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Abstract. Despite unified data models, such as the Resource Descrip-
tion Framework (Rdf) on structural level and the corresponding query
language Sparql, the integration and usage of Linked Open Data faces
major heterogeneity challenges on the semantic level. Incorrect use of
ontology concepts and class properties impede the goal of machine read-
ability and knowledge discovery. For example, users searching for movies
with a certain artist cannot rely on a single given property artist, because
some movies may be connected to that artist by the predicate starring.
In addition, the information need of a data consumer may not always
be clear and her interpretation of given schemata may differ from the
intentions of the ontology engineer or data publisher.

It is thus necessary to either support users during query formulation
or to incorporate implicitly related facts through predicate expansion.
To this end, we introduce a data-driven synonym discovery algorithm
for predicate expansion. We applied our algorithm to various data sets
as shown in a thorough evaluation of different strategies and rule-based
techniques for this purpose.

1 Querying LOD

The increasing amount of Linked Open Data (Lod) is accompanied by an appar-
ently unavoidable heterogeneity as data is published by different data publishers
and extracted through different techniques and for different purposes. The hetero-
geneity leads to data inconsistencies and impedes applicability of Lod and raises
new opportunities and challenges for the data mining community [16]. On the
structural level, consistency already has been achieved, because (Lod) is often
represented in the Resource Description Framework (Rdf) data model: a triple
structure consisting of a subject, a predicate, and an object (SPO). Each triple
represents a statement/fact. This unified structure allows standard query
languages, such as Sparql, to be used. However for real applications also factual
consistencies are relevant. When processing Rdf data, meta information, such as
ontological structures and exact range definitions of predicates, are desirable and
ideally provided by a knowledge base. However in the context of Lod, knowledge
bases are usually incomplete or simply not available. For example, our recent work
showed that there is a mismatch between ontologies and their usage [1]. Evalua-
tions on the DBpedia data set showed that some of the mismatches occurred, be-
cause predicates where used that were synonymous to a predicate defined by the
ontology (e.g., city or location instead of locationCity). Of course two synonymous
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predicates may have been defined on purpose for two disjoint purposes, but be-
cause they have been used in substitution of each other, the data consumer has to
deal with the inconsistency. As we analyzed a Sparql query workload provided
by usewod20121 we encountered multiple sets of Sparql queries that included
UNION constructions as illustrated in Table 1. These examples show that appli-
cations already try to deal with the predicate inconsistency within the data by ex-
panding their queries with UNION constructions containing synonymously used
predicates. These UNION constructions further join dozens of patterns intercept-
ing schema and value errors and abbreviations.

In the fields of traditional information retrieval there are already intuitions
and techniques for expanding keyword queries. They comprise techniques for
synonym discovery, stemming of words, and spelling corrections. In this work
we want to concentrate on the discovery of synonymously used predicates. The
discovery of sameAs-links between subject/object resources has already been
extensively subject of research. However the discovery of synonymously used
predicates has not received any attention at all. Note, we explicitly talk about
synonymously used predicates instead of synonym predicates. For example, pred-
icates with more general or specific meaning often substitute each other in the
data. E.g., artist is often used as a substitute for starring even though artist is
more general than starring.

Table 1. Joined patterns with UNION in DBpedia query logs

Pattern pairs containing synonymous predicates

?company dbpedia-prop:name “International Business Machines Corporation”@en
?company rdfs:label “International Business Machines Corporation”@en

?place dbpedia-prop:name ”Dublin”@en.
?place dbpedia-prop:officialName ”Dublin”@en.

?airport onto:iataLocationIdentifier ”CGN”@en.
?airport prop:iata ”CGN”@en.

