
THE p-ADIC EXPANSION OF RATIONAL NUMBERS

KEITH CONRAD

1. Introduction

In the positive real numbers, the decimal expansion of every positive rational number is
eventually periodic1 (e.g., 21/55 = .381 = .3818181 . . .) and, conversely, every eventually
periodic decimal expansion is a positive rational number. We will prove the set of all rational
numbers can be characterized among the p-adic numbers a similar way: they are the p-adic
numbers with eventually periodic p-adic expansions.

Example 1.1. In Q3
2

5
= 11210 = 1121012101210 . . . .

where the initial one-digit block “1” is followed by the repeating block 1210. Let’s check
this is correct:

11210 = 1121012101210 . . .

= 1 + 3(121012101210 . . .)

= 1 + 3(1 + 2 · 3 + 32)(1 + 34 + 38 + 312 + · · · )
= 1 + 3(16)

∑
k≥0

34k

= 1 +
48

1− 34

= 1− 48

80

=
32

80

=
2

5
.

As above, throughout this note we will use the convention of writing p-adic expansions
from left to right starting with the lowest-order term, in the same way power series are
written. For example, in Qp we write

−1 = (p− 1) + (p− 1)p + (p− 1)p2 + · · ·
rather than −1 = · · ·+ (p−1)p2 + (p−1)p+ (p−1). When writing positive integers in base
p, we will write them from left to right starting with the highest order term, to match the
way positive integers are written in base 10, and we’ll include a subscript for the base. For
example, 58 in base 3 is 20113 since 58 = 2 · 33 + 0 · 32 + 1 · 3 + 1, and we’d write its 3-adic
expansion as 1102 to designate 1 + 1 · 3 + 0 · 32 + 2 · 33.

1This characterization of Q>0 inside R>0 is not affected by some numbers having more than one decimal
expansion, such as .5 = .49999. . . , which are both eventually periodic: eventually all 0 or eventually all 9.
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Multiplying and dividing a p-adic number by powers of p shifts the digits to the left or
right, but does not affect the property of having an eventually periodic p-adic expansion.
Therefore it suffices to focus for the most part on numbers with p-adic absolute value 1,
which are p-adic expansions of the form c0 + c1p + c2p

2 + · · · where 0 ≤ ci ≤ p − 1 and
c0 6= 0.

2. Purely periodic expansions

As a warm-up, let’s describe p-adic numbers with purely periodic p-adic expansions.

Theorem 2.1. A rational number with p-adic absolute value 1 has a purely periodic p-adic
expansion if and only if it lies in the real interval [−1, 0).

Proof. A purely periodic p-adic expansion having p-adic absolute value 1 with a repeating
block of k digits looks like n0n1 . . . nk−1, where 0 ≤ ni ≤ p−1 and n0 6= 0. We can evaluate
this as a fraction by summing geometric series in Zp:

n0n1 . . . nk−1 = 1(n0n1 . . . nk−1) + pk(n0n1 . . . nk−1) + p2k(n0n1 . . . nk−1) + · · ·
= (n0n1 . . . nk−1)(1 + pk + p2k + · · · )

=
n0n1 . . . nk−1

1− pk
.(2.1)

The p-adic expansion in the numerator of (2.1), which is the base p number (nk−1 · · ·n1n0)p
with digits in reverse order, is an integer between 1 and pk − 1 (it is not 0 since n0 6= 0),
and we are dividing it by 1− pk = −(pk− 1), so this purely periodic expansion is a rational
number lying in the interval [−1, 0).

Conversely, let r be a rational number with p-adic absolute value 1 that lies in [−1, 0).
We will show r can be written in the form (2.1), and then the calculations that led to (2.1)
can be read in reverse to see r has a purely periodic p-adic expansion.

