
Testing of Hypotheses I (Parametric or Standard Tests of Hypotheses)

WHAT IS A HYPOTHESIS?

Ordinarily, when one talks about hypothesis, one simply means a mere assumption or 

some supposition to be proved or disproved. But for a researcher hypothesis is a 

formal question that he intends to resolve. Thus a hypothesis may be defined as a 

proposition or a set of proposition set forth as an explanation for the occurrence of 

some specified group of phenomena either asserted merely as a provisional conjecture 

to guide some investigation or accepted as highly probable in the light of established 

facts. Quite often a research hypothesis is a predictive statement, capable of being 

tested by scientific methods, that relates an independent variable to some dependent 

variable. For example, consider statements like the following ones:

“Students who receive counselling will show a greater increase in creativity than 

students not receiving counselling” Or “the automobile A is performing as well as 

automobile B.”

These are hypotheses capable of being objectively verified and tested. Thus, we may 

conclude that a hypothesis states what we are looking for and it is a proposition which 

can be put to a test to determine its validity.

Characteristics of hypothesis: Hypothesis must possess the following characteristics:

1. Hypothesis should be clear and precise. If the hypothesis is not clear and 
precise, the inferences drawn on its basis cannot be taken as reliable.

2. Hypothesis should be capable of being tested. In a swamp of untestable 
hypotheses, many a time the research programmes have bogged down. Some 
prior study may be done by researcher in order to make hypothesis a testable 
one. A hypothesis “is testable if other deductions can be made from it which, in 
turn, can be confirmed or disproved by observation.”

3. Hypothesis should state relationship between variables, if it happens to be a 
relational hypothesis.

4. Hypothesis should be limited in scope and must be specific. A researcher must 
remember that narrower hypotheses are generally more testable and he should 
develop such hypotheses.



5. Hypothesis should be stated as far as possible in most simple terms so that the 
same is easily understandable by all concerned. But one must remember that 
simplicity of hypothesis has nothing to do with its significance.

6. Hypothesis should be consistent with most known facts i.e., it must be 
consistent with a substantial body of established facts. In other words, it should 
be one which judges accept as being the most likely.

7. Hypothesis should be amenable to testing within a reasonable time. One should 
not use even an excellent hypothesis, if the same cannot be tested in reasonable 
time for one cannot spend a life-time collecting data to test it.

8. Hypothesis must explain the facts that gave rise to the need for explanation. 
This means that by using the hypothesis plus other known and accepted 
generalizations, one should be able to deduce the original problem condition. 
Thus hypothesis must actually explain what it claims to explain; it should have 
empirical reference.

BASIC CONCEPTS CONCERNING TESTING OF HYPOTHESES

Basic concepts in the context of testing of hypotheses need to be explained.
Null hypothesis and alternative hypothesis: In the context of statistical analysis, we 
often talk about null hypothesis and alternative hypothesis. If we are to compare 
method A with method B about its superiority and if we proceed on the assumption 
that both methods are equally good, then this assumption is termed as the null 
hypothesis. As against this, we may think that the method A is superior or the method 
B is inferior, we are then stating what is termed as alternative hypothesis. The null 
hypothesis is generally symbolized as H0 and the alternative hypothesis as Ha. 
Suppose we want to test the hypothesis that the population mean bmg is equal to the 
hypothesised mean mH0 d i = 100.
Then we would say that the null hypothesis is that the population mean is equal to the 
hypothesized mean 100 and symbolically we can express as:

If our sample results do not support this null hypothesis, we should conclude that 
something else is true. What we conclude rejecting the null hypothesis is known as 
alternative hypothesis. In other words, the set of alternatives to the null hypothesis is 
referred to as the alternative hypothesis. If we accept H0, then we are rejecting Ha and 
if we reject H0, then we are accepting Ha. For H0 : m m = = H0 100 , we may 
consider three possible alternative hypotheses as follows:



The null hypothesis and the alternative hypothesis are chosen before the sample is 
drawn (the researcher must avoid the error of deriving hypotheses from the data that 
he collects and then testing the hypotheses from the same data). In the choice of null 
hypothesis, the following considerations are usually kept in view:

∑ Alternative hypothesis is usually the one which one wishes to prove and the 
null hypothesis is the one which one wishes to disprove. Thus, a null 
hypothesis represents the hypothesis we are trying to reject, and alternative 
hypothesis represents all other possibilities.

