , 1997.

21. Collier, B., DeMarco, T. & Fearey, P. “A Defined
Process for Project Postmortem Review,” IEEE
Software, July 1996, pp. 65-71.

22. VanLehn, K., Jones, R. M., & Chi, M. T. H. “A
model of the self-explanation effect,” Journal of the
Learning Sciences, 2, 1992, pp. 1-59.

23. Hübscher, R., Puntambekar, S. & Guzdial, M. "A
Scaffolded Learning Environment Supporting
Learning and Design Activities," Presented at
AERA, Chigcago, IL, March 24-28, 1997.

24. Guzdial, M. & Kehoe, C. "Apprenticeship-Based
Learning Environments: A Principled Approach to
Providing Software-Realized Scaffolding through
Hypermedia," J. of Educational Multimedia and
Hypermedia, 1998.

25. Guzdial, M. "Software-Realized Scaffolding to
Facilitate Programming for Science Learning,"
Interactive Learning Environments, 4(1), 1994, pp.
1-44.