Since |r|p = 1 and r < 0 we can write r = a/b with numerator a < 0 and denominator
b ≥ 1 that are both not divisible by p. Since p and b are relatively prime, from elementary
number theory we have pk ≡ 1 mod b for some k ≥ 1. Thus pk = 1 + bb′ for some positive
integer b′, so

r =
a

b
=

ab′

bb′
=
−ab′

1− pk
.

Set N = −ab′. Since a < 0, N ∈ Z+. From −1 ≤ r < 0 we get −1 ≤ N/(1 − pk) < 0, so
0 < N ≤ pk − 1. Thus N in base p has at most k digits: N = n0 + n1p + · · · + nk−1p

k−1

where the digits ni are between 0 and p− 1. Hence r has the form (2.1). Since a and b′ are
not divisible by p, |N |p = 1 so n0 6= 0. �

Remark 2.2. This theorem is not saying rationals in [−1, 0) have purely periodic p-adic
expansions. It says rationals in [−1, 0) with p-adic absolute value 1 have purely periodic
expansions.

Example 2.3. Let’s work out the 3-adic expansion of −5/11, which is in [−1, 0) with 3-adic
absolute value 1. The least2 k ≥ 1 making 3k ≡ 1 mod 11 is k = 5, with 35 − 1 = 11 · 22, so

− 5

11
= − 5 · 22

11 · 22
= − 110

35 − 1
=

110

1− 35
.

2It is not important to pick k minimal, but to do otherwise makes the periodic digit block appear longer,
like writing 12 as 1212.



THE p-ADIC EXPANSION OF RATIONAL NUMBERS 3

In base 3, 110 = 34 + 33 + 2 = 110023. Its 3-adic expansion from left to right is 20011, so

− 5

11
=

110023
1− 35

=
20011

1− 35
= 20011 = 2001120011 . . . .

As a check that this calculation is correct, add up the terms in the 3-adic expansion and
get back −5/11:

2001120011 . . . = 2
∑
i≥0

35i + 33
∑
i≥0

35i + 34
∑
i≥0

35i

=
2

1− 35
+

27

1− 35
+

81

1− 35

=
2 + 27 + 81

−242

= −110

242

= −11 · 10

11 · 22

= − 5

11
.

We can get the p-adic expansion of a rational number in the real interval (0, 1) having
p-adic absolute value 1 by using Theorem 2.1 to get the expansion of its negative and then
negating the result. Recall the simple rule for negating a nonzero p-adic expansion: if
x = cdp

d + cd+1p
d+1 + · · ·+ cip

i + · · · where the ci are digits and cd 6= 0, then

(2.2) − x = (p− cd)pd + (p− 1− cd+1)p
d+1 + · · ·+ (p− 1− ci)p

i + · · · .

In the expansion of −x, note the first digit is affected differently from the rest: p − cd
compared to p− 1− ci for i > d.

Example 2.4. Let’s derive the 3-adic expansion of 2/5, which was pulled out of nowhere
in Example 1.1. We will use the proof of Theorem 2.1 to find the expansion of −2/5 and
then negate the result.

To make 3k ≡ 1 mod 5 we can use k = 4. Then 3k − 1 = 5 · 16, so

−2

5
= −2 · 16

5 · 16
=

32

1− 34
.

In base 3, 32 = 33 + 3 + 2 = 10123, so

−2

5
=

10123
1− 34

=
2101

1− 34
= 2101 = 210121012101 . . . ,

which is purely periodic. Negating and using (2.2) with p = 3, we get

2

5
= −210121012101 . . . = 112101210121 . . . = 11210,

which is eventually periodic rather than purely periodic.