Synonym discovery is further interesting for the general purpose of enriching
an existing synonym thesaurus with new synonyms that have evolved through
the time as multiple people use different terms for describing the same phe-
nomenon. Because Lod is formatted in Rdf, synonym candidate terms are easy
to extract and easier to compare with regard to their contextual occurrence.
Note, synonym discovery in unstructured data, such as web documents, needs
to consider natural language processing rules. Last but not least, the discovery
of synonym predicates benefits the usage of Lod. Furthermore, for many data
sources meta-data is only poorly provided. Identifying synonymously used pred-
icates can support the evaluation and improvement of the underlying ontology
and schema definitions. Usage of global synonym databases is not sufficient and
might lead to misleading facts in this scenario, because of the heterogeneity of
Lod, as predicates are used in different knowledge bases for different purposes

1 http://data.semanticweb.org/usewod/2012/
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by different data publishers. So a data-driven approach is necessary to dissolve
the existing synonym dependencies.

In this paper, we present an approach for discovering predicate pairs that
substitute each other in the data and are good candidates for query expansions.
Our approach is based on aggregating positive and negative association rules
at statement level based on the concept of mining configurations [2]. We only
incorporate information based on the given Rdf graph. As a proof-of-concept
we applied our algorithm to several Lod sources including the popular DBpedia
data set [8].

The rest of this paper is organized as follows: In the next section we present
related work with regard to synonym discovery and schema matching. Next
we present necessary foundations with regard to Rdf and association rules. In
Section 4 we describe our algorithm. We evaluate our approach and strategies
in Section 5 and conclude in Section 6.

2 Related Work

We apply existing data mining algorithms to the new domain of Lod and propose
predicate expansion approach based on synonym discovery. Therefore, we present
related work with regard to data mining in the Semantic Web as well as existing
applications in the fields of synonym discovery. As most of our techniques for
synonym discovery derive from schema matching approaches, we also give an
overview of relevant schema matching approaches.

2.1 Mining the Semantic Web

There is already much work on mining the Semantic Web in the fields of induc-
tive logic programming and approaches that make use of the description logic
of a knowledge base [21]. Those approaches concentrate on mining answer-sets
of queries towards a knowledge base. Based on a general reference concept, ad-
ditional logical relations are considered for refining the entries in an answer-set.
This approach depends on a clean ontological knowledge base, which is usually
not available. Furthermore, that approach ignores the interesting opportunities
of mining of rules among predicates.

As Rdf data spans a graph of resources connected by predicates as edges,
another related field of research is mining frequent subgraphs or subtrees [17].
However, in Lod no two different nodes in an Rdf graph have the same URI.
Therefore, frequency analysis cannot be performed unless we assume duplicate
entries in the data set. But if we consider the corresponding type of each URI
pattern analysis can be performed, because multiple URIs belong to the same
type. Thus, any graph mining would be restricted to type mining and not data
mining.

Among profiling tools, ProLOD is a tool for profiling Lod, which includes
association rule mining on predicates for the purpose of schema analysis [9]. An
approach based on predicate mining was introduced for reconciling ontologies[1].



Synonym Analysis for Predicate Expansion 143

As similar approach was also used for schema induction [22].The method of
mining association rules on predicates is also applied in our work, however we go
further than just analyzing the schema and show a concrete application that is
based on this method and show how it can be combined to rule mining scenarios
that also involve the objects of Rdf statements.

2.2 Query Expansion and Synonym Discovery

Research on query expansion includes stemming techniques, relevance feedback,
and other dictionary based approaches [6]. On their technical level the ap-
proaches do not apply to our Sparql scenario as we do not retrieve documents
but structured entities. So far, Shady et al. have already presented a query
expansion approach based on language models [12]. Our approach is based on
association rules and a more simplistic model and we were able to process large
datasets, such as DBpedia, in couple of minutes. Most existing work for dis-
covering synonyms is based on different language processing and information
retrieval techniques. A common approach is to look for co-occurrence of syn-
onym candidates in web documents [7,23]. The idea behind this approach is
that synonymous word co-occur in documents [15]. So they calculate the ratio
of real co-occurrence of two terms and the independent occurrence of each term.
Note that for these approaches there are already known candidate pairs that
have to be validated. In our scenario this assumption does not hold, as we also
have to retrieve the candidate pairs.

