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Abstract

Criticisms of null hypothesis significance testing (NHST) have appeared recently in

wildlife research journals (Anderson, Burnham, & Thompson, 2000; Anderson, Link,

Johnson, & Burnham, 2001; Cherry, 1998; Guthery, Lusk, & Peterson, 2001; Johnson,

1999). In this essay we discuss these criticisms with regard to both current usage of NHST

and plausible future use. We suggest that the historical usage of such procedures was not

unreasonable and hence that current users might spend time profitably reading some of

Fisher�s applied work. However, we also believe that modifications to NHST and to the

interpretations of its outcomes might better suit the needs of modern science. Our primary

conclusion is that NHST is most often useful as an adjunct to other results (e.g., effect

sizes) rather than as a stand-alone result. We cite some examples, however, where NHST

can be profitably used alone. Last, we find considerable experimental support for a less

slavish attitude toward the precise value of the probability yielded from such procedures.

Key words:  null hypothesis testing, significance testing, statistical significance testing, p-

values, effect sizes, Bayesian statistics
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Introduction

In the almost 300 years since its introduction by Arbuthnot (1710), null hypothesis

significance testing (NHST) has become an important tool for working scientists. In the

early 20th century, the founders of modern statistics (R. A. Fisher, Jerzy Neyman, and

Egon Pearson) showed how to apply this tool in widely varying circumstances, often in

agriculture, that were almost all very far afield from Dr. Arbuthnot's noble attempt to prove

the existence of God. Cox (1977) termed Fisher�s procedure �significance testing� to

differentiate it from Neyman and Pearson�s �hypothesis testing.� He drew distinctions

between the two ideas, but those distinctions are sufficiently fine that modern users lose

little if they ignore them. The ability of statisticians to construct schemes that require

human users to make distinctions that appear to be smaller than the threshold of

comprehension for most humans is a theme we shall return to when we discuss α levels.

With the advantage of increasing use, practitioner's eyes became accustomed to the

darker reality and the shortcomings of NHST became more apparent. The reexamination of

the viability of NHST was described by Anderson, Burnham, and Thompson (2000), who

showed that over the past 60 years an increasing number of articles have questioned the

utility of NHST. It is revealing to notice that Thompson's database, over the same time

period (Figure 1), showed a concomitant increase in the number of articles defending the

utility of NHST. In view of the breadth of the current discussion concerning the utility of

NHST in wildlife research (see also Anderson, Link, Johnson, & Burnham, 2001; Cherry,

1998; Guthery, Lusk, & Peterson, 2001; Johnson, 1999), it seems worthwhile to examine

both the criticisms and the evidence and try to provide a balanced, up-to-date summary of

the situations for which NHST still remains a viable tool and to describe those situations

for which alternative procedures seem better suited. We conclude with some

recommendations for improving the practice of NHST.
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Figure 1. Number of articles appearing in journals that have defended the utility of
NHST.
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Most of the criticisms of NHST tend to focus on its misuse by researchers rather

than on inherent weaknesses. Johnson (1999) claimed that misuse was an intrinsic

weakness of NHST and that somehow the tool itself encourages misuse. However,

Johnson, perhaps because of a well-developed sense of polite diplomacy, chose not to cite

specific circumstances of individual scientists misusing NHST. We agree that any

statistical procedure, including NHST, can be misused, but we have seen no evidence that

NHST is misused any more often than any other procedure. For example, the most

common statistical measure, the mean, is usually inappropriate when the underlying

distribution contains outliers. This is an easy mistake; indeed such an error was made by

Graunt (1662) and took more than 300 years to be uncovered (Zabell, 1976).

The possibility of erroneous conclusions generated by the misuse of statistical

procedures suggests several corrective alternatives. One draconian extreme might be to ban

all such procedures from professional or amateur use. Another approach might be to adopt

the free marketer�s strict caveat emptor. Both seem unnecessarily outlandish, and it is hard

to imagine any thinking person adopting either extreme�the former because it would

essentially eliminate everything; the latter because some quality control over scientific

discourse is essential. We favor a middle path�a mixed plan that includes both

enlightened standards for journal editors as well as a program to educate users of statistical

procedures. This article is an attempt to contribute to that education.

