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Abstract The analysis of data from experiments in economics routinely involves testing multiple null

hypotheses simultaneously. These different null hypotheses arise naturally in this setting for at least three

different reasons: when there are multiple outcomes of interest and it is desired to determine on which of

these outcomes a treatment has an effect; when the effect of a treatment may be heterogeneous in that

it varies across subgroups defined by observed characteristics and it is desired to determine for which

of these subgroups a treatment has an effect; and finally when there are multiple treatments of interest

and it is desired to determine which treatments have an effect relative to either the control or relative to

each of the other treatments. In this paper, we provide a bootstrap-based procedure for testing these null

hypotheses simultaneously using experimental data in which simple random sampling is used to assign

treatment status to units. Using the general results in Romano and Wolf (2010), we show under weak

assumptions that our procedure (i) asymptotically controls the familywise error rate – the probability

of one or more false rejections – and (ii) is asymptotically balanced in that the marginal probability of

rejecting any true null hypothesis is approximately equal in large samples. Importantly, by incorporating

information about dependence ignored in classical multiple testing procedures, such as the Bonferroni

and Holm corrections, our procedure has much greater ability to detect truly false null hypotheses. In

the presence of multiple treatments, we additionally show how to exploit logical restrictions across null

hypotheses to further improve power. We illustrate our methodology by revisiting the study by Karlan

and List (2007) of why people give to charitable causes.

Documentation of our procedures and our Stata and Matlab code can be found at https://github.com/seidelj/mht.
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1 Introduction

Multiple hypothesis testing simply refers to any instance in which more than one null hypothesis is tested

simultaneously. While this problem is pervasive throughout all empirical work in economics, we focus

on the analysis of data from experiments in economics. In this setting, different null hypotheses arise

naturally for at least three different reasons: when there are multiple outcomes of interest and it is desired

to determine on which of these outcomes a treatment has an effect; when the effect of a treatment may

be heterogeneous in that it varies across subgroups defined by observed characteristics (e.g., gender or

age) and it is desired to determine for which of these subgroups a treatment has an effect; and finally

when there are multiple treatments of interest and it is desired to determine which treatments have an

effect relative to either the control or relative to each of the other treatments.

Testing multiple null hypotheses for each of these three reasons is ubiquitous in the analysis of experi-

mental data. Anderson (2008), for example, reports that 84% of experiments published from 2004 to 2006

in a set of social sciences field journals examine five or more outcomes simultaneously and 61% examine

ten or more outcomes simultaneously. Specific examples include many studies of early childhood inter-

ventions, such as the Abecedarian and Perry pre-school programs, which collected data on a large variety

of outcomes pertaining to educational attainment, employment, and criminal behavior, among others.

Similarly, Fink et al. (2014) report that 76% of field experiments published in leading economics journals

examine multiple subgroups and 29% examine ten or more subgroups. Specific examples include analyses

of how the effects of competition may vary by gender (Gneezy et al. 2003; Niederle and Vesterlund 2007;

Flory et al. 2015b) or age (Sutter and Glätzle-Rützler 2014; Flory et al. 2015a). Multiple treatments are

also commonplace in experiments. For instance, the recent economics literature has studied how different

incentive schemes affect a variety of outcomes including worker productivity (Hossain and List 2012),

child food choice and consumption (List and Samek 2015), and educational performance (Levitt et al.

2012).

With a few exceptions, some of which we note below, it is uncommon for the analyses of these data to

account for the multiple hypothesis testing. As a result, the probability of a false rejection may be much

higher than desired. To illustrate this point, consider testing N null hypotheses simultaneously. Suppose

that for each null hypothesis a p-value is available whose distribution is uniform on the unit interval

when the corresponding null hypothesis is true. Suppose further that all null hypotheses are true and

that the p-values are independent. In this case, if we were to test each null hypothesis in the usual way

at level α ∈ (0, 1), then the probability of one or more false rejections equals 1 − (1 − α)N , which may

be much greater than α and in fact tends rapidly to one as N increases. For instance, with α = 0.05, it
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equals 0.226 when N = 5, equals 0.401 when N = 10 and 0.994 when N = 100. In order to control the

probability of a false rejection, it is therefore important to account appropriately for multiplicity of null

hypotheses being tested.

In this paper, we provide a bootstrap-based procedure for testing these null hypotheses simultaneously

using experimental data in which simple random sampling is used to assign treatment status to units.

Formally, we establish our results by applying the general results in Romano and Wolf (2010). In par-

ticular, we show under weak assumptions that our procedure (i) asymptotically controls the familywise

error rate – the probability of one or more false rejections – and (ii) is asymptotically balanced in that

the the marginal probability of rejecting any true null hypothesis is approximately equal in large sam-

ples. Importantly, by incorporating information about dependence ignored in classical multiple testing

procedures, such as the Bonferroni (1935) and Holm (1979) corrections, our procedure has much greater

ability to detect truly false null hypotheses. In the presence of multiple treatments, we additionally show

how to exploit logical restrictions across null hypotheses to further improve power. See Remark 3.7 for

further discussion of this point.

As mentioned previously, it is uncommon in the experimental economics literature for authors to

account for the multiplicity of null hypotheses being tested. Some notable exceptions include Kling et al.

(2007), who use a more restrictive resampling-based multiple testing procedure due to Westfall and Young

(1993) and Anderson (2008), Heckman et al. (2010), Heckman et al. (2011), and Lee and Shaikh (2014),

who combine randomization methods with results in Romano and Wolf (2005) to construct multiple

testing procedures with finite-sample validity for testing a more restrictive family of null hypotheses.

