
The Rational Numbers

Here we construct the field of rational numbers. Mindful of the fact that all new math-

ematical objects are built upon the foundation of previously constructed objects (which

can ultimately be traced back to assumed notions and axioms), in this case we take Z, the

ring of integers, as our foundation. Recall that Z is a commutative ring—thus it satisfies

all the ring axioms including commutativity, associativity and distributivity. It has an

identity element 1 satisfying 1a = a for all a ∈ Z. More than this, it is an integral domain:

if ab = 0 then a = 0 or b = 0 (so Z has no zero divisors). All these properties are used

when we construct Q from Z. More than this, Z is an ordered ring : there is a binary

relation ‘<’ defined on Z satisfying such properties as a < b⇒ a+c < b+c.

One may imagine that we are communicating with an intelligent alien who has under-

stood everything about the integers; in particular the alien understands the notation we

humans use, as well as the conceptual properties of the integers mentioned in the previous

paragraph. The alien also understands basic logic and set theory, as these are previously

laid foundations required in the construction of Z. Our task is to precisely define the ratio-

nals to this alien. We must be precise: there are several points at which a little sloppiness

would show the alien we have no idea what we’re talking about. (It must be emphasized

that this process is very different from the way we teach fractions to children, whose intu-

ition substitutes for limited knowledge; here we instead teach by example and tell white

lies, hoping that later their misconceptions about the rationals will be fixed up.)

Why are we doing this?

• First of all, this material clarifies those features of Q that our elementary school

background takes for granted: it is here that we explain exactly what Q is and why

it ‘works’ (in particular, why it is a field, in fact an ordered field). This is like two

different answers to the question ‘How does a car work?’ The elementary school answer

is ‘Put the key in the ignition and turn it like this.’ The deeper explanation requires

an explanation of how an internal combustion engine works, the transmission, etc.

• Secondly, because the formal process by which one constructs Q from Z is exactly the

same as the process by which one constructs the quotient field of an arbitrary integral

domain (e.g. construct F (x) from F [x], or F ((x)) from F [[x]]). And
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• thirdly, the key ideas in this process arise in much more general constructions of new

objects from old: R from Q, Fp from Z, Qp from Q, etc. So a thorough understanding

of how Q is constructed from Z, is the best preparation for understanding how other

new number systems are constructed.

Before we can define addition or multiplication of fractions, or show how the ordering

of factions works, we must define the elements of the set Q, i.e. the rational numbers.

The first subtlelty is the role of equivalent fractions: the fact that the expressions 3
6 and 1

2

represent the same rational number. We must understand a rational number as not a single

formal expression of ‘a over b’; rather, a rational number is an entire equivalence class of

such pairs (a, b). Our intelligent alien understands equivalence relations and equivalence

classes, as these are more basic notions founded in set theory. Let us review:

Equivalence Relations and Classes

Let S be any set. Let ‘∼’ be a binary relation on S: thus for all a, b ∈ S, either a ∼ b or

a 6∼ b. Any such a binary relation amounts to a partition of S2 = {(a, b) : a, b ∈ S} into

two such subsets: those pairs (a, b) that satisfy the relation ‘∼’ and those that don’t. So

if S has n elements, then S2 has |S2| = n2 elements and 2n
2

subsets. So there are exactly

2|S|
2

binary relations on S. This formula works also in the infinite case; but a countably

infinite set has uncountably manysubsets and uncountably many binary relations.

We say that ∼ is an equivalence relation on S if for all a, b, c ∈ S we have

a ∼ a (i.e. ‘∼’ is reflexive);

a ∼ b ⇔ b ∼ a (i.e. ‘∼’ is symmetric); and

a ∼ b ∼ c ⇒ a ∼ c (i.e. ‘∼’ is transitive).

For example, the relation ‘<’ on Z is transitive but neither reflexive nor symmetric: it is

not an equivalence relation.

Given an equivalence relation ‘∼’ on S, we obtain a partition of S into equivalence

classes, as follows. The equivalence class of a ∈ S is

[a] = [a]∼ = {x ∈ S : x ∼ a}.

Note that [a] = [b] ⇔ a ∼ b ⇔ a ∈ [b]. The collection of all equivalence classes forms a

partition of S:

S/∼ = {[a] : a ∈ S}.
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Recall that a partition of a set S is a collection of nonempty subsets of S, which cover

S (i.e. their union is all of S), and no two subsets in this collection overlap (i.e. they are

mutually disjoint). It is easy to see that S/∼ has this property:⋃
a∈S

[a] = S and [a] ∩ [b] = ∅ whenever [a] 6= [b].

It is a straightforward exercise to check that having an equivalence relation on S, amounts

to the same thing as having a partition of S. From an equivalence relation, the equivalence

classes give us a partition; conversely, given a partition of S, we get an equivalence relation

by saying two elements of S are equivalent iff they are in the same member of the partition.

The set of rational numbers

Every rational number must be represented using a pair of integers a, b with b 6= 0; we will

use these integers for the numerator and the denominator. This motivates the following

definition: Let S be the set of all pairs (a, b) of integers with b 6= 0; thus

S = {(a, b) : a, b ∈ Z; b 6= 0}.

Define a relation ∼ on S by

(a, b) ∼ (c, d) iff ad = bc.