Some in the past (Schmidt, 1996) have felt that the misuse of NHST was

sufficiently widespread to justify its being banned from use within the journals of the

American Psychological Association (APA). The APA formed a task force in 1997 to make

recommendations about appropriate statistical practice. As a small part of its deliberations,

the task force briefly considered banning NHST as well. Johnson (1999), citing Meehl

(1997), surmised that the proposal to ban NHST was ultimately rejected due to the

appearance of censorship and not because the proposal was without merit. This was not the

case; banning NHST was not deemed to be a credible option by the APA.

Aristotle in his Metaphysics pointed out that we understand best those things that

we see grow from their very beginnings. Thus in our summary of both the misuses and
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proper uses of NHST, let us begin with the original intent of one of its earliest modern

progenitors, Sir Ronald Fisher.

Fisher's Original Plan for NHST

Fisher understood science as a continuous process and viewed NHST in that

context. He often used NHST to test the potential usefulness of agricultural innovations. He

understood that science begins with small-scale studies designed to discover phenomena.

Small-scale studies typically do not have the power to yield results of unquestioned

significance. Moreover, Fisher recognized that the cost of getting rid of a false positive was

small in comparison to the cost of missing something that was potentially useful. He knew

that if someone incorrectly found that some sort of innovation improved yields, others

would quickly try to replicate it. If replication repeatedly failed, the innovation would be

dismissed.

Fisher (1926, p. 504) adopted a generous α of 0.05 to screen for potentially useful

innovations �and ignore entirely all results which fail to reach that level. A scientific fact

should be regarded as experimentally established only if a properly designed experiment

rarely fails to give this level of significance.� He understood that if a smaller α were used,

say 0.001, then less dramatic improvements would be missed and might not be

rediscovered for a long time. Thus, 0.05 was used in the context of screening for

innovations that would then be replicated if found to be significant. Fisher (1929) went on

to say,

In the investigation of living beings by biological methods, statistical tests of

significance are essential. Their function is to prevent us being deceived by

accidental occurrences, due not to causes we wish to study, or are trying to detect,

but to a combination of many other circumstances which we cannot control. An

observation is judged significant, if it would rarely have been produced, in the

absence of a real cause of the kind we are seeking. It is common practice to judge a

result significant, if it is of such a magnitude that it would have been produced by

chance not more frequently than once in twenty trials. This is an arbitrary, but

convenient, level of significance for the practical investigator, but it does not mean
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that he allows himself to be deceived once every twenty experiments. The test of

significance only tells him what to ignore, namely all experiments in which

significant results are not obtained. He should only claim that a phenomenon is

experimentally demonstrable when he knows how to design an experiment so that it

will rarely fail to give a significant result. Consequently, isolated significant results

which he does not know how to reproduce are left in suspense pending further

investigation. (p. 189)

There are two key parts to this quote�the trivial �once in twenty trials� and the

more important phrase, �he knows how to design an experiment so that it will rarely fail to

give a significant result.� Fisher believed NHST only made sense in the context of a

continuing series of experiments that were aimed at nailing down the effects of specific

treatments. Throughout Fisher's work, he used statistical tests to come to one of three

conclusions. When p was small (less than 0.05), he declared that an effect has been

demonstrated; when it is large (p > 0.2), he concluded that if there is an effect, it is too

small to be detected with an experiment this size; and he discussed how to design the next

experiment to estimate the effect better when p lies between these two extremes.

