Proposed new text of clause 6. of Z.105.

Retained characteristics of the mapping:

1. Information object classes, information objects, information object sets have no equivalents in SDL

2. They can be used in ASN.1 modules

3. The information they contain is used to derive ASN.1 types that can be mapped to SDL

The proposed changes can be characterised in the following way:

1. no substantial changes

2. ASN.1 grammar is given in more detail and precision

3. Model parts are more precise

4. Clause 6.4 was turned into an example which it essentially was before

Remaining doubts:

1. ParameterizedValueSetTypeAssignment needs to be further studied to determine whether a mapping to SDL String type is possible

2. An approach that expands all ASN.1 types before mapping to SDL, provided that all actual parameters are defined yields the same results and does not require SDL formal context parameters. It has to be seen whether that needs to be addressed as an option in Z.105.
6
Mapping of parameterized ASN.1 types

Recommendation X.683 [6] defines the way to parameterize ASN.1 types. All ASN.1: 1997 concepts can be parameterized. This feature allows the partial specification of types or values within an ASN.1 module with the specification being completed by the addition of the actual parameters at instantiation time.

Recommendation Z.100 defines an equivalent concept of formal context parameters.

The approach is that parameterized ASN.1 types are mapped to Z.100 types with formal context parameters allowing partial specifications to exist without actual parameters and formally analysed.

There are parameterized assignment statements corresponding to each of the assignment statements specified in Recommendations X.680 and X.681. The "ParameterizedAssignment" construct is:

ParameterizedAssignment ::=

ParameterizedTypeAssignment
|

ParameterizedValueAssignment
|

ParameterizedValueSetTypeAssignment
|

ParameterizedObjectClassAssignment
|

ParameterizedObjectAssignment
|

ParameterizedObjectSetAssignment

The use of all forms of ParameterizedAssignment is supported within ASN.1 modules.

ParameterizedTypeAssignment and ParameterizedValueAssignment can be mapped to SDL as defined in 6.1 and 6.2 of this Recommendation relying on the SDL formal context parameters mechanisms.

The other parameterized assignments that cannot be mapped to SDL types or values with context parameters may be used in ASN.1 modules to define other ASN.1 types or values that can be mapped to SDL as defined in clause 4. Last example in clause 6 gives an example of one such mapping.

6.1
Parameterized type assignment

ASN.1 Grammar

ParameterizedTypeAssignment ::=

typereference

ParameterList

"::="

Type

ParameterList ::= "{" Parameter "," + "}"

Parameter ::= ParamGovernor ":" DummyReference | DummyReference

ParamGovernor ::= Governor | DummyGovernor

Governor ::= Type | DefinedObjectClass

DummyGovernor ::= DummyReference

DummyReference ::= Reference

Model

The difference between ordinary and parameterized ASN.1 types is that ParameterList follows the typereference and formal parameters contained in ParameterList are used in the Type definition.

A Type defined in ASN.1 using parameters from the ParameterList is mapped to the appropriate SDL type (as defined in 4.2.1) provided that ASN.1 parameters are either value or type parameters. Such parameters are mapped to <formal context parameters> of the SDL type. ASN.1 type parameter is mapped to SDL <sort context parameter> and ASN.1 value parameter is mapped to SDL <synonym context parameter>.

ASN.1 parameterized types having parameters that are not types or values cannot be mapped to SDL directly. However they can be referenced in ASN.1 modules and the resulting ASN.1 type or value can be mapped to SDL as defined in 6.3.