Perhaps most importantly, none of these papers consider null hypotheses emerging due to multiple

treatments, which, as noted above, is a very common occurrence in experiments in economics.

The remainder of our paper is organized as follows. In Section 2, we introduce our setup and notation

as well as the assumptions under which we will establish the validity of our multiple testing procedure.

Section 3 describes our multiple testing procedure and establishes its validity. In Section 4, we apply our

methodology to data originally presented in Karlan and List (2007), who study the economics of charity

by measuring, among other things, the effectiveness of a matching grant on charitable giving. Section 5

concludes. Proofs of all results can be found in Appendix A.

2 Setup and Notation

For k ∈ K, let Yi,k denote the (observed) kth outcome of interest for the ith unit, Di denote treatment

status for the ith unit, and Zi denote observed, baseline covariates for the ith unit. Further denote by

D and Z the supports of Di and Zi, respectively. For d ∈ D, let Yi,k(d) be the kth potential outcome

for the ith unit if treatment status were (possibly counterfactually) set equal to d. As usual, the kth
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observed outcome and kth potential outcome are related to treatment status by the relationship

Yi,k =
∑
d∈D

Yi,k(d)I{Di = d} .

It is useful to introduce the shorthand notation Yi = (Yi,k : k ∈ K) and Yi(d) = (Yi,k(d) : k ∈ K).

We assume that ((Yi(d) : d ∈ D), Di, Zi), i = 1, . . . , n are i.i.d. with distribution Q ∈ Ω, where our

requirements on Ω are specified below. It follows that the observed data (Yi, Di, Zi), i = 1, . . . , n are

i.i.d. with distribution P = P (Q). Denote by P̂n the empirical distribution of the observed data.

The family of null hypotheses of interest is indexed by

s ∈ S ⊆ {(d, d′, z, k) : d ∈ D, d′ ∈ D, z ∈ Z, k ∈ K} .

For each s ∈ S, define

ωs = {Q ∈ Ω : EQ[Yi,k(d)− Yi,k(d′)|Zi = z] = 0} .

Using this notation, the family of null hypotheses of interest is given by

Hs : Q ∈ ωs for s ∈ S . (1)

In other words, the sth null hypothesis specifies that the average effect of treatment d on the kth

outcome of interest for the subpopulation where Zi = z equals the average effect of treatment d′ on the

kth outcome of interest for the subpopulation where Zi = z. For later use, denote by S0(Q) the subset

of S corresponding to true null hypotheses, i.e.,

S0(Q) = {s ∈ S : Q ∈ ωs} .

Our goal is to construct a procedure for testing these null hypotheses in a way that ensures asymptotic

control of the familywise error rate for each Q ∈ Ω. More precisely, we require for each Q ∈ Ω that

lim sup
n→∞

FWERQ ≤ α (2)

for a pre-specified value of α ∈ (0, 1), where

FWERQ = Q{reject any Hs with s ∈ S0(Q)} . (3)

The notation FWERQ is intended to reflect the fact that the quantity on the righthand-side of (3) is the

familywise error rate computed under Q. We additionally require that the testing procedure is “balanced”

in that for each Q ∈ Ω,

lim
n→∞

Q{reject Hs} = lim
n→∞

Q{reject Hs′} for any s and s′ in S0(Q) . (4)
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We impose the requirement of “balance” to avoid situations where some (true) null hypotheses may be

more likely to be rejected than other (true) null hypotheses for reasons that are viewed as undesirable,

such as some outcomes taking on much larger values than other outcomes.

We now describe our main requirements on Ω. The assumptions make use of the notation

µk|d,z(Q) = EQ[Yi,k(d)|Di = d, Zi = z]

σ2
k|d,z(Q) = VarQ[Yi,k(d)|Di = d, Zi = z] .

Assumption 2.1 For each Q ∈ Ω,

(Yi(d) : d ∈ D) ⊥⊥ Di|Zi

under Q.

Assumption 2.2 For each Q ∈ Ω, k ∈ K, d ∈ D and z ∈ Z,

0 < σ2
k|d,z(Q) = VarQ[Yi,k(d)|Di = d, Zi = z] <∞ .

Assumption 2.3 For each Q ∈ Ω, there is ε > 0 such that

Q{Di = d, Zi = z} > ε (5)

for all d ∈ D and z ∈ Z.

Assumption 2.1 simply requires that treatment status was randomly assigned. Assumption 2.2 is

a mild non-degeneracy requirement. Assumption 2.3 simply requires that both Di and Zi are discrete

random variables (with finite supports).

Remark 2.1 Note that we have assumed in particular that treatment status Di, i = 1, . . . , n is i.i.d.

While this assumption accommodates situations in which treatment status is assigned according to

simple random sampling, it does not accommodate more complicated treatment assignment rules, such

as those in which treatment status is assigned in order to “balance” baseline covariates among the subsets

of individuals with different treatment status. For a discussion of such treatment assignment rules and

the implications for inference about the average treatment effect, see Bugni et al. (2015).