NHST as it is used today hardly resembles Fisher�s original idea. Its critics worry

that researchers too commonly interpret results where p > 0.05 as indicating no effect and

rarely replicate results where p < 0.05 in a series of experiments designed to confirm the

direction of the effect and better estimate its size. This conception is of a science built

largely of single-shot studies where researchers choose to reach conclusions based on these

obviously arbitrary criteria. We should mention, however, that a strong countercurrent to

this concept is reflected in the Cochrane Collaboration, a database containing more than

250,000 random assignment medical experiments in which all of the included studies

provide the information necessary for a meta-analysis. Such meta-analyses allow the

formal concatenation of results, which then can yield more powerful inferences than would

be possible from a single study. Robert Boruch at the University of Pennsylvania is

currently organizing a parallel database for social science; this effort is called the Campbell

Collaboration.
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We find it curious that NHST has been criticized by Anderson et al. (2000) and

Johnson (1999) for using arbitrary cutoff levels when at the same time Anderson et al.

(2001) recommended that authors should report the (1 -α��) confidence level, also an

arbitrary cutoff level of precision. And we agree with Guthery et al. (2001) that even if

researchers were to adopt the information-theoretic methods recommended by Anderson et

al. (2001), an arbitrary numerical criterion is still used to judge the strength of evidence in

single studies. This practice of basing scientific conclusions on single studies using

arbitrary criteria, if widespread, could naturally give NHST or any other method a bad

name that could be avoided if researchers simply emulated Fisher�s original plan.

Nevertheless, there are additional ways in which NHST can be improved still further. Let

us now examine how NHST has been misused and/or criticized unfairly and how it might

be improved or used more appropriately.

Silly Null Hypotheses

Anderson et al. (2000), Anderson et al. (2001), Cherry (1998), and Johnson (1999)

echo a common complaint (Schmidt, 1996; Thompson, 1996) that the typical null

hypothesis is almost always false. We agree that NHST is being misused when it tests a

null hypothesis in which the effect can only go in one direction. Reporting a p value for a

correlation that was computed for reliability and validity coefficients represents vacuous

information (Abelson, 1995) and constitutes what Brennan (2001, p. 172) called �excessive

use of p values.� If p values add nothing to the interpretation of results, leave them out,

although sometimes a significant p value may just be scientific shorthand for a substantial

effect size. This occurs if one�s reaction on seeing a significant p value is to say to oneself,

�If the difference is statistically significant with that small a sample, it must be a huge

effect.� Obviously communicating effect size with p value and sample size is indirect, but

sometimes such shorthand aids in efficient communication.

Not all p values, however, are unimportant. Wainer (1999) mentioned several

examples of research hypotheses where simply being able to reject the null would be a

considerable contribution to science. For example, if physicists had been able to design an

experiment that could reject the null hypothesis that the speed of light is equal in two
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reference frames that are moving at very different speeds, a young Swiss patent clerk who

suggested otherwise might have remained obscure. Nevertheless, we agree that many of the

null hypotheses tested in the research literature are false only in the statistical sense of the

word, but as a practical matter they could be treated as if they were true with little

likelihood of any negative consequences. Newtonian physics jumps to mind as one

example of a false hypothesis that under very broad conditions could profitably be treated

as true. Guthery et al. (2001) also argued that although most statistical null hypotheses are

false, many research null hypotheses in wildlife science state no effect constitutes a

legitimate challenge to untested assumptions.

The probabilistic appendage to a statement like, �The foraging patterns were not the

same for all months (p < 0.05),� seems unnecessary because everyone would agree that it is

extraordinarily unlikely that 12 population means would be identical. Usually, if large

enough samples are obtained, p values can be made arbitrarily small.

This criticism of NHST seems to be a valid one. If the only purpose of a hypothesis

test is to canonize a small difference whose size and direction are of no interest, NHST is

unnecessary. Further, we generally agrees with critics who suggest that it is exactly the size

and direction of observed differences that ought to be reported and not �naked p values�

(Anderson et al., 2001). We depart from complete agreement with such sentiments for

those (admittedly more rare) circumstances where such differences are of secondary

importance (e.g., Ho: I am pregnant) and simply being able to reject the null hypothesis (or

not) is what is of principal interest.

We also depart from the critics in our belief that we ought to modify NHST to suit

our modern understanding rather than to eliminate it. We shall discuss some plausible

modifications in later sections.