While Baronis work [7] concentrates on globally valid synonyms the authors
of [23] address context sensitive synonym discovery by looking at co-clicked query
results. Whenever the distance between two clusters of clicked query results is
below a certain threshold, the query terms can be seen as synonyms.

The approaches so far are very different from our domain where we want
to discover synonym schema elements in Rdf data. An approach that has a
similar characteristic is the synonym discovery approach based on extracted
webtables [10]. The authors introduce a metric that enables to discover synonyms
among table attributes. However their approach is quite restrictive: they assume
a context attribute given for making attributes comparable. Furthermore, they
ignore instance-based techniques as they process only extracted table schemata.

2.3 Schema Matching

Schema matching differs from synonym discovery within schemata in the sense
that two schema elements may be synonyms but still may not share a remarkable
number of values. On the other hands two attributes may share a lot of values
but their corresponding labels may not be synonyms from a global point of view.
Still approaches for the discovery of attribute matches and synonyms follow
similar intuitions. According to the classification of Rahm and Bernstein [20],
we would classify our approach as a mixture of an instance-based and a schema
level matching algorithm. At schema level we apply existing techniques to Rdf
data and evaluate their effectivity.
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Existing instance-based approaches are different from our work as they com-
pare the content of each attribute column-wise [11,13,19]. Choosing features for
matching is cumbersome and algorithms that look for value overlaps lack effi-
ciency. We propose an association rule based approach that discovers overlaps
between attribute values in an Rdf corpus.

One could also perform schema matching on element level by using dictio-
naries, however the performance of those approaches has been poor in real data
scenarios [18]. In this paper we want to focus on mining based features for syn-
onym discovery.

3 Preliminaries

Our approach is based on association rule mining that is enabled by two mining
configurations introduced by [2]. First of all we give a brief introduction to
concept of association rule mining. Next we introduce of mining configurations
for Rdf data and outline how we apply them to our use case.

3.1 Association Rule Mining

The concept of association rules has been widely studied in the context of market
basket analysis [3], however the formal definition is not restricted by any domain:
Given a set of items I = {i1, i2, . . . , im}, an association rule is an implication
X → Y consisting of the itemsets X,Y ⊂ I with X ∩ Y = ∅. Given a set of
transactions T = {t|t ⊆ I}, association rule mining aims at discovering rules
holding two thresholds: minimum support and minimum confidence.

Support s of a rule X → Y denotes the fraction of transactions in T that
include the union of the antecedent (left-hand side itemset X) and consequent
(right-hand side itemset Y ) of the rule, i.e., s% of the transactions in T contain
X ∪ Y . The confidence c of a rule denotes the statistical dependency of the
consequent of a rule from the antecedent. The rule X → Y has confidence c if
c% of the transactions T that contain X also contain Y . Algorithms to generate
association rules decompose the problem into two separate steps:

1. Discover all frequent itemsets, i.e., itemsets that hold minimal support.
2. For each frequent itemset a generate rules of the form l → a− l with l ⊂ a,

and check the confidence of the rule.

While the second step of the algorithm is straightforward, the first step marks the
bottleneck of any algorithm. The three best known approaches to this problem
are Apriori [4], FP-Growth [14], and Eclat [24]. For each of these algorithms,
there exist multiple modifications and optimizations. We use the FP-Growth
algorithm for our paper.

3.2 Mining Configurations

To apply association rule mining to Rdf data, it is necessary to identify the
respective item set I as well as the transaction base T and its transactions.
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Table 2. Facts in SPO structure
from DBpedia

Subject Predicate Object

Obama birthPlace Hawaii
Obama party Democrats
Obama orderInOffice President
Merkel birthPlace Hamburg
Merkel orderInOffice Chancellor
Merkel party CDU
Brahms born Hamburg
Brahms type Musician

Table 3. Six configurations of context and
target

Conf. Context Target Use case

1 Subject Predicate Schema discovery
2 Subject Object Basket analysis
3 Predicate Subject Clustering
4 Predicate Object Range discovery
5 Object Subject Topical clustering
6 Object Predicate Schema matching

Our mining approach is based on the subject-predicate-object (SPO) view of
Rdf data as briefly introduced in [2]. Table 2 illustrates some SPO facts ex-
tracted from DBpedia. For legibility, we omit the complete URI representations
of the resources and just give the human-readable values.