Remark 2.2 When S is very large, requiring control of the familywise error rate may significantly limit

the ability to detect genuinely false null hypotheses. For this reason, it may be desirable in such situa-

tions to relax control of the familywise error rate in favor of generalized error rates that penalize false

rejections less severely. Examples of such error rates include: the m-familywise error rate, defined to

be the probability of m or more false rejections; the tail probability of the false discovery proportion,

defined to be the fraction of false rejections (understood to be zero if there are no rejections at all);

and the false discovery rate, defined to be the expected value of false discovery proportion. Control of
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the m-familywise error rate and the tail probability of the false discovery proportion using resampling

are discussed in Romano et al. (2008b) and Romano and Wolf (2010). For procedures based only on

(multiplicity-unadjusted) p-values, see Lehmann and Romano (2005), Romano and Shaikh (2006a), and

Romano and Shaikh (2006b). For resampling-based control of the false discovery rate, see Romano et al.

(2008a).

3 A Stepwise Multiple Testing Procedure

In this section, we describe a stepwise multiple testing procedure for testing (1) in a way that satisfies

(2) and (4) for any Q ∈ Ω. In order to do so, we first require some additional notation. To this end, first

define the “unbalanced” test statistic for Hs,

Ts,n =
√
n

∣∣∣∣∣∣ 1

nd,z

∑
1≤i≤n:Di=d,Zi=z

Yi,k −
1

nd′,z

∑
1≤i≤n:Di=d′,Zi=z

Yi,k

∣∣∣∣∣∣ , (6)

and its re-centered version

T̃s,n(P ) =
√
n

∣∣∣∣∣∣ 1

nd,z

∑
1≤i≤n:Di=d,Zi=z

(Yi,k − µ̃k|d,z(P ))−
1

nd′,z

∑
1≤i≤n:Di=d′,Zi=z

(Yi,k − µ̃k|d′,z(P ))

∣∣∣∣∣∣ , (7)

where

µ̃k|d,z(P ) = EP [Yi,k|Di = d, Zi = z] .

Next, for s ∈ S, define

Jn(x, s, P ) = P
{
T̃s,n(P ) ≤ x

}
.

Note that Jn(x, s, P ) is simply the distribution of (6) when Hs is true. In order to achieve “balance,”

rather than reject Hs for large values of Ts,n, we reject Hs for large values of

Jn(Ts,n, s, P̂n) . (8)

Note that (8) is simply one minus a (multiplicity-unadjusted) bootstrap p-value for testing Hs based on

Ts,n. Finally, for S ′ ⊆ S, let

Ln(x,S ′, P ) = P

{
max
s∈S′

Jn(T̃s,n(P ), s, P ) ≤ x
}
.

Note that Ln(x,S ′, P ) is the distribution the maximum of (8) over s ∈ S ′ when Hs is true for all s ∈ S ′.

Using this notation, we may describe our proposed stepwise multiple testing procedure as follows:

Algorithm 3.1

Step 0. Set S1 = S.
...
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Step j. If Sj = ∅ or

max
s∈Sj

Jn(Ts,n, s, P̂n) ≤ L−1n (1− α,Sj , P̂n) ,

then stop. Otherwise, reject any Hs with Jn(Ts,n, s, P̂n) > L−1n (1− α,Sj , P̂n), set

Sj+1 = {s ∈ Sj : Jn(Ts,n, s, P̂n) ≤ L−1n (1− α,Sj , P̂n)} ,

and continue to the next step.
...

The following theorem describes the asymptotic behavior of our proposed multiple testing procedure.

Theorem 3.1 Consider the procedure for testing (1) given by Algorithm 3.1. Under Assumptions 2.1 –

2.3, Algorithm 3.1 satisfies (2) and (4) for any Q ∈ Ω.

Remark 3.1 If S = {s}, i.e., S is a singleton, then the familywise error rate is simply the usual probability

of a Type I error. Hence, Algorithm 3.1 provides asymptotic control of the probability of a Type I error.

In this case, Algorithm 3.1 is equivalent to the usual bootstrap test of Hs, i.e., the test that rejects Hs

whenever Ts,n > J−1n (1− α, s, P̂n).

Remark 3.2 As noted above, p̂s,n = 1 − Jn(Ts,n, s, P̂n) may be interpreted as a bootstrap p-value for

testing Hs. Indeed, for any Q ∈ ωs, it is possible to show that

lim sup
n→∞

Q{p̂s,n ≤ u} ≤ u

for any 0 < u < 1. A crude solution to the multiplicity problem would therefore be to apply a Bonferroni

or Holm correction to these p-values. By replacing L−1n (1 − α,Sj , P̂n) with a suitable choice of critical

value, it is possible to describe both the Bonferroni and Holm corrections in terms of Algorithm 3.1.

The Bonferroni correction may be obtained by applying Algorithm 3.1 with 1− α
|S| in place of L−1n (1−

α,Sj , P̂n), whereas the Holm correction, first described in Holm (1979), may be obtained by applying

Algorithm 3.1 with 1 − α
|Sj | in place of L−1n (1 − α,Sj , P̂n). Such approaches would indeed satisfy (2),

as desired, but implicitly rely upon a “least favorable” dependence structure among the p-values. To the

extent that the true dependence structure differs from this “least favorable” one, improvements may be

possible. Algorithm 3.1 uses the bootstrap to incorporate implicitly information about the dependence

structure when deciding which null hypotheses to reject. In fact, Algorithm 3.1 will always reject at least

as many null hypotheses as these procedures.