The Role of Effect Sizes in NHST

An ordinal claim regarding the direction of the difference or relationship can be a

substantial contribution (Frick, 1996). In some cases, however, knowing the direction of

the effect is not sufficient in deciding whether an intervention is cost-effective. In these

situations, calculating the size of the effect can be quite useful. Conducting NHST does not
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preclude the researcher from calculating effect sizes. Whereas NHST is useful in

determining statistical significance, effect sizes are useful in determining practical

importance. Of course, we would prefer to see all effect sizes accompanied with a

confidence interval that indicates the precision (or imprecision) with which that effect has

been estimated. Nonetheless, we find it absurd that one must somehow choose between

conducting NHST or calculating effect sizes and confidence intervals. Both a frying pan

and butter are useful on their own, but together they can do things that neither can do alone.

So, too, it is with NHST, effect sizes, and confidence intervals. Researchers should feel

free to use any statistical technique that will help to shed light on the interesting aspects of

their data. Tukey (1969, p. 83) recommended that �we ought to try to calculate what will

help us most to understand our data, and their indications. We ought not to be bound by

preconceived notions�or preconceived analyses.�

Thompson (2000) reported that over the past few years, more than a dozen journals

in education-related fields have instituted policies that require authors to provide effect

sizes in addition to p values (e.g., Contemporary Educational Psychology, Educational and

Psychological Measurement, Journal of Agricultural Education, Journal of Applied

Psychology, Journal of Consulting & Clinical Psychology, Journal of Early Intervention,

Journal of Experimental Education, Journal of Learning Disabilities, Language Learning,

Measurement and Evaluation in Counseling and Development, The Professional Educator,

and Research in the Schools). The reporting of effect sizes matches one recommendation of

the APA Task Force on Statistical Inference that authors �always present effect sizes [and]

add brief comments that place these effect sizes in a practical and theoretical context�

(Wilkinson and the APA Task Force on Statistical Inference, 1999, p. 599). However, the

most recent edition of the APA Style Manual stops short of recommending that authors

�always� present effect sizes because the issue of whether such a requirement is necessary

is far from being declared resolved. The APA follows the policies of other successful

institutions that understand that canonization not only requires that you be dead, but you

must have been dead for a sufficiently long period of time.

Obviously one should provide effect sizes or, for that matter, any other type of

statistical information that yields useful insights into the characteristics of data. However,
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requiring authors to always provide effect size information may be overkill in those

situations in which such information adds little to the correct interpretation of the data, and

more dangerously, if it distracts or misleads readers. For example, a major use of NHST is

in testing model fit, such as using a likelihood ratio to compare a restricted model to its

more general parent. What does effect size mean in this context? Also, in some instances

(e.g., medical research) it is a practical impossibility to obtain good estimates of effect size

because once a treatment is determined to be superior, researchers are ethically forbidden

from using the inferior one. This particular circumstance provides a good illustration of two

important ideas.

First, Will Rogers� colorful caveat, �What we don�t know won�t hurt us; it�s what

we do know that ain�t,� has important application in hypothesis testing. Indeed, finding a

significant but inaccurate direction of a difference or relationship was called a Type III

Error by Henry Kaiser in his 1970 Psychometric Society presidential address and was

discussed many years earlier by Wald (1947). Kaiser and Wald suggest that accompanying

an effect size by a suitably small p value is more than just an adornment.

The second issue worth mentioning is the question, �What is the effect whose size

we are reporting?� In medical research, one measure of a treatment�s effectiveness might

be the number of people who don�t get the disease who would have otherwise or the

number of people cured who would not have been; in short, the causal effect of the

treatment. Let us consider the ethical conundrum of trying to get a good estimate of the

effect of a treatment. Obviously, we want to know the direction of the effect of the

treatment, and once we know it with reasonable certainty, we are ethically bound not to use

the inferior treatment. But how far can we continue with the experiment to be �sure

enough�? In 1963, Anscombe proposed a modification to the typical Neyman-Pearson

formulation that is more in keeping with medical needs and forms a model for the

flexibility of approach we support. Anscombe pointed out that we are not interested in the

asymptotic probability of error; rather he observed that for any medical treatment there

would be a finite number of patients treated. A small number of them will be treated as part

of the clinical trial; the rest will be given the treatment that the clinical trial decides is