Any part of the SPO statement can be regarded as a context, which is used for
grouping one of the two remaining parts of the statement as the target for mining.
So, a transaction is a set of target elements associated with one context element
that represents the transaction id (TID). We call each of those context and target
combinations a configuration. Table 3 shows an overview of the six possible
configurations and their preliminarily identified use-cases. Each can be further
constrained to derive more refined configurations. For instance, the subjects may
be constrained to be of type Person, as happens to be the case in our example.

The application of Configuration 1 from Tab. 3 to our example data set would
transform the facts into three transactions, one for each distinct subject as illus-
trated in Tab. 4a. In this example, the itemset {birthPlace, party, orderInOffice}
is a frequent itemset (support 66.7%), implying rules, such as birthPlace → or-
derInOffice, party and orderInOffice → birthPlace, party with 66.7% and 100%
confidence, respectively. Furthermore, we can infere negative rules, such as birth-
Place → ¬ born.

Configuration 6 in the context of objects would create the transactions pre-
sented in Tab. 4b. The frequent itemsets here contain predicates that are similar
in their ranges, e.g., {born, birthPlace}. Given the negative rule in Conf. 1 and
the pattern in Conf. 6, one could conclude that both predicates born and birth-
Place have synonymous meanings.

Table 4. Configuration examples

(a) Context: Subject, Target: Predicate

TID transaction

Obama {birthPlace, party, orderInOffice}
Merkel {birthPlace, party, orderInOffice}
Lennon {birthPlace, instrument}

(b) Context: Object, Target:
Predicate

TID transaction

Musician {type}
Hamburg {born, birthPlace}
Hawaii {birthPlace}
President {orderInOffice}
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4 Generation of Candidates for Predicate Expansion

Our approach aims at discovering all possible predicate pairs where each predi-
cate could be the expansion of the other one. Having identified all such candidate
pairs the expansion candidates of a given predicate can easily be retrieved by
retrieving all pairs in which the respective to be expanded predicate occurs.

We introduce three basic strategies that we combine for the discovery of these
candidate pairs. The first two strategies make direct usage of the mining con-
figurations from Tab. 3. With Configuration 1 we perform schema analysis in
the context of subjects. Configuration 6 enables us to mine similar predicates in
the context of objects. Additionally, we look into range structure of predicates
by looking at value type distributions. All three approaches are derived from
existing schema-level and instance-based schema matching techniques.

4.1 Schema Analysis

Configuration 1 enables us to do frequency analysis and rule discovery per entity.
For instance, positive rules between predicates can be used for re-validating
existing ontologies [1]. In our use case we have a different intuition: Expansion
candidates for a predicate should not co-occur with it for any entity. It is more
likely for entities to include only one representative of a synonymous predicate
group within their schema, e.g., either starring or artist. That is why we look for
negative correlations in Configuration 1. For this purpose we developed an FP-
Growth [14] implementation that retrieves all negative correlations for a set of
candidate pairs. The approach can also be used stand-alone looking at all possible
pairs that have a negative correlation in the data set. Negative correlation can
be expressed by several score functions. One could look at the bidirectional
correlation coefficient or consider some kind of aggregations of the negative rules’
confidence values. In the following we describe each of the used scoring functions
at schema level.