3. Eventually periodic expansions

Theorem 3.1. In Qp, the numbers with eventually periodic p-adic expansions are precisely
the rational numbers.
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Proof. We begin by showing every eventually periodic p-adic expansion is rational. This
will generalize the calculations at the start of the proof of Theorem 2.1. An eventually
periodic p-adic expansion with absolute value 1 looks like

(3.1) m0m1 · · ·mj−1n0n1 · · ·nk−1 = m0m1 · · ·mj−1n0n1 · · ·nk−1n0n1 · · ·nk−1 . . . ,

a first block of j digits m0m1 · · ·mj−1 followed by a repeating block of k digits n0n1 · · ·nk−1.
(If the expansion is purely periodic then the initial block can be taken as empty and set
j = 0.) Write (3.1) in series form as

m0 + · · ·+ mj−1p
j−1 + (n0p

j + · · ·+ nk−1p
j+k−1) + (n0p

j+k + · · ·+ nk−1p
j+2k−1) + · · · .

Using geometric series, we evaluate (3.1):

m0 . . .mj−1n0 . . . nk−1 = m0 . . .mj−1 + (n0 . . . nk−1)(p
j + pj+k + pj+2k + · · · )

= m0 . . .mj−1 + pj(n0 . . . nk−1)(1 + pk + p2k + · · · )

= m0 . . .mj−1 + pj
n0 . . . nk−1

1− pk

= (mj−1 . . .m0)p + pj
(nk−1 . . . n0)p

1− pk
,

which is a rational number. (This generalizes the calculations that led to (2.1), which is the
special case j = 0.) Allowing multiplication or division by powers of p, we have shown all
eventually periodic p-adic expansions are rational numbers.

To prove the converse, that every rational number r has an eventually periodic p-adic
expansion, we will, perhaps surprisingly, focus on negative r. The p-adic expansion of a
positive rational number can be obtained from its negative by negating with (2.2), which
clearly shows the negation of an eventually periodic p-adic expansion is eventually periodic.
(If r ∈ Z+ there’s really no need to negate first: the base p expansion of r is its p-adic
expansion.)

Case 1: r ∈ Z with r < 0. Write r = −R with R ∈ Z+. There is a j ≥ 1 such that
R < pj . Then

r = −R = (pj −R)− pj .

Since pj −R is an integer in {1, . . . , pj − 1} we can write it in base p as c0 + · · ·+ cj−1p
j−1.

Then

r = (pj −R)− pj =

j−1∑
i=0

cip
i +
∑
i≥j

(p− 1)pi,

which is eventually periodic since its digits eventually all equal p− 1.
Case 2: r ∈ Q ∩ Z×p ∩ (−1, 0). The p-adic expansion of r is purely periodic by Theorem

2.1, and the proof of that theorem shows how to obtain the expansion.
Case 3: r ∈ Q∩Zp∩(−1, 0). Write r = pnu with u ∈ Z×p . Then u = r/pn is rational, of p-

adic absolute value 1, and is in the interval (−1/pn, 0) ⊂ (−1, 0), so u has a purely periodic
p-adic expanion by Case 2. Therefore r = pnu has the same purely periodic expansion
except for starting n positions further to the right.

Case 4: r ∈ Q∩Zp, r 6∈ Z, and r < −1. The number r lies strictly between two negative
integers: −(N + 1) < r < −N for some positive integer N , so −1 < r + N < 0. Since
r + N ∈ Zp, by Case 3 the p-adic expansion of r + N is purely periodic, although not
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necessarily starting at the p0-digit (since r + N might not be in Z×p ), so we can write

(3.2) r + N =
∑
i≥0

aip
i

where ai ∈ {0, 1, . . . , p − 1} and the ai are purely periodic after a possible initial string of
zero digits. Since r + N is not a positive integer, the p-adic expansion (3.2) has infinitely
many nonzero ai. Thus the partial sums a0 + a1p+ · · ·+ aj−1p

j−1 become arbitrarily large
in the usual sense as j grows, so there is a j such that

(3.3) a0 + a1p + · · ·+ aj−1p
j−1 > N.