�best.� If we use too small a number of patients in the trial, the decision of which treatment
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is best is more likely to be in error and all of the rest of the patients will be given the wrong

treatment. If we use too many patients in the trial, then all the patients in the trial on the

other treatments will have been mistreated unnecessarily. Anscombe proposed that one

criterion of analysis, one �effect,� should be minimizing the total number of patients (both

those in the trial and those treated afterwards) who are given the poorer treatment.

Finally, in some situations obtaining a large or practical effect is not necessary or

useful. I. McKeachie (personal communication, 2001) noted that effect sizes are mostly

useful for

�research that is directed toward decisions with some immediate practical

consequences. As I see it, much research is concerned with developing or testing

theory. If it is to test an existing theory, even a small difference should increase

one�s confidence that the theory has some validity. Similarly if you are contributing

to theory development, the size of the result is not so important as its heuristic value

in stimulating thinking, which may then be tested by further research.

Thus, in some cases, researchers can or should only look for significance of

direction and not effect size.

In fact, there are even very practical situations in which effect size is known in

advance to be very small and only direction is of interest. For example, consider an

application of what Box and Wilson (1951) called �evolutionary variation in operations�

(EVOP), in which slight variations in manufacturing procedures are tried and the direction

of their effect noted (does it improve matters or make them worse?). The variations are

never large because the costs of a major mistake are too serious. If the direction of change

is an improvement, then further changes of that sort are made. If things get worse,

subsequent changes are made in another direction. As an example, suppose a manufacturer

of paper is using EVOP and introduces experiments into the production run. The humidity,

speed, sulfur, and temperature are modified slightly in various ways. The resulting change

in paper strength cannot be great and still produce a salable product. Yet some of these

slight modifications may yield a significant increase, which becomes then the stage for

another experiment. The results of each stage in EVOP are compared to previous stages.

Experiments with seemingly anomalous results are rerun. The experiments continue
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indefinitely for there is no final �correct� solution. This scenario matches closely the

scientific enterprise in which the sequence of experiments followed by examination and

reexamination of data has no end.

Thus there are circumstances in which requiring authors to provide effect size

information may be inappropriate. It is worse than inappropriate if that information

subsequently misleads readers about the accuracy of the results. Anderson et al. (2001, p.

374) argued �emphasizing estimation over hypothesis testing . . . helps protect against

pitfalls associated with the failure to distinguish between statistical significance and

biological significance.� They went on to say that if a test yields a nonsignificant p value,

authors should discuss the estimated effect size and then give the estimate and a measure of

precision. Unfortunately, this recommendation may be potentially dangerous if readers fail

to distinguish between significant and nonsignificant effects for single study conclusions.

For example, suppose a small, spurious effect is reported with a confidence interval and the

author goes on to discuss the size of the effect as if it were meaningful. This mismatch

between the results of statistical tests and researchers� interpretations of them has been

termed a Type IV Error (Marascuilo & Levin, 1970). We recommend authors follow a two-

step procedure where first the unlikelihood of an effect (small p value) is established before

discussing how impressive it is (effect size) (Robinson & Levin, 1997).

Requiring authors to provide effect size information may also be inappropriate if

that information subsequently misleads readers about the importance of the results.

Robinson, Fouladi, Williams, and Bera (in press) had college students read research

abstracts and found the inclusion of effect sizes led readers to overestimate the importance

of research results. We suspect that while effect sizes are often an important facet of an

experiment, sometimes they may not be and that the authors (with editorial guidance) may

be the ones best suited to choose both when and what type of effect size information ought

to be included.