Let us check that ‘∼’ is transitive: assuming (a, b) ∼ (c, d) ∼ (e, f), then ad = bc and

cf = de, so that

adf = bcf = bde, i.e. (af − be)d = 0.

Since d 6= 0 and Z has no zero divisors, we conclude that af = be, i.e. (a, b) ∼ (e, f). Similar

arguments show that ‘∼’ is reflexive and symmetric, so it is an equivalence relation.

We now define the symbol a
b to be the equivalence class of (a, b) ∈ S:

a
b = [(a, b)] = {(x, y) ∈ S : ay = bx}

and the set of rational numbers is the set of all such equivalence classes:

Q = S/∼ =
{

a
b : a, b ∈ Z; b 6= 0

}
=
{

[(a, b)] : a, b ∈ Z; b 6= 0
}
.

Automatically we get a
b = c

d iff ad = bc. This test for equality of fractions is what we call

‘cross-multiplication’.
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Addition and Multiplication of Rational Numbers

In order for Q to be a number system, it must be more than an abstract set of elements;

we must define addition and multiplication of elements of Q. We do so as follows: given

two elements a
b ,

c
d ∈ Q, we define their sum and their product as

a
b + c

d = ad+bc
bd ; a

b
c
d = ac

bd .

A subtle but important point here is that if (a, b) ∈ S and (c, d) ∈ S, then (ad+bc, bd) ∈ S
and (ac, bd) ∈ S; otherwise the equivalence classes ad+bc

bd and ac
bd would not be defined.

However, this is not enough to show that addition and multiplication in Q are well-defined;

we must also show that sums and products do not depent upon the choice of representative

from equivalence classes. To this end, suppose that a′

b′ = a
b , i.e. a′b = ab′; then

(a′d+b′c)bd = (a′b)d2+ b′bcd = (ab′)d2+ bb′cd = (ad+bc)b′d

so that
a′d+b′c

b′d = ad+bc
bd .

Thus the sum of two fractions is unchanged if the first fraction a
b is replaced by an equiv-

alent fraction a′

b′ . A similar argument applies when the second term is replaced by an

equivalent fraction; so the sum of two fractions is well-defined, independently of the choice

of representatives. A similar (but easier) argument shows that the product of two fractions

is well-defined.

The Rational Numbers form a Field

Next we show that Q is a field. Consider arbitrary elements a
b ,

c
d ,

e
f ∈ Q; then

a
b + 0

1 = a1+0b
b1 = a

b and 1
1

a
b = 1a

1b = a
b

so we have a zero element and an identity. Also

a
b + −a

b = ab+(−a)b
bb = 0

b2 = 0
1

since 01 = b20 in Z. Also

a
b

(
c
d + e

f

)
= a

b
cf+de

df = a(cf+de)
bdf = acf+ade

bdf = acf+ade
bdf .
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Cross-multiplying, we see that this is the same as

(acf+ade)b
b2df = abcf+abde

b2df = ac
bd + ae

bf = a
b

c
d + a

b
e
f ,

so Q satisfies the distributive law. Similar computations show that both addition and

multiplication in Q are ccommutative and associative.

Finally, we check that nonzero elements are invertible: Suppose that a
b 6=

0
1 . Cross-

multiplying, this says that a = a1 6= b0 = 0; so there is an element (b, a) ∈ S. We check

that
a
b

b
a = ab

ba = 1
1

where the last equality is verified by cross-multiplication. Thus
(
a
b

)−1
= b

a , and so Q is a

field.

Embedding Z in Q

A slight difficulty arises at this point: we want Z to be a subring of Q, but currently this

fails because elements of Q are equivalence classes of pairs of integers, whereas elements

of Z are simply integers: thus strictly speaking, Z is not a subset of Q. However, we

check that the elements a
1 ∈ Q form a subring isomorphic to Z, and that is just as good.

Formally, we define θ : Z→ Q by a 7→ a
1 and check (easily) that θ is a ring homomorphism,

and that θ is one-to-one so that

θ(Z) =
{

a
1 : a ∈ Z

}
⊂ Q

is a subring isomorphic to Z as required. Now we simply regard a as an abbreviation for a
1 .

The Ordering

Next, we would like an order relation ‘<’ on Q. Fortunately we have an order relation on Z,

which can be used to define the order relation on Q. Consider two elements a
b ,

c
d ∈ Q. We

will assume that b, d > 1; for if b < 0 we may rewrite a
b as −a−b so that its denominator

becomes positive; and the same remarks apply to c
d . With this convention, we may define

a
b <

c
d iff ad < bc.

Let’s be careful: we need to check that this is well-defined, independent of the choice of

equivalent fraction used to represent each equivalence class. We also need to check that

if the fractions are integers, then this agrees with our previously defined ordering on Z.
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These are just more technical details to check, and none of them difficult. We will leave

these details as an exercise.

Next we need to check that the ordering does what we expect: in particular if a
b <

c
d

then we should have a
b + e

f < c
d + e

f ; also that the product of two positive fractions is

positive. We also need to verify the trichotomy law : given any two fractions a
b ,

c
d ∈ Q,

exactly one of the three possibilities

a
b <

c
d or a

b = c
d or a

b >
c
d

holds, where the last option is understood as another way of writing c
d <

a
b .
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