Confidence Aggregations. The confidence conf of the rule p1 → ¬p2 de-
scribes the probability c% of predicate p2 not to occur for the same entity where
p1 occurs. We refer to these rules as negative rules. If p2 was a rare predicate
that, however, occurs always with p1, conf(p1 → ¬p2) might be considerably
high however conf(p2 → ¬p1) would be close to 0%. Therefore we need to ag-
gregate both confidence values. We experimented using the three aggregations
maximum, minimum, and F-Measure (harmonic mean).

Reversed Correlation Coefficient. The drawback of confidence aggregation
is that the scoring ignores the overall relevance of a pair within a data set. We
apply the formula given in [5], which measures the linear relationship between
two predicates:

cCoeff(X,Y ) =
N · supp(X,Y )− supp(X) · supp(Y )

√
supp(Y ) · (N − supp(Y )) · supp(X) · (N − supp(X))
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where N denotes the total number of baskets in the mining configuration, which,
for Configuration 1, is equivalent to the total number of entities (distinct sub-
jects) in the data set. For ranking purposes we reverse the sign of cCoeff(X,Y ),
as we want to have positive scores on negative correlations. We label the score
reversed correlation coefficient (RCC ).

Syn-Function. In [10] the authors introduce the syn-function for synonym
discovery in different webtables. Their assumptions are also that synonyms never
occur together. In case of Lod ‘never’ is a too strong assumption. Furthermore,
their score is based on a set of context attributes. Unfortunately the authors did
not mention how to choose this context attribute, if domain knowledge is not
given. Nevertheless, the intuition behind their function that two synonymous
predicates have the same odds in occurring with other predicates can also be
applied in our scenario. Thus, we also adapted this score function and compared
the results to the scoring functions named before.

Bare schema analysis leads to results also including incorrect pairs, such as
recordLabel and author as both occur for different entities. While songs have
the predicate recordLabel, books have the predicate author. So a negative
correlation is not a sufficient condition for a predicate to be expanded by another.
The context or the range of the predicates should also be taken into account.
In the following we describe our strategies that complement the schema analysis
by considering also the range of predicates.

4.2 Range Content Filtering

Our second intuition is that as synonym predicates have a similar meaning they
also share a similar range of object values. Normally when trying to compute
the value overlap between two predicates one would look at the ratio of overlaps
depending on the total number of values of such a predicate. We apply a more
efficient range content filtering approach (RCF) based on mining configurations
(see Sec. 3.2).

Configuration 6 constitutes a mining scenario where each transaction is de-
fined by a distinct object value. So each transaction consists of all predicates
containing the distinct object value in there range. Frequent patterns in this
configuration are sets of predicates that share a significant number of object
values in their range. As each configuration is an adaption of frequent itemset
mining the threshold that decides whether two predicates are similar or not is
minimum support and depends on the number of all baskets or all existing dis-
tinct objects. Furthermore, our approach ignores value overlaps that occur due
to multiple occurrence of one distinct value in the ranges. We analyze the effect
of these differences and show that our approach is much more efficient with-
out any loss of quality. Similar to the schema analysis strategy also the range
content filtering based on value overlaps is not a sufficient condition for discover-
ing synonymously used predicates. For example the predicates birthPlace and
deathPlace share a remarkable percentage of their ranges but are obviously not
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used synonymously. However this candidate pair can be pruned looking at their
exclusion rate per entity during schema analysis.

4.3 Range Structure Filtering

In some scenarios value range content filtering might not be the most appropri-
ate technique as it requires two synonym predicates to share a portion of exactly
equal values. However, real world data might contain synonymous predicates
with completely disjoint range sets where the range elements are only onto-
logically similar. This is often the case when looking at predicates describing
numbers and dates. Therefore existing work looks not only at exact overlaps but
also on general string or token characteristics, such as string length and charac-
ter distributions [11,19]. As the goal of this paper is to analyse the capabilities
graph data and statement level mining, we do not dive into literal similarities
and character distributions. Furthermore our experiments showed that based on
range similarity we are already able to discover all pairs that contain values with
similar ranges. Instead we look at type distributions in predicate ranges. So for
every object in the range of a predicate we retrieve its type from the graph.
Then we create type vectors per predicate where each component contains the
number of the occurrences of one type. As each entity in Rdf might have several
types due to existing type hierarchies, i.e., Barack Obama is a Politician as well
as a Person, we considered only the most specific type of an entity.