Arbitrary αααα Levels

Both Anderson et al. (2000) and Johnson (1999) complained that NHST involves

using an arbitrary cutoff point. We agree that researchers should not be bound by the chains
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of α = 0.05. The fact that many persons misuse NHST by simply making reject/fail-to-

reject decisions on single studies is probably due to the Neyman-Pearson legacy of such

dichotomous decisions. We recommend that p values should be reported as Fisher

suggested. But researchers and readers still have to interpret those p values. Researchers

should select an α level for a statistical test a priori and explain why it was chosen. The

level of α chosen should correspond to the researcher�s �threshold for the dismissal of the

idea of chance� (Alberoni, 1962) for that particular null hypothesis. A person�s threshold

may certainly change given the stakes of the hypothesis that is tested. Fisher (1925) himself

stated that

no scientific worker has a fixed level of significance at which from year to year, and

in all circumstances, he rejects hypotheses; he rather gives his mind to each

particular case in the light of his evidence and his ideas.

Tukey (1969) discussed the potential problems of using different α levels for

different contexts.

Need we�should we�stick to p = 0.05 if what we seek is a relatively pure list of

appearances? No matter where our cutoff comes, we will not be sure of all

appearances. Might it not be better to adjust the critical p moderately�say to .03 or

.07�whenever such a less standard value seems to offer a greater fraction of

presumably real appearances among those significant at the critical p? We would

then use different modifications for different sets of data. No one, to my knowledge,

has set himself the twin problems of how to do this and how well doing this in a

specific way performs. (p. 85)

If researchers are conducting small-scale studies that are to be included as part of a

continuing series of studies, then using 0.05 as an α level seems appropriate as a screening

device. However, if researchers are conducting one-time studies that have high stakes

involved concerning the consequences of errors, then much smaller α levels should

certainly be used. But it is likely to be an unusual circumstance indeed in which any high

stakes decisions were to be based on a single study.
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What if p = 0.06?

Anderson et al. (2000) and Johnson (1999) properly complain that referring to

outcomes where p < 0.05 as significant and where p > 0.05 as nonsignificant is problematic

when p values are close to 0.05, like 0.06. As previously noted, Fisher used the 0.05 level

as a heuristic because he knew that if a potentially useful treatment were discovered,

someone would replicate it and show it to be useful. We feel that p values should be

interpreted in the context of a series of experiments. If p = 0.06, then the researcher should

ask if the effect is of potential interest to explore further. Fisher always attempted to

improve the design when p values were between 0.05 and 0.2.

In quantitative research, consistent smallish probabilities from several studies in the

same direction allow one to conclude the direction of an effect. Statistically significant

results that are replicated provide the basis of scientific advance (Tukey, 1969). As for

describing results where p is greater than 0.05 but still small, say less than 0.25, Tukey

(1991) proposed that we might use additional words besides significant or nonsignificant to

describe our reluctance to bet on the direction of the true difference or relationship. For

example, if p is greater than 0.05 but less than 0.15, we could say that the direction of an

effect leans in a certain direction. If p is greater than 0.15 but less than 0.25, we could say

that there is a hint about the true direction. Tukey was not suggesting that we should use

0.25 as the level of significance. Rather, he was telling us to stop treating statistical testing

as an all or nothing procedure and instead use appropriate wording to describe degrees of

uncertainty.

Tukey�s advice incorporates a great deal about what modern psychological

investigations have told us about how humans understand probability. Modern concepts of

probability began with Kolmogorov�s mathematical definition of probability as a measure

of sets in an abstract space of events. While all mathematical properties of probability can

be derived from this definition, it is of little value in helping us to apply probability to real

life situations. Understanding how humans understand probability was helped enormously

by the concept of �personal probability� that was proposed almost a half century ago by

both de Finetti (1974/1970) and Savage (1954), who contended that probability is a

common concept that people can use coherently if their inferences using it follow a few
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simple rules. Unfortunately, in a series of ingenious experiments, the psychologists

Kahneman and Tversky (summarized in Kahneman, Slovic, & Tversky, 1982) found no

one whose probabilistic judgments met Savage�s criteria for coherence. They found,

instead, that most people did not have the ability to even keep a consistent view of what

different numerical probabilities meant. They reported that the best humans could manage

was a vastly simplified probability model (which they attribute to Suppes) that met