Let j be the smallest choice fitting this inequality, so aj−1 6= 0. Then

r + N = (a0 + a1p + · · ·+ aj−1p
j−1) +

∑
i≥j

aip
i

so

(3.4) r = (a0 + a1p + · · ·+ aj−1p
j−1 −N) +

∑
i≥j

aip
i

and the difference a0 + a1p + · · · + aj−1p
j−1 − N is a positive integer by (3.3) that is less

than (p− 1) + (p− 1)p+ · · ·+ (p− 1)pj−1 = pj − 1, so we can write the difference in base p:

a0 + a1p + · · ·+ aj−1p
j−1 −N = a′0 + a′1p + · · ·+ a′j−1p

j−1

with 0 ≤ a′i ≤ p− 1, so (3.4) becomes

r = (a′0 + a′1p + · · ·+ a′j−1p
j−1) +

∑
i≥j

aip
i.

This is an eventually periodic p-adic expansion since the ai for i ≥ j are eventually periodic.
Case 5: r ∈ Q, r 6∈ Zp, r < 0. Since per ∈ Zp for large e, we can use a previous case on

per and then divide by pe. �

4. Examples

The proof of Theorem 3.1 gives an algorithm to compute the p-adic expansion of any
rational number in Zp:

(1) Assume r < 0. (If r > 0, apply the rest of the algorithm to −r and then negate
with (2.2) to get the expansion for r.)

(2) If r ∈ Z<0 then write r = −R and pick j ≥ 1 such that R < pj . Then r =
(pj − R) − pj = (pj − R) +

∑
i≥j(p − 1)pi and pj − R has a base p expansion not

going beyond the pj−1-digit.
(3) If −1 < r < 0 let r = pnu with u ∈ Z×p . Then u ∈ (−1, 0) and the p-adic expanion

of u is purely periodic using the proof of Theorem 2.1. Multiplying it by pn gives
the (purely periodic) p-adic expansion of r.

(4) If −(N + 1) < r < −N for an integer N ≥ 1 then −1 < r + N < 0, so the
expansion of r + N is obtained by the previous step, say r + N =

∑
i≥0 aip

i. Pick

the first truncation a0 + a1p + · · · + aj−1p
j−1 in this expansion that exceeds N , so

r = (
∑j−1

i=0 aip
i−N) +

∑
i≥j aip

i. The difference in parentheses is a positive integer

and its base p expansion has the form
∑j−1

i=0 a
′
ip

i, so r =
∑j−1

i=0 a
′
ip

i +
∑

i≥j aip
i.
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Example 4.1. Let’s work out the p-adic expansion of 77/18 in Q2, Q3, Q5, and Q7.
Expansion of 77/18 in Q2: Since 77/18 = (1/2)(77/9) and |77/9|2 = 1, we will get the

2-adic expansion of 77/9 and then divide through by 2. And since 77/9 > 0, we will first
get the 2-adic expansion of −77/9 and then negate what we find.

Let r = −77/9. Since −9 < r < −8, set N = 8. Since −1 < r + 8 < 0 and r + 8 =
−5/9 ∈ Z×2 ∩ (−1, 0) we will find the 2-adic expansion of −5/9 by Theorem 2.1. The least
k making 2k ≡ 1 mod 9 is k = 6:

26 − 1 = 63 = 9 · 7 =⇒ −5

9
= −5 · 7

63
=

35

1− 26
.

In base 2, 35 = 1 + 2 + 25 = 1000112, so

35

1− 26
=

1000112
1− 26

=
110001

1− 26
= 110001 = 110001110001110001 . . .

The first truncation of this that exceeds N = 8 is 110001 = 35, so

r = −8− 5

9
= −8 + 110001 + 000000110001 = (35− 8) + 000000110001.

Since 35− 8 = 27 = 110112, which has 2-adic expansion 11011 (it is palindromic, a coinci-
dence), we get

r = −77

9
= 11011 + 000000110001 = 110110110001.

Thus
77

9
= −110110110001 = 101001001110,

so
77

18
=

101001001110

2
=

1

2
+ 01001001110.