Remark 3.3 Implementation of Algorithm 3.1 typically requires approximating the quantities Jn(x, s, P̂n)

and Ln(x,S ′, P̂n) using simulation. As noted by Romano and Wolf (2010), doing so does not require

nested bootstrap simulations. To explain further, for b = 1, . . . , B, draw a sample of size n from P̂n

and denote by T̃ ∗,bs,n(P̂n) the quantity T̃s,n(P ) using the bth resample and P̂n as an estimate of P . Then,



8 List et al. 2018

Jn(x, s, P̂n) may be approximated as

Ĵn(x, s, P̂n) =
1

B

∑
1≤b≤B

I{T̃ ∗,bs,n(P̂n) ≤ x}

and Ln(x,S ′, P̂n) may be approximated as

L̂n(x,S ′, P̂n) =
1

B

∑
1≤b≤B

I

{
max
s∈S′

Ĵn(T
∗,b
s,n(P̂n), s, P̂n) ≤ x

}
.

In particular, the same set of bootstrap resamples may be used in the two approximations.

Remark 3.4 In terms of higher-order asymptotic properties, it is often desirable to studentize, i.e., to

replace Ts,n and T̃s,n(P ), respectively, with

T stud
s,n =

Ts,n√
n ·
(
σ̃2
k|d,z(P̂n)

nd,z
+

σ̃2
k|d′,z(P̂n)

nd′,z

)
T̃ stud
s,n (P ) =

T̃s,n(P )√
n ·
(
σ̃2
k|d,z(P̂n)

nd,z
+

σ̃2
k|d′,z(P̂n)

nd′,z

) ,

where

σ̃2
k|d,z(P ) = VarP [Yi,k|Di = d, Zi = z] .

Theorem 3.1 continues to hold with these changes.

Remark 3.5 In some cases, it may be of interest to consider one-sided null hypotheses, e.g., H−s : P ∈ ω−s ,

where

ω−s = {Q ∈ Ω : EQ[Yi,k(d)− Yi,k(d′)|Zi = z] ≤ 0} (9)

In this case, it suffices simply to replace Tsn and T̃sn(P ), respectively, with T−s,n and T̃−s,n(P ), which are,

respectively, defined as in (6) and (7), but without the absolute values. An analogous modification can be

made for null hypotheses H+
s : P ∈ ω+

s , where ω+
s is defined as in (9), but with the inequality reversed.

Remark 3.6 Note that a multiplicity-adjusted p-value for Hs, p̂adjs,n, may be computed simply as the

smallest value of α for which Hs is rejected in Algorithm 3.1.

Remark 3.7 It is possible to improve Algorithm 3.1 by exploiting transitivity (i.e., µk|d,z(Q) = µk|d′,z(Q)

and µk|d′,z(Q) = µk|d′′,z(Q) implies that µk|d,z(Q) = µk|d′′,z(Q)). To this end, for S ′ ⊆ S, define

S(S ′) = {S ′′ ⊆ S ′ : ∃ Q ∈ Ω s.t. S ′′ = S0(Q)}

and replace L−1n (1− α,Sj , P̂n) in Algorithm 3.1 with

max
S̃∈S(Sj)

L−1n (1− α, S̃, P̂n) .
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With this modification to Algorithm 3.1, Theorem 3.1 remains valid. Note that this modification is only

non-trivial when there are more than two treatments and may be computationally prohibitive when there

are more than a few treatments.

Remark 3.8 Note that we only require that the familywise error rate is asymptotically no greater than α

for each Q ∈ Ω. By appropriately strengthening the assumptions of Theorem 3.1, it is possible to show

that Algorithm 3.1 satisfies

lim sup
n→∞

sup
Q∈Ω

FWERQ ≤ α .

In particular, it suffices to replace Assumption 2.2 with a mild uniform integrability requirement and

require in Assumption 2.3 that there exists ε > 0 for which (5) holds for all Q ∈ Ω, d ∈ D and z ∈ Z.

Relevant results for establishing this claim can be found in Romano and Shaikh (2012), Bhattacharya

et al. (2012), and Machado et al. (2013).

4 Empirical Applications

In this section, we apply our methodology to data originally presented in Karlan and List (2007), who use

direct mail solicitations targeted to previous donors of a nonprofit organization to study the effectiveness

of a matching grant on charitable giving. The sample includes all 50,083 individuals who had given to

the organization at least once since 1991. Each individual was independently assigned with probability

two-thirds to a treatment group (resulting in 33,396, or 67 percent of the sample, being treated) and with

probability one-third to a control group (resulting in 16,687 subjects, or 33 percent of the sample, being

untreated). Individuals in the treatment group were offered independently and with equal probability

one of 36 possible matching grants whose terms varied along three dimensions: three possible values for

the price ratio of the match, four possible values for the maximum size of the matching gift across all

donations, and three possible values for the suggested donation amount. The possible values for the price

ratio of the match were $1:$1, $2:$1, and $3:$1. Here, an $X:$1 ratio means that for every dollar the

individual donates, the matching donor also contributes $X. Hence, the charity receives $X+1 for every

$1 the individual donates (subject to the maximum size of the matching gift across all donations). The

possible values for the maximum matching grant amount were $25,000, $50,000, $100,000, and “unstated.”

The possible values for the (individual-specific) suggested donation amounts were the individual’s highest

previous contribution, 1.25 times the highest previous contribution, and 1.50 times the highest previous

contribution.

In the following three subsections, we first consider testing families of null hypotheses that emerge in

this application due to multiple outcomes alone, multiple subgroups alone and multiple treatments alone.