Having type vectors for a predicate pair, the range type similarity can be
computed using measures, such as cosine similarity or weighted Jaccard simi-
larity. Preliminary experiments showed that weighted Jaccard similarity seems
more promising because cosine similarity results into high scores as soon as one
component value of one vector is very large although all other components have
very small values. Missing type values, e.g., in case of dates and other numerical
values, have been handled as unknown types, whereas no two unknown types
are equal.

4.4 Combined Approach

We have introduced three different ways of generating and evaluating synonym
candidate pairs. It is crucial to find a reasonable order for combining those three to
make best use of the intuitions and achieve optimal quality and to be efficient at the
same time. We decided on the following order: (1) first retrieve all predicate pairs
through range content filtering, (2) filter those pairs by range structure filtering
and then (3) analyze their schema co-occurrences. This strategy has two advan-
tages: as retrieving negative correlations and type vectors is time-consuming, it is
reasonable to perform both on given candidates instead of using them on the com-
plete data set to retrieve candidates. Furthermore, theminimum support threshold
for range value overlapping is a more expressive threshold than arbitrary correla-
tion and scoring thresholds on schema level, which aremore suited for ranking pur-
poses of the filtered candidates. Consider that type range filtering can be applied
only to data sets for which the type information is available. In our experiments
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we could use the type filtering approach only for the DBpedia data, and even there
it did not contribute to the precision on top of range content filtering.

5 Evaluation

We evaluated our approach with regard to precision and recall of generated
expansion candidates. Table 5 shows the data sets with the corresponding num-
bers of distinct triples, subjects, predicates, and objects used for experiments.
Because DBpedia contains data from different domains, we also performed our
experiments on subsets of a certain domain, such as people and places. In the
following we first show to which extent each component of our algorithm con-
tributes to the quality of query expansion candidate analysis. Then we show
overall precision results on multiple data sets. Last, we illustrate the efficiency
gain of our frequent itemset based overlap discovery method towards the stan-
dard value-overlap approach.

Table 5. Datasets for evaluations

Source #triples #predicates #subjects #objects

Magnatune 243,855 24 33,643 68,440
Govwild 7,233,610 35 963,070 2,648,360
DBpedia 3.7 17,518,364 1,827,474 1,296 4,595,303
DBpedia Person 4,040,932 237 408,817 982,218
DBpedia Organisation 1,857,849 304 169,162 731,136
DBpedia Work 2,611,172 136 262,575 751,916

5.1 Step-Wise Evaluation of Recall and Precision

Fig. 1. Precision recall curve for the filtering
methods

To evaluate the components of
our algorithm, it is necessary
to be able to classify good
and poor expansion candidates.
For this purpose, we manually
classified 9,456 predicates pairs
of a dataset. The classification
of predicate pairs for expan-
sion appropriateness is cumber-
some, because one has to look
for defined ranges, example val-
ues, and consider query inten-
tions using these predicates. We
chose the data sets with the
lowest number of predicates,
Magnatune, and the data set
comprising all entities of type
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Work from DBpedia. A predicate pair is annotated as a correct expansion pair
if both predicates are appropriate candidates for expanding the respective other
predicate. Each classification result was validated by three experts (computer
scientists). All in all, we discovered 82 expansion candidate pairs among the
predicates for Work entities and 9 candidates in the Magnatune data set, out of
9,180 and 276 pairs, respectively.

First, we evaluated the precision/recall curve of the range-content and the
range-type filtering approaches on the Work dataset as illustrated in Fig. 1. For
this purpose we sorted all pairs twice, once with regard to their support value and
once with regard to the weighted Jaccard distance of their range types. As the
diagram illustrates, both approaches perform better than a random approach,
which results in 0.8% precision on a recall of 100%. However, the precision of
the range-content filtering method is on all recall levels better than the precision
achieved with range-type filtering.

