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Fractions and Rational Numbers

Definition. A rational number is a real number which can be written as
a

b
, where a and b are integers

and b 6= 0. A real number which is not rational is irrational.

Example. Prove that if p is prime, then
√
p is irrational.

To prove this, suppose to the contrary that
√
p is rational. Write

√
p =

a

b
, where a and b are integers

and b 6= 0. I may assume that (a, b) = 1 — if not, divide out any common factors.
Now

b
√
p = a so b2p = a2.

Since p | a2 and p is prime, p | a. Write a = pc. Then

b2p = p2c2, so b2 = pc2.

Now p | b2, so p | b. Thus, p is a common factor of a and b contradicting my assumption that (a, b) = 1.
It follows that

√
p is irrational.

More generally, suppose a0, . . . , an−1 are integers and

xn + an−1x
n−1 + · · ·+ a1x+ a0.

Then the roots are either integers or irrational.

If b is an integer such that b > 1, and a is a positive integer, then for some n ≥ 0 I can write a uniquely
in the form

a =

n
∑

i=0

aib
i.

This is called the base b expansion of a.
Note that

a = anb
n + an−1b

n−1 + · · ·+ a1b+ a0.

The notation is (an an−1 . . . a1 a0)b, with the subscript b denoting the base. We omit the subscript for
number given in base-10.

Thus, the value of a is obtained by plugging x = b into the polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

The standard way to do this by hand is to use synthetic division.

Example. Convert (7513)8 to base-10. Use synthetic division:

7 5 1 3
56 488 3912

7 61 489 3915

Thus, (7513)8 = 3915.
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To convert from base-10 to base-b, we just have to undo the process above. I divide the number by
the base, noting the quotient and the remainder. Then I divide the quotient by the base, and so on. The
successive remainders give the base-b digits (backwards).

Example. Convert 3915 to base-8. Divide 3915 by 8. The quotient is 489 and the remainder is 3:

489 3915
3

Divide 489 by 8. The quotient is 61 and the remainder is 1:

61 489 3915
1 3

Divide 61 by 8. The quotient is 7 and the remainder is 5:

7 61 489 3915
5 1 3

Since 7 is less than 8, I can stop here. The answer is (7 5 1 3)8.

Note that if you want to convert between base-b and base-c, you could just do

(base-b) → (base-10) → (base-c)

What about a positive number which is not an integer? I can write any positive real number as a sum
of a positive integer and a real number between 0 and 1. I already know how to convert positive integers to
base-b.

So suppose b is an integer such that b > 1, and a is a real number between 0 and 1 (inclusive). Then a

can be written uniquely in the form

a =

∞
∑

i=1

ai ·
1

bi
.

Rather than proving this fact, I’ll merely recall the standard algorithm for computing such an expansion:

Subtract from a as many
1

b
’s as possible, subtract as many

1

b2
’s from what’s left, and so on.

Here is a recursive procedure which generates base b expansions:

x0 = a

ai = [b · xi−1] , xi = b · xi−1 − [b · xi−1] for i ≥ 1.

To see why this corresponds to the standard algorithm, note that at the first stage I’m trying to find
k ≥ 0 such that

a− k

b
≥ 0 and a− k + 1

b
< 0.

These equations are equivalent to

ba− k ≥ 0 and ba− (k + 1) < 0.

Equivalently,
ba ≥ k and ba < k + 1.

That is, k = [ba], and a corresponds to xi.
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It’s convenient to arrange the computations in a table, as shown below.

Example. Find 0.4 in base 7.

I fill in the rows from left to right. Starting with an x, multiply by b = 7 to fill in the third column.
Take the greatest integer of the result to fill in the a-column of the next row. Subtract the a-value from the
last bx-value to get the next x, and continue. You can check that this is the algorithm described above.

a x bx

− 0.4 2.8

2 0.8 5.6

5 0.6 4.2

4 0.2 1.4

1 0.4 2.8

The expansion clearly repeats after this, since I’m getting 0.4 for x again. Thus,

0.4 = (0.2541)7.

Definition. The decimal expansion x = .a1a2 . . . terminates if there is a number N > 0 such that ak = 0
for k > n.

In this case,

x =
a1 · 10n−1 + a2 · 10n−2 + · · ·+ an

10n
.

Hence, x is rational.

In fact, rational numbers in (0, 1) with terminating decimal are exactly the rational numbers of the form
p

2a5b
for p > 0 and a, b ≥ 0.

Suppose a rational number has the form
p

2a5b
for p > 0 and a, b ≥ 0. To see this, multiply the top and

bottom by a power of 2 or a power of 5 to get a power of 10 on the bottom. Then
p

2a5b
=

q

10c
, which is

represented by a terminating decimal with q being the “decimal part”. For example,

17

40
=

17

23 · 5 =
17 · 52
23 · 53 =

425

103
=

425

1000
= 0.425.

Going the other way, note that

0.a1 a2 . . . an =
a1 · 10n + a2 · 10n−1 + · · · an

10n
=

a1 · 10n + a2 · 10n−1 + · · · an
2n · 5n .

For instance,

0.4173 =
4173

10000
=

4 · 103 + 1 · 102 + 7 · 10 + 3

104
=

4 · 103 + 1 · 102 + 7 · 10 + 3

24 · 54 .

Thus, a terminating decimal has the form
p

2a5b
for p > 0 and a, b ≥ 0.
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A decimal expansion x = .a1 a2 . . . is periodic with period k if there is a positive integer N such that
an = an+k for all n ≥ N .

Proposition. A periodic decimal expansion represents a rational number.

Proof. (Sketch) First consider the simplest case of a periodic decimal

0.a1 a2 . . . ak a1 a2 . . . ak . . . .

This is a geometric series with first term a =
a1 · 10k−1 + a2 · 10k−2 + · · · ak

10k
and ratio r =

1

10k
.

a and r are both rational The sum of such a geometric series is
a

1− r
, which is also a rational number.

Suppose there is a pre-period — an initial segment before the repeating part:

x = 0.b1 b2 . . . bj a1 a2 . . . ak a1 a2 . . . ak . . . .

This is a sum of two rational numbers: The rational number corresponding to the terminating decimal
0.b1 b2 . . . bj and the rational number corresponding to the periodic part a1 a2 . . . ak a1 a2 . . . ak . . ., shifted

by j places. Explicitly, if a =
a1 · 10k−1 + a2 · 10k−2 + · · · ak

10k
and r =

1

10k
, then

x =
b1 · 10j−1 + b2 · 10j−2 + · · · bj

10j
+

1

10j
· a

1− r
.

Once again, this is rational.

Example. Express 0.473 as a rational number in lowest terms.

Since the number has period 3, I multiply both sides by 103:

x = 0.473 = 0.473473 . . .

1000x = 473.473473 . . .

Next, subtract the first equation from the second:

1000x = 473.473473 . . .

x = 0.473473 . . .

999x = 473

x =
473

999

Example. Express (0.24122)10 as a rational number in lowest terms.

Since the number has period 3, I multiply both sides by 103:

x = (0.24122)10 = 0.24122122 . . .

1000x = 241.22122122 . . .

Next, subtract the first equation from the second:

1