In the final subsection, we then consider testing the family of null hypotheses that emerges by combining

all three considerations at the same time. In each case, we consider inference based on Theorem 3.1 using

the studentized test statistics described in Remark 3.4. We also compare our results with those obtained
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using the classical Bonferroni and Holm multiple testing procedures. Stata and Matlab code used to

produce these results can be found at the following address: https://github.com/seidelj/mht.

4.1 Multiple Outcomes

Four outcomes of interest in Karlan and List (2007) are the response rate, dollars given not including

the matching amount, dollars given including the matching amount, and the change in the amount

given (not including the matching amount). A more detailed description of these variables can be found

in Karlan and List (2007). Table 1 displays for each of these four outcomes of interest, the following

five quantities: difference in means between treated and untreated groups, a (multiplicity-unadjusted)

p-value computed using Remark 3.1, a (multiplicity-adjusted) p-value computed using Theorem 3.1,

a (multiplicity-adjusted) p-value obtained by applying Bonferroni to the (multiplicity-unadjusted) p-

values, a (multiplicity-adjusted) p-value obtained by applying Holm to the (multiplicity-unadjusted)

p-values. Following Remark 3.2, the (multiplicity-adjusted) p-values obtained by applying Bonferroni

can be calculated simply by multiplying the (multiplicity-unadjusted) p-values by the total number of

hypotheses in Table 1. Similarly, the (multiplicity-adjusted) p-values obtained by applying Holm can

be calculated by the multiplying the smallest (multiplicity-unadjusted) p-value (corresponding in this

case to response rate) by the total number of hypotheses in Table 1, multiplying the second smallest

(multiplicity-unadjusted) p-value (corresponding in this case to dollars given including match) by one

less than the total number of hypotheses in Table 1, and continuing in this fashion until multiplying the

largest (multiplicity-unadjusted) p-value (corresponding in this case to amount change) by one.

Before adjusting for the multiplicity of null hypotheses being tested, we find that the treatment has an

effect on the response rate, dollars given not including the matching amount, and dollars given including

the matching amount at the 5% significance level. Here, by treatment, we mean receiving any of the 36

possible matching grants. After adjusting for the multiplicity of null hypotheses being tested, however, we

find that the effect of the treatment on dollars given not including the matching is no longer significant

at the 5% significance level – instead, it is only significant at the 10% significance level. By comparing

the last three columns in Table 1, we additionally see that the p-values obtained by applying Theorem

3.1 are an improvement upon those obtained by applying Bonferroni or Holm.

4.2 Multiple Subgroups

Four subgroups of interest in Karlan and List (2007) are red county in a red state, blue county in a red

state, red county in a blue state, and blue county in a blue state. Red states are defined as states that

voted for George W. Bush in the 2004 Presidential election and blue states are defined as states that voted

for John Kerry in the same election. Red and blue counties are defined analogously. In this subsection,

we examine how the effect of the treatment on the response rate varies across these subgroups. Table 2

displays for each of the four subgroups of interest, the same five quantities found in Table 1. Note that

https://github.com/seidelj/mht


Multiple Hypothesis Testing in Experimental Economics 11

105 out of the 50,083 individuals in our dataset do not have complete subgroup information. We treat

these 105 individuals as a subgroup of no interest for our analysis.

Before adjusting for the multiplicity of null hypotheses being tested, we find that the treatment has

an effect on two of the four subgroups at the 10% significance level. As before, here, by treatment,

we mean receiving any of the 36 possible matching grants. After adjusting for the multiplicity of null

hypotheses being tested, however, we find that the treatment only has an effect on one subgroup at the

same significance level. By comparing the last three columns in Table 1, we again see that the p-values

obtained by applying Theorem 3.1 are an improvement upon those obtained by applying Bonferroni or

Holm.

4.3 Multiple Treatments

We now consider null hypotheses that emerge due to multiple treatments. We define three treatments

corresponding to different values for the price ratio of the match: $1:$1, $2:$1, and $3:$1. Each treatment

is understood to mean any of the 12 possible treatments with the same value for the price ratio of the

match. We focus on dollars given not including the matching amount as the outcome of interest.

We first consider testing three null hypotheses corresponding to comparing each treatment with the

control group. Table 3 displays for each of these three null hypotheses the same five quantities found in

Table 1. Before adjusting for the multiplicity of null hypotheses being tested, we find that the treatment

$2:$1 has an effect at the 5% significance level on the outcome of interest. After adjusting for the

multiplicity of null hypotheses being tested, however, we find that this effect is no longer significant

even at the 10% significance level. By comparing the last three columns in Table 3, we again see that

the p-values obtained by applying Theorem 3.1 are an improvement upon those obtained by applying

Bonferroni or Holm.

Next, we consider testing the six null hypotheses corresponding to all pairwise comparisons across the

three treatments and the control group. Table 4 displays for each of these three null hypotheses the same

five quantities found in Table 1. The results are qualitatively similar to those described above. Table 4 also

displays a sixth quantity corresponding to the improvement in p-values described in Remark 3.7 obtained

by exploiting the logical restrictions among null hypotheses when there are multiple treatments. While

in this case the improvement does not lead to any additional rejections of null hypotheses, we see that

the difference in p-values can in some cases be large. Note that this column is omitted from the previous

table because Remark 3.7 results in no further improvements when solely comparing each treatment with

the control group.
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4.4 Multiple Outcomes, Subgroups, and Treatments

More often than not, it is desired to test null hypotheses stemming from all three considerations above:

multiple outcomes, multiple subgroups, and multiple treatments simultaneously. In this subsection, we

consider the four outcome variables described in Section 4.1, the four subgroups described in Section

4.2, and the three treatments described in Section 4.3. Here, we only consider comparing each treatment

with the control group. As a result there are 48 null hypotheses of interest.