(a) 0.01% support (b) 0.1% support

Fig. 2. Precision recall curve of schema scores on the Work dataset

Figures 2a and 2b illustrate the ranking improvement of the algorithm using
the schema scores. We chose the support thresholds 0.1% and 0.01% where the
content filtering part resulted in 52% and 22% precision and recall levels of 28%
and 98% respectively (see Fig. 1). At the support threshold of 0.01% the range
content filtering achieved 22% precision and 98% recall. Figure 2a shows that
all schema scores result in better precision on this recall level. Furthermore, on
lower recall levels the precision is higher by orders of magnitudes. The precision
improvement can be explained through the fact that predicate pairs with a very
similar range but different semantics, such as album and previousWork, achieve
lower scores on schema level as they often appear together. Looking at Fig. 2b
the only difference is that at the highest possible recall level of 28% only the RCC
score leads to better results. In general it can be observed that at high recall
levels the RCC score performs better than all other scoring functions, while on
low recall levels the Syn function performs better.
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Fig. 3. Precision recall on Magnatune with 0.0%
minimum support

Regarding the results for
Magnatune in Fig. 3, we can ob-
serve very high precision values
even with range content filter-
ing. However, even at a support
threshold of 0.0% the schema-
based scoring functions all per-
form better. If we raise the
minimum support threshold to
0.01% or 0.1%, the precision re-
mains 100% for all approaches,
however the recall falls to 89%
and 44%, respectively.

Next, we evaluate the preci-
sion of our combined approach
on these two minimum support
thresholds and fixed schema
scoring thresholds.

5.2 Precision Quality

To evaluate the different approaches we defined minimum thresholds as fol-
lows: For the minimum, maximum, and f-measure confidence scores we fixed
the threshold at 50% minimum confidence. For the RCC and Syn scores we set
the threshold as >0.0. For RCC only scores above 0.0 indicate any negative cor-
relation. The closer the value is to 0.0 the more random is the co-occurrence
of two predicates. The Syn function results in scores above zero only if there
is a significant correlation of the predicates. However, because the value is not
normalized within a certain range, there is no basis for the choice of a higher
threshold. That is why we use here the absolute value 0.0 as a threshold.

Comparing both Tables 6 and 7 one can see the precision improvement by
leveraging the support threshold for RCF. Furthermore, one can observe that
all schema scores behave very similar. The only significant differences can be
observed for the Govwild data set, where minimum and f-measure confidence re-
trieve no correct results at all. The reason is that the Govwild dataset comprises
data from different domains, such as people, locations, and organisations. That
leads to false positives like name and city, because both people and organisations
are connected to a city with the city attribute, while triples with cities as their
subject use name for labeling the same city Rdf object. The same reason also
applies to the experiments on the complete DBpedia 3.7 data set. Looking at
more specific domain data, such as Magnatune or DBpedia Work and Organisa-
tion the results are much better. Of course the numbers of retrieved results are
much smaller, because the algorithm was able to filter nearly all true negatives.

One can conclude that the more cautious the thresholds are chosen the better
quality can be achieved on all data sets. On data sets containing entities of
very different domains, the algorithm produces too many false positives, so it is
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Table 6. Precision at 0.01% RCF minimum support

Dataset minConf maxConf f-Measure RCC Syn RCF # RCF results

Magnatune 100% 87.5% 100% 100% 87.5% 87.5% 8
Govwild 0% 20% 0% 14% 0% 20% 25
DBpedia 3.7 32% 32% 32% 15% 22% 32% 1115
DBpedia Person 32% 32% 32% 35% 26% 32% 308
DBpedia Work 49% 52% 50% 61% 60% 22% 256
DBpedia Organisation 33% 32% 32% 31% 32% 32% 412