∑ If the rejection of a certain hypothesis when it is actually true involves great 
risk, it is taken as null hypothesis because then the probability of rejecting it 
when it is true is a (the level of significance) which is chosen very small.

∑ Null hypothesis should always be specific hypothesis i.e., it should not state 
about or approximately a certain value.
Generally, in hypothesis testing we proceed on the basis of null hypothesis, 
keeping the alternative hypothesis in view. Why so? The answer is that on the 
assumption that null hypothesis is true, one can assign the probabilities to 
different possible sample results, but this cannot be done if we proceed with the 
alternative hypothesis. Hence the use of null hypothesis (at times also known as 
statistical hypothesis) is quite frequent.

The level of significance: This is a very important concept in the context of hypothesis 
testing. It is always some percentage (usually 5%) which should be chosen with great 
care, thought and reason. In case we take the significance level at 5 per cent, then this 
implies that H0 will be rejected when the sampling result (i.e., observed evidence) has 
a less than 0.05 probability of occurring if H0 is true. In other words, the 5 per cent 
level of significance means that researcher is willing to take as much as a 5 per cent 
risk of rejecting the null hypothesis when it (H0) happens to be true. Thus the 



significance level is the maximum value of the probability of rejecting H0 when it is 
true and is usually determined in advance before testing the hypothesis.

Decision rule or test of hypothesis: Given a hypothesis H0 and an alternative 
hypothesis Ha, we make a rule which is known as decision rule according to which we 
accept H0 (i.e., reject Ha) or reject H0 (i.e., accept Ha). For instance, if (H0 is that a 
certain lot is good (there are very few defective items in it) against Ha) that the lot is 
not good (there are too many defective items in it), then we must decide the number of 
items to be tested and the criterion for accepting or rejecting the hypothesis. We might 
test 10 items in the lot and plan our decision saying that if there are none or only 1 
defective item among the 10, we will accept H0 otherwise we will reject H0 (or accept 
Ha). This sort of basis is known as decision rule.

Type I and Type II errors: In the context of testing of hypotheses, there are basically 
two types of errors we can make. We may reject H0 when H0 is true and we may 
accept H0 when in fact H0 is not true. The former is known as Type I error and the 
latter as Type II error. In other words, Type I error means rejection of hypothesis 
which should have been accepted and Type II error means accepting the hypothesis 
which should have been rejected. Type I error is denoted by a (alpha)known as a 
error, also called the level of significance of test; and Type II error is denoted by b 
(beta) known as b error. In a tabular form the said two errors can be presented as 
follows:

The probability of Type I error is usually determined in advance and is understood as
the level of significance of testing the hypothesis. If type I error is fixed at 5 per cent, 
it means that there are about 5 chances in 100 that we will reject H0 when H0 is true. 
We can control Type I error just by fixing it at a lower level. For instance, if we fix it 
at 1 per cent, we will say that the maximum probability of committing Type I error 
would only be 0.01.
But with a fixed sample size, n, when we try to reduce Type I error, the probability of 



committing Type II error increases. Both types of errors cannot be reduced 
simultaneously. There is a trade-off between two types of errors which means that the 
probability of making one type of error can only be reduced if we are willing to 
increase the probability of making the other type of error. To deal with this trade-off 
in business situations, decision-makers decide the appropriate level of Type I error by 
examining the costs or penalties attached to both types of errors. If Type I error 
involves the time and trouble of reworking a batch of chemicals that should have been 
accepted, whereas Type II error means taking a chance that an entire group of users of 
this chemical compound will be poisoned, then in such a situation one should prefer a 
Type I error to a Type II error. As a result one must set very high level for Type I 
error in one’s testing technique of a given hypothesis.2 Hence, in the testing of 
hypothesis, one must make all possible effort to strike an adequate balance between 
Type I and Type II errors.