Example

The ASN.1 type definition

TemplateMessage {INTEGER : minSize, INTEGER : maxSize, IndicatorType } ::= SEQUENCE

{

asp

INTEGER,

pdu

OCTET STRING(SIZE(minSize..maxSize)),

indicator
IndicatorType

}

is mapped to SDL type

value type TemplateMessage

<synonym minSize <<package Predefined>> Integer; synonym maxSize <<package Predefined>> Integer; value type IndicatorType>

asp

Integer;

pdu

<<package Predefined>>Octetstring (SIZE(minSize:maxSize));

indicator
IndicatorType;

endvalue type;

6.2
Parameterized value assignment

ASN.1 Grammar

ParameterizedValueAssignment ::=

valuereference

ParameterList

Type

"::="

Value

Model

A ParameterizedValueAssignment is represented by a <synonym definition item> with items from the ParameterList mapped to its <formal context parameters>. For the parameters, the conditions mentioned in 6.1 apply.

Example

The ASN.1 value assignment

genericBirthdayGreeting { IA5String : name } IA5String ::= { "Happy birthday, ", name, "!!" }

is mapped to

synonym genericBirthdayGreeting (synonym name ((package Predefined((IA5String (
((package Predefined((IA5String ('Happy birthday,'//name//'((';

6.3
Referencing ASN.1 parameterized definitions

ASN.1 Grammar

ParameterizedType ::=

SimpleDefinedType

ActualParameterList

ActualParameterList ::=

"{" ActualParameter "," + "}"

ActualParameter ::=

Type
|

Value
|

ValueSet
|

DefinedObjectClass
|

Object
|

ObjectSet

Model

Parameterized types and values are used in ASN.1 to define simple ASN.1 types and values by providing an ActualPameterList. The ASN.1 types and values derived from referenced ASN.1 parameterised definitions can be mapped to SDL as defined in clause 4.

If the parameterized definition was such that it was possible to map it to SDL, ASN.1 references to such definitions can be mapped to SDL instantiations of the type with context parameters so that elements of ActualPameterList are mapped to (actual context parameters(.

Example 1

The parameterized type used in the example in 6.1 can be used to define a simple ASN.1 as follows:

ActualMessage ::(TemplateMessage{10, 20, BOOLEAN}

This can be mapped to SDL type

value type ActualMessage : TemplateMessage (10, 20, ((package Predefined((Boolean (
The parameterized value genericBirthdayGreeting can be instantiated in ASN.1 in the following way:

greeting1 IA5String ::(genericBirthdayGreeting { "John" }, which can be mapped to SDL as

synonym greeting1 ((package Predefined((IA5String ('John'

Example 2

What follows is an example of the ASN.1 type definition derived using a parameter that is an information object. The ASN.1 modules needs to contain the relevant information object class definition, parameterised assignment having object of that class as dummy parameter, information object value assignment and parameterised type definition reference.

MESSAGE‑PARAMETERS ::= CLASS {

&maximum-priority-level

INTEGER,

&maximum-message-buffer-size
INTEGER

}

WITH SYNTAX {

THE MAXIMUM PRIORITY LEVEL IS

&maximum-priority-level

THE MAXIMUM MESSAGE BUFFER SIZE IS
&maximum-message-buffer-size

}

Message‑PDU { MESSAGE‑PARAMETERS : param } ::= SEQUENCE {

priority-level
INTEGER (0..param.&maximum-priority-level),

message

BMPString (SIZE (0..param.&maximum-message-buffer-size))

}
my-message-parameters MESSAGE-PARAMETERS ::= {

THE MAXIMUM PRIORITY LEVEL IS 10

THE MAXIMUM MESSAGE BUFFER SIZE IS 2000

}

MY-Message‑PDU ::= Message-PDU { my-message-parameters }

The semantics of ASN.1 is that with such definition of class, parameterized type definition and object value definition, the type resulting from transformation of MY-Message-PDU is equivalent to:

MY-Message‑PDU ::= ::= SEQUENCE {

priority-level
INTEGER (0..10),

message

BMPString (SIZE (0..2000))

}
The resulting ASN.1 type can be mapped to SDL type as:

value type MY_Message_PDU STRUCT

priority_level
<<package Predefined>> INTEGER (0..10);

message
<<package Predefined>> BMPString (SIZE (0..2000));

end value type;