Let’s check: in Q2,

1

2
+ 01001001110 =

1

2
+ (2 + 16) + 25

4 + 8 + 16

1− 26
=

1

2
+ 18 + 32

28

1− 64
=

37

2
− 32 · 4

9

X
=

77

18
.

Expansion of 77/18 in Q3: Since 77/18 = (1/9)(77/2), first we will figure out the 3-adic

expansion of 77/2 and then divide it by 9. Since 77/2 > 0, first we will compute the 3-adic
expansion of −77/2 and then negate.

Let r = −77/2, so −39 < r < −38. We have r + 38 = −1/2, which is easy to expand
3-adically:

−1

2
=

1

1− 3
= 1 = 111 . . .

and the first truncation of this expansion that exceeds 38 is 1111 = 40, so

r = −38− 1

2
= −38 + 1111 + 00001 = (40− 38) + 00001 = 20001.

Therefore
77

2
= −20001 = 12221

so
77

18
=

12221

9
=

1

9
+

2

3
+ 221.

Let’s check: in Q3,

1

9
+

2

3
+ 221 =

1

9
+

2

3
+ (2 + 2 · 3) +

9

1− 3
=

7

9
+ 8− 9

2
=

14 + 18 · 8− 81

18

X
=

77

18
.



THE p-ADIC EXPANSION OF RATIONAL NUMBERS 7

Expansion of 77/18 in Q5: We’ll get the expansion for −77/18 and then negate.

Let r = −77/18. Since −5 < r < −4, set N = 4. Then −1 < r + 4 < 0 and r + 4 =
−5/18 = 5(−1/18) = 5u where u = −1/18 ∈ Z×5 ∩ (−1, 0). We will get the 5-adic expansion
of −1/18 using Theorem 2.1 and then multiply through by 5.

The least k making 5k ≡ 1 mod 18 is k = 6:

56 − 1 = 15624 = 18 · 868 =⇒ − 1

18
= − 868

15624
=

868

1− 56
.

In base 5, 868 = 3 + 3 · 5 + 4 · 52 + 53 + 54 = 114335, so

u =
868

1− 56
=

114335
1− 56

=
33411

1− 56
= 334110 = 33411033411033411 . . .

Thus

− 5

18
= 5u = 033411.

The first truncation of this that exceeds N = 4 is 03, which is 15, so

r = −4− 5

18
= −4 + 03 + 00341103 = (15− 4) + 0034110.

Since 15− 4 = 11 = 215, which has 5-adic expansion 12,

r = −77

18
= 12 + 00341103 = 12341103.

Thus
77

18
= −12341103 = 42103341.

Let’s check: in Q5,

42103341 = 4 + 2 · 5 + 52
1 + 3 · 52 + 3 · 53 + 4 · 54 + 55

1− 56
= 14 + 25

6076

1− 56
= 14− 25

7

18

X
=

77

18
.

Expansion of 77/18 in Q7: We’ll get the expansion for −11/18 and then multiply by −7.

Let r = −11/18. It lies in Z×7 ∩ (−1, 0) so we can compute its 7-adic expansion from
Theorem 2.1.

The least k making 7k ≡ 1 mod 18 is k = 3:

73 − 1 = 342 = 18 · 19 =⇒ −11

18
= −11 · 19

342
=

209

1− 73
.

In base 7, 209 = 6 + 7 + 4 · 72 = 4167, so

r =
209

1− 73
=

4167
1− 73

=
614

1− 73
= 614 = 614614614 . . .

Therefore
11

18
= −614614614 . . . = 152052052 . . . = 1520

so
77

18
= 7

(
11

18

)
= 01520.

Let’s make our final check: in Q7,

01520 = 7 + 72
5 + 2 · 7
1− 73

= 7− 49
19

342
= 7− 49

18

X
=

77

18
.
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