Two-tailed and One-tailed tests: In the context of hypothesis testing, these two terms 
are quite important and must be clearly understood. A two-tailed test rejects the null 
hypothesis if, say, the sample mean is significantly higher or lower than the 
hypothesised value of the mean of the population. Such a test is appropriate when the 
null hypothesis is some specified value and the alternative hypothesis is a value not 
equal to the specified value of the null hypothesis. Symbolically, the two tailed test is 
appropriate when we have which may mean m > mH0 or m < mH0.
Thus, in a two-tailed test, there are two rejection regions*, one on each tail of the 
curve which can be illustrated as under:



Mathematically we can state:
Acceptance Region A : Z < 1.96
Rejection Region R : Z > 1.96
If the significance level is 5 per cent and the two-tailed test is to be applied, the 
probability of the rejection area will be 0.05 (equally splitted on both tails of the curve 
as 0.025) and that of the acceptance region will be 0.95 as shown in the above curve. 
If we take m = 100 and if our sample mean deviates significantly from 100 in either 
direction, then we shall reject the null hypothesis; but if the sample mean does not 
deviate significantly from m , in that case we shall accept the null hypothesis.
But there are situations when only one-tailed test is considered appropriate. A one-
tailed test would be used when we are to test, say, whether the population mean is 
either lower than or higher than some hypothesised value. For instance, if our H 0 H0: 
m = m and Ha H : m < m 0 , then we are interested in what is known as left-tailed test 
(wherein there is one rejection region only on the left tail) which can be illustrated as 
below:



If our m = 100 and if our sample mean deviates significantly from100 in the lower 
direction, we shall reject H0, otherwise we shall accept H0 at a certain level of 
significance. If the significance level in the given case is kept at 5%, then the rejection 
region will be equal to 0.05 of area in the left tail as has been shown in the above 
curve.
In case our H0 H0 : m = m and Ha H : m > m 0 , we are then interested in what is 
known as one tailed test (right tail) and the rejection region will be on the right tail of 
the curve as shown below:



FLOW DIAGRAM FOR HYPOTHESIS TESTING

The above stated general procedure for hypothesis testing can also be depicted in the 
from of a flowchart for better understanding as shown in Fig. below:

Figure:FLOW DIAGRAM FOR HYPOTHESIS TESTING



TESTS OF HYPOTHESES

As has been stated above that hypothesis testing determines the validity of the 
assumption (technically described as null hypothesis) with a view to choose between 
two conflicting hypotheses about the value of a population parameter. Hypothesis 
testing helps to decide on the basis of a sample data, whether a hypothesis about the 
population is likely to be true or false. Statisticians have developed several tests of 
hypotheses (also known as the tests of significance) for the purpose of testing of 
hypotheses which can be classified as:

a. Parametric tests or standard tests of hypotheses; and

b. Non-parametric tests or distribution-free test of hypothesis.

Parametric tests usually assume certain properties of the parent population from which 
we draw samples. Assumptions like observations come from a normal population, 
sample size is large, assumptions about the population parameters like mean, variance, 



etc., must hold good before parametric tests can be used. But there are situations when 
the researcher cannot or does not want to make such assumptions. In such situations 
we use statistical methods for testing hypotheses which are called non-parametric tests 
because such tests do not depend on any assumption about the parameters of the 
parent population. Besides, most non-parametric tests assume only nominal or ordinal 
data, whereas parametric tests require measurement equivalent to at least an interval 
scale. As a result, non-parametric tests need more observations than parametric tests 
to achieve the same size of Type I and Type II errors.4 We take up in the present 
chapter some of the important parametric tests, whereas non-parametric tests will be 
dealt with in a separate chapter later in the book.