Kolmogorov�s axioms and fit their data. Suppes� model has only five probabilities:

Surely true

More probable than not

As probable as not

Less probable than not

Surely false

While Suppes� model has the benefit of fitting Kahneman and Tversky�s data, it

also leads to a remarkably uninteresting mathematical theory with only a few possible

theorems. If Suppes� model is, in fact, the only one that fits personal probability, then many

of the techniques of statistical analysis that are standard practice are useless because they

only serve to produce distinctions below the level of human perception. In view of these

results, Tukey�s approach to interpreting p values may be the only sensible way to go;

arguing about 0.04 or 0.05 or 0.06 is a poor use of one�s time.

One Expanded View of NHST

Recently, Jones and Tukey (2000), expanding on an old idea (e.g., Lehmann, 1959;

Wald, 1947), suggested a better way in which one could interpret significant and

nonsignificant p values. If p is less than 0.05, researchers can conclude that the direction of

a difference was determined (i.e., either the mean of group one is greater than the mean of

group two or vice versa). If p is greater than 0.05, the conclusion is simply that the sign of

the difference is not yet determined. This trinary decision approach (either µ1 > µ2, µ2 > µ1,

or do not know yet) has the advantages of stressing that research is a continuing activity

and of never having to �accept� a null hypothesis that is likely untrue. Fisher (1929) also

commented on NHST�s inability to support a null hypothesis as true:
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For the logical fallacy of believing that a hypothesis has been proved to be true,

merely because it is not contradicted by the available facts, has no more right to

insinuate itself in statistical than in other kinds of scientific reasoning ... it would

therefore, add greatly to the clarity with which the tests of significance are regarded

if it were generally understood that tests of significance, when used accurately, are

capable of rejecting or invalidating hypotheses, in so far as they are contradicted by

the data: but that they are never capable of establishing them as certainly true.... (p.

192)

Rather than concluding that �there was no difference among the treatments

(p = 0.07)� or that �the two variables were not correlated (p = 0.06),� authors should

instead simply state that �the direction of the differences among the treatments was

undetermined� or that �the sign of the correlation among the two variables was

undetermined.� This language avoids leaving the impression that the null hypothesis was

accepted and suggests rather that more data are needed before a determination can be

made.

Conclusions and Recommendations

NHST, as currently constituted, is a tool of limited usefulness. It is useful in

determining the direction of an effect. It can be a valued accompaniment to effect sizes and

confidence intervals by providing information about the trustworthiness of estimates of the

size of the effect. It is not very useful when sample sizes are extremely large. On the other

hand, effect sizes are not particularly helpful when testing model fit. In addition, accurate

estimates of effect sizes are sometimes impossible to obtain, as for example in medical

research where the continued use of a control group is not ethical.

Modified versions of NHST can be used to good effect, as in tests on means with a

trinary hypothesis. Such procedures have been in use for decades in sequential analysis

(e.g., it�s better, it�s worse, or keep on testing).

NHST is well used in conjunction with a series of investigations. Replicated

significant results serve as the foundation of scientific justification of the direction of an

effect. Replications with extensions also serve to enhance the generalizability of results
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while at the same time adding to the evidence for the effect. Research studies that are

unique ventures are not well modeled by any statistical procedure whose goal is to predict

long-term frequencies of occurrence.

Last, it has been our informal experience that many users of NHST interpret the

result as the probability of the null hypothesis based upon the data observed. That is,

P(Ho|data), when formally what is actually yielded is P(data|Ho). This error suggests that

users really want to make a different kind of inference�a probabilistic statement of the

likelihood of the hypothesis. To be able to make such inferences requires transforming the

usual P(data|Ho) with a straightforward application of Bayes� theorem. Bayesian

hypothesis testing is reasonably well developed (Box & Tiao, 1973; Novick & Jackson,

1974; Winkler, 1993) and well worth inclusion in the arsenal of any salt-worthy data

analyst.
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Notes
1 This paper was collaborative in every respect, and the order of authorship is

alphabetical.