For each of the 48 null hypotheses, Table 5 displays the same five quantities found in Table 1. Before

adjusting for the multiplicity of null hypotheses being tested, we reject 21 null hypotheses at the 10%

significance level. After adjusting for the multiplicity of null hypotheses being tested, however, we find

that only 9 null hypotheses are rejected at the same significance level. It is worth noting that 7 of

these 9 null hypotheses are related to the same outcome – dollars given including the matching amount.

By comparing the last three columns in Table 5, we again see that the p-values obtained by applying

Theorem 3.1 are an improvement upon those obtained by applying Bonferroni or Holm.

5 Conclusion

In this paper, we have developed a procedure for testing simultaneously null hypotheses that emerge

naturally when analyzing data from experiments because of some combination of the presences of multiple

outcomes of interest, multiple subgroups of interest or multiple treatments. Using the general results

in Romano and Wolf (2010), we have shown that our approach applies under weak assumptions to

experiments in which individuals are assigned to treatments and control using simple random sampling.

Notably, we show not only that our procedure has greater power than classical multiple testing procedures

like Bonferroni and Holm, but have also shown how further improvements can be obtained in the presence

of multiple treatments by exploiting the logical restrictions among null hypotheses. We have applied our

methodology to data originally presented in Karlan and List (2007), who studied the effectiveness of a

matching grant on charitable giving.

As we have argued in the introduction, it is commonplace to consider multiple null hypotheses when

analyzing experimental data for one or more of the reasons mentioned above. It is, however, uncommon

to account correctly for the multiplicity of null hypotheses under consideration, and, as a result, the

probability of a false rejection may be much higher than desired. This failure to adjust inference proce-

dures is almost certainly related to the “credibility” and “reproducibility” crises that plague not just the

social sciences, but the sciences more generally. See, for example, Jennions and Moller (2002), Ioannidis

(2005), Nosek et al. (2012), Bettis (2012), Maniadis et al. (2014) and Camerer et al. (2016). We believe

the adoption of testing procedures like the one described in this paper will help address these concerns

and, with this in mind, advocate that researchers at the very least report multiplicity-adjusted results

alongside conventional multiplicity-unadjusted results. In some cases, such as when evaluating existing

studies, it may be more convenient to compute a Bonferroni or Holm correction, which only requires
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knowledge of conventional multiplicity-unadjusted p-values, rather than apply the methodology in this

paper.
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A Appendix

A.1 Proof of Theorem 3.1

First note that under Assumption 2.1, Q ∈ ωs if and only if P ∈ ω̃s, where

ω̃s = {P (Q) : Q ∈ Ω,EP [Yi,k|Di = d, Zi = z] = EP [Yi,k|Di = d′, Zi = z]} .

The proof of this result now follows by verifying the conditions of Corollary 5.1 in Romano and Wolf (2010). In particular,

we verify Assumptions B.1 – B.4 in Romano and Wolf (2010).

In order to verify Assumption B.1 in Romano and Wolf (2010), let

T ∗s,n(P ) =
√
n

 1

nd,z

∑
1≤i≤n:Di=d,Zi=z

(Yi,k − µ̃k|d,z(P ))−
1

nd′,z

∑
1≤i≤n:Di=d′,Zi=z

(Yi,k − µ̃k|d′,z(P ))

 ,

and note that

T ∗n(P ) = (T ∗s,n(P ) : s ∈ S) = f(An(P ), Bn) ,

where

An(P ) =
1
√
n

∑
1≤i≤n

An,i(P ) ,

with An,i(P ) equal to the 2|S|-dimensional vector formed by stacking vertically for s ∈ S the terms

 (Yi,k − µ̃k|d,z(P ))I{Di = d, Zi = z}

(Yi,k − µ̃k|d′,z(P ))I{Di = d′, Zi = z}

 , (10)

and Bn is the 2|S|-dimensional vector formed by stacking vertically for s ∈ S the terms

 1
1
n

∑
1≤i≤n I{Di=d,Zi=z}

− 1
1
n

∑
1≤i≤n I{Di=d′,Zi=z}

 . (11)

and f : R2|S| × R2|S| → R2|S| is the function of An(P ) and Bn whose sth argument for s ∈ S is given by the inner

product of the sth pair of terms in An(P ) and the sth pair of terms in Bn, i.e., the inner product of (10) and (11). The

weak law of large numbers and central limit theorem imply that

Bn
P→ B(P ) ,

where B(P ) is the 2|S|-dimensional vector formed by stacking vertically for s ∈ S the terms

 1
P{Di=d,Zi=z}

− 1
P{Di=d′,Zi=z}

 .