IMPORTANT PARAMETRIC TESTS

The important parametric tests are:

1. z-test;

2. t-test;

3. χ2-test, and

4. F-test.

All these tests are based on the assumption of normality i.e., the source of data is 
considered to be normally distributed.
In some cases the population may not be normally distributed, yet the tests will be 
applicable on account of the fact that we mostly deal with samples and the sampling 
distributions closely approach normal distributions.

z-test is based on the normal probability distribution and is used for judging the 
significance of several statistical measures, particularly the mean. The relevant test 
statistic, z, is worked out and compared with its probable value (to be read from table 
showing area under normal curve) at a specified level of significance for judging the 
significance of the measure concerned. This is a most frequently used test in research 
studies. This test is used even when binomial distribution or t-distribution is 
applicable on the presumption that such a distribution tends to approximate normal 
distribution as ‘n’ becomes larger. z-test is generally used for comparing the mean of 
a sample to some hypothesised mean for the population in case of large sample, or 
when population variance is known. z-test is also used for judging he significance of 



difference between means of two independent samples in case of large samples, or 
when population variance is known. z-test is also used for comparing the sample 
proportion to a theoretical value of population proportion or for judging the difference 
in proportions of two independent samples when n happens to be large. Besides, this 
test may be used for judging the significance of median, mode, coefficient of 
correlation and several other measures. t-test is based on t-distribution and is 
considered an appropriate test for judging the significance of a sample mean or for 
judging the significance of difference between the means of two samples in case of 
small sample(s) when population variance is not known (in which case we use 
variance of the sample as an estimate of the population variance). In case two samples 
are related, we use paired t-test (or what is known as difference test) for judging the 
significance of the mean of difference between the two related samples. It can also be 
used for judging the significance of the coefficients of simple and partial correlations. 
The relevant test statistic, t, is calculated from the sample data and then compared 
with its probable value based on t-distribution (to be read from the table that gives 
probable values of t for different levels of significance for different degrees of 
freedom) at a specified level of significance for concerning degrees of freedom for 
accepting or rejecting the null hypothesis. It may be noted that t-test applies only in 
case of small sample(s) when population variance is unknown.

χ2-test is based on chi-square distribution and as a parametric test is used for 
comparing a sample variance to a theoretical population variance.
F-test is based on F-distribution and is used to compare the variance of the two-
independent samples. This test is also used in the context of analysis of variance 
(ANOVA) for judging the significance of more than two sample means at one and the 
same time. It is also used for judging the significance of multiple correlation 
coefficients. Test statistic, F, is calculated and compared with its probable value (to be 
seen in the F-ratio tables for different degrees of freedom for greater and smaller 
variances at specified level of significance) for accepting or rejecting the null 
hypothesis.

LIMITATIONS OF THE TESTS OF HYPOTHESES

We have described above some important test often used for testing hypotheses on the 
basis of which important decisions may be based. But there are several limitations of 
the said tests which should always be borne in mind by a researcher. Important 
limitations are as follows:



1. The tests should not be used in a mechanical fashion. It should be kept in view 
that testing is not decision-making itself; the tests are only useful aids for 
decision-making. Hence “proper interpretation of statistical evidence is 
important to intelligent decisions.”

2. Test do not explain the reasons as to why does the difference exist, say between 
the means of the two samples. They simply indicate whether the difference is 
due to fluctuations of sampling or because of other reasons but the tests do not 
tell us as to which is/are the other reason(s) causing the difference.

3. Results of significance tests are based on probabilities and as such cannot be 
expressed with full certainty. When a test shows that a difference is statistically 
significant, then it simply suggests that the difference is probably not due to 
chance.

4. Statistical inferences based on the significance tests cannot be said to be 
entirely correct evidences concerning the truth of the hypothesis. This is 
specially so in case of small samples where the probability of drawing erring 
inferences happens to be generally higher. For greater reliability, the size of 
samples be sufficiently enlarged.

All these limitations suggest that in problems of statistical significance, the inference 
techniques (or the tests) must be combined with adequate knowledge of the subject-
matter along with the ability of good judgment.