Table 7. Precision values at 0.1% range content filtering minimum support

Dataset minConf maxConf fMeasure RCC Syn RCF # RCF results

Magnatune 100% 100% 100% 100% 100% 100% 4
Govwild 0% 56% 0% 50% 0% 50% 10
DBpedia 3.7 40% 43% 38% 46% 45% 36% 64
DBpedia Person 56% 49% 50% 60% - 40% 35
DBpedia Work 73% 57% 74% 78% 89% 52% 46
DBpedia Organisation 88% 86% 90% 89% 95% 85% 45

Table 8. Runtime experiment results

RCF RCF
Dataset @ 0.1% support @ 0.01% support naive RCF

Magnatune 4,116 ms 4,417 ms 18,122 ms
Govwild 66,297 ms 67,676 ms > 3h
DBpedia Work 93,876 ms 97,676 ms > 3h
DBpedia 3.7 (complete) 122,412 ms 127,964 ms > 3h

always reasonable to perform the algorithm on each domain fraction of the data
set separately. Performing the experiments on entities of the more specific type
Actor that is a subclass of Person, we achieved much better precision, e.g., RCF
and RCC values were 65% and 87% respectively.

5.3 Efficiency Analysis

We stated that our RCF approach for discovering value overlaps using Configu-
ration 6 (see Sec. 3.2) is more efficient than pairwise comparison of predicates.
Table 8 illustrates some runtime comparisons; we aborted runs after three hours.
Our mining-based RCF approaches are always by faster than the näıve overlap
approach by orders of magnitude, because predicate pairs with no overlap are
filtered early. Furthermore the runtime of our approach is adaptive to support
thresholds in the manner of frequent item mining, as it filters predicate pairs
below the specified threshold in beforehand.
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The total runtime of our algorithm including range content filtering and
schema analysis is below 8 minutes for each presented dataset at a minimum
support of 0.1% for range content filtering and below 10 minutes at the thresh-
old of 0.01%. The experiments have been performed on a notebook with a 2.66
GHz Intel Core Duo processor and 4 GB DDR3 memory.

6 Conclusion

In this paper we addressed data inconsistencies due to synonymously used pred-
icates in Rdf and introduced the concept of predicate expansion for Sparql
patterns. We presented several strategies for automatically discovering expan-
sion candidates. We showed the strength and weakness of the strategies on dif-
ferent datasets, proposing a stacked algorithm based on range content filtering
and schema analysis. Our evaluation showed that our algorithm performs very
good on data containing only subjects of one domain, but produces more false
positives on Rdf data where the subjects represent entities of many different
types. We believe that providing an optional predicate expansion interface at
Sparql endpoints is useful. An alternative approach is to (semi-)automatically
remove or change facts with wrongly used predicates, based on the results of our
synonym discovery.
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21. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic
web - statistical learning for next generation knowledge bases. Data Min. Knowl.
Discov. 24(3), 613–662 (2012)

22. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

23. Wei, X., Peng, F., Tseng, H., Lu, Y., Dumoulin, B.: Context sensitive synonym
discovery for web search queries. In: Proceedings of the International Conference
on Information and Knowledge Management (CIKM), New York, NY, USA, pp.
1585–1588 (2009)

24. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 12, 372–390 (2000)


	Synonym Analysis for Predicate Expansion

	1 Querying LOD

	2 Related Work 

	2.1 Mining the Semantic Web

	2.2 Query Expansion and Synonym Discovery

	2.3 Schema Matching


	3 Preliminaries

	3.1 Association Rule Mining

	3.2 Mining Configurations


	4 Generation of Candidates for Predicate Expansion

	4.1 Schema Analysis

	4.2 Range Content Filtering

	4.3 Range Structure Filtering

	4.4 Combined Approach


	5 Evaluation

	5.1 Step-Wise Evaluation of Recall and Precision

	5.2 Precision Quality

	5.3 Efficiency Analysis


	6 Conclusion
	References