Next, note that EP [An,i(P )] = 0. Assumption 2.3 and the central limit theorem therefore imply that

An(P )
d→ N(0, VA(P ))

for an appropriate choice of VA(P ). In particular, the diagonal elements of VA(P ) are of the form

σ̃2
k|d,z(P )P{Di = d, Zi = z} .
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The continuous mapping theorem thus implies that

T ∗n(P )
d→ N(0, V (P ))

for an appropriate variance matrix V (P ). In particular, the sth diagonal element of V (P ) is given by

σ̃2
k|d,z(P )

P{Di = d, Zi = z}
+

σ̃2
k|d′,z(P )

P{Di = d′, Zi = z}
. (12)

In order to verify Assumptions B.2–B.3 in Romano and Wolf (2010), it suffices to note that (12) is strictly greater than

zero under our assumptions. Note that it is not required that V (P ) be non-singular for these assumptions to be satisfied.

In order to verify Assumption B.4 in Romano and Wolf (2010), we first argue that

T ∗n(Pn)
d→ N(0, V (P )) (13)

under Pn for an appropriate sequence of distributions Pn for (Yi, Di, Zi). To this end, assume that

(a) Pn
d→ P .

(b) µ̃k|d,z(Pn)→ µ̃k|d,z(P ).

(c) Bn
Pn→ B(P ).

(d) VarPn [An,i(Pn)]→ VarP [An,i(P )].

Under (a) and (b), it follows that An,i(Pn)
d→ An,i(P ) under Pn. By arguing as in Theorem 15.4.3 in Lehmann and

Romano (2006) and using (d), it follows from the Lindeberg-Feller central limit theorem that

An(Pn)
d→ N(0, VA(P ))

under Pn. It thus follows from (c) and the continuous mapping theorem that (13) holds under Pn. Assumption B.4 in

Romano and Wolf (2010) now follows simply by nothing that the Glivenko-Cantelli theorem, strong law of large numbers

and continuous mapping theorem ensure that P̂n satisfies (a) – (d) with probability one under P .
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Table 1 Multiple Outcomes

Outcome DI p-values
Unadj. Multiplicity Adj.

Remark 3.1 Thm. 3.1 Bonf. Holm
Response Rate 0.0042 0.0003*** 0.0003*** 0.0013*** 0.0013***

Dollars Given Not Including Match 0.1536 0.0500* 0.0967* 0.2000 0.1000
Dollars Given Including Match 2.0876 0.0003*** 0.0003*** 0.0013*** 0.0010***

Amount Change 6.3306 0.7200 0.7200 1.0000 0.7200

Note: DI refers to difference in means. * and *** indicates that the corresponding p-values less
than 10% and 1%, respectively.



Multiple Hypothesis Testing in Experimental Economics 17

Table 2 Multiple Subgroups

Subgroup DI p-values
Unadj. Multiplicity Adj.

Remark 3.1 Thm. 3.1 Bonf. Holm
Red County in a Red State 0.0095 0.0003*** 0.0003*** 0.0013*** 0.0013***
Blue County in a Red State 0.0070 0.0503* 0.1427 0.2013 0.1510
Red County in a Blue State 0.0016 0.4560 0.7017 1.0000 0.9120
Blue County in a Blue State 0.0000 0.9920 0.9920 1.0000 0.9920

Note: DI refers to difference in means. * and *** indicates that the corresponding p-values less than 10%
and 1%, respectively.



18 List et al. 2018

Table 3 Multiple Treatments (Comparing Multiple Treatments with a Control)

Treatment/Control Groups DI p-values
Unadj. Multiplicity Adj.

Remark 3.1 Thm. 3.1 Bonf. Holm
Control vs 1:1 0.1234 0.2627 0.2627 0.7880 0.2627
Control vs 2:1 0.2129 0.0477** 0.1297 0.1430 0.1430
Control vs 3:1 0.1245 0.2060 0.3537 0.6180 0.4120

Note: DI refers to difference in means. ** indicates that the corresponding p-value less than
5%.
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Table 4 Multiple Treatments (All Pairwise Comparisons across Multiple Treatments and a Control)

Treatment/Control Groups DI p-values
Unadj. Multiplicity Adj.

Remark 3.1 Thm. 3.1 Remark 3.7 Bonf. Holm
Control vs 1:1 0.1234 0.2627 0.5810 0.4973 1.0000 1.0000
Control vs 2:1 0.2129 0.0477** 0.1930 0.1930 0.2860 0.2860
Control vs 3:1 0.1245 0.2060 0.5533 0.4167 1.0000 1.0000

1:1 vs 2:1 0.0895 0.4627 0.7467 0.7467 1.0000 1.0000
1:1 vs 3:1 0.0011 0.9920 0.9920 0.9920 1.0000 0.9920
2:1 vs 3:1 0.0883 0.4633 0.6963 0.4633 1.0000 0.9267

Note: DI refers to difference in means. ** indicates that the corresponding p-value less than 5%.
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Table 5 Multiple Outcomes, Subgroups, and Treatments

Outcome Subgroup Treatment/Control Groups DI p-values
Unadj. Multiplicity Adj.

Remark 3.1 Thm. 3.1 Bonf. Holm
Response Rate Red County in a Red State Control vs 1:1 0.0079 0.0217** 0.4643 1.0000 0.7583
Response Rate Red County in a Red State Control vs 2:1 0.0100 0.0017*** 0.0480** 0.0800* 0.0733*
Response Rate Red County in a Red State Control vs 3:1 0.0107 0.0017*** 0.0470** 0.0800* 0.0717*
Response Rate Blue County in a Red State Control vs 1:1 0.0024 0.5973 1.0000 1.0000 1.0000
Response Rate Blue County in a Red State Control vs 2:1 0.0080 0.0987* 0.8997 1.0000 1.0000
Response Rate Blue County in a Red State Control vs 3:1 0.0108 0.0247** 0.5000 1.0000 0.8387
Response Rate Red County in a Blue State Control vs 1:1 0.0003 0.9060 0.9990 1.0000 1.0000
Response Rate Red County in a Blue State Control vs 2:1 0.0010 0.7190 1.0000 1.0000 1.0000
Response Rate Red County in a Blue State Control vs 3:1 0.0034 0.2290 0.9953 1.0000 1.0000
Response Rate Blue County in a Blue State Control vs 1:1 0.0006 0.8667 1.0000 1.0000 1.0000
Response Rate Blue County in a Blue State Control vs 2:1 0.0026 0.5033 1.0000 1.0000 1.0000
Response Rate Blue County in a Blue State Control vs 3:1 0.0032 0.3740 1.0000 1.0000 1.0000

Dollars Given Not Including Match Red County in a Red State Control vs 1:1 0.4260 0.0903* 0.9027 1.0000 1.0000
Dollars Given Not Including Match Red County in a Red State Control vs 2:1 0.4097 0.0557* 0.7860 1.0000 1.0000
Dollars Given Not Including Match Red County in a Red State Control vs 3:1 0.3214 0.0710* 0.8483 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Red State Control vs 1:1 0.0374 0.8950 1.0000 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Red State Control vs 2:1 0.4325 0.1853 0.9853 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Red State Control vs 3:1 0.5728 0.0933* 0.8983 1.0000 1.0000
Dollars Given Not Including Match Red County in a Blue State Control vs 1:1 0.0256 0.8683 1.0000 1.0000 1.0000
Dollars Given Not Including Match Red County in a Blue State Control vs 2:1 0.0928 0.5893 1.0000 1.0000 1.0000
Dollars Given Not Including Match Red County in a Blue State Control vs 3:1 0.0243 0.8847 1.0000 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Blue State Control vs 1:1 0.0074 0.9747 0.9747 1.0000 0.9747
Dollars Given Not Including Match Blue County in a Blue State Control vs 2:1 0.0380 0.8650 1.0000 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Blue State Control vs 3:1 0.2173 0.2847 0.9997 1.0000 1.0000
Dollars Given Including Match Red County in a Red State Control vs 1:1 1.5042 0.0080*** 0.2170 0.3840 0.3120
Dollars Given Including Match Red County in a Red State Control vs 2:1 2.5335 0.0010*** 0.0247** 0.0480** 0.0450**
Dollars Given Including Match Red County in a Red State Control vs 3:1 3.2419 0.0003*** 0.0003*** 0.0160** 0.0160**
Dollars Given Including Match Blue County in a Red State Control vs 1:1 0.8370 0.0603* 0.8037 1.0000 1.0000
Dollars Given Including Match Blue County in a Red State Control vs 2:1 2.8217 0.0080*** 0.2163 0.3840 0.3040
Dollars Given Including Match Blue County in a Red State Control vs 3:1 4.5776 0.0023*** 0.0667* 0.1120 0.0957*
Dollars Given Including Match Red County in a Blue State Control vs 1:1 0.7737 0.0087*** 0.2290 0.4160 0.3207
Dollars Given Including Match Red County in a Blue State Control vs 2:1 1.9283 0.0007*** 0.0133** 0.0320** 0.0307**
Dollars Given Including Match Red County in a Blue State Control vs 3:1 2.5722 0.0003*** 0.0003*** 0.0160** 0.0157**
Dollars Given Including Match Blue County in a Blue State Control vs 1:1 0.9967 0.0133** 0.3240 0.6400 0.4800
Dollars Given Including Match Blue County in a Blue State Control vs 2:1 2.1371 0.0023*** 0.0653* 0.1120 0.0933*
Dollars Given Including Match Blue County in a Blue State Control vs 3:1 2.1658 0.0020*** 0.0577* 0.0960* 0.0840*

Amount Change Red County in a Red State Control vs 1:1 1.8252 0.1310 0.9497 1.0000 1.0000
Amount Change Red County in a Red State Control vs 2:1 0.5491 0.6443 1.0000 1.0000 1.0000
Amount Change Red County in a Red State Control vs 3:1 0.0681 0.9593 0.9987 1.0000 1.0000
Amount Change Blue County in a Red State Control vs 1:1 92.3221 0.4410 1.0000 1.0000 1.0000
Amount Change Blue County in a Red State Control vs 2:1 93.7227 0.4410 1.0000 1.0000 1.0000
Amount Change Blue County in a Red State Control vs 3:1 94.2640 0.4410 1.0000 1.0000 1.0000
Amount Change Red County in a Blue State Control vs 1:1 51.9652 0.4530 1.0000 1.0000 1.0000
Amount Change Red County in a Blue State Control vs 2:1 0.4450 0.6817 1.0000 1.0000 1.0000
Amount Change Red County in a Blue State Control vs 3:1 1.1372 0.2593 0.9973 1.0000 1.0000
Amount Change Blue County in a Blue State Control vs 1:1 0.9294 0.4617 1.0000 1.0000 1.0000
Amount Change Blue County in a Blue State Control vs 2:1 0.2938 0.8277 1.0000 1.0000 1.0000
Amount Change Blue County in a Blue State Control vs 3:1 0.5147 0.6577 1.0000 1.0000 1.0000

Note: DI refers to difference in means. *, **, and *** indicate that the corresponding p-values less than 10%, 5%, and 1%, respectively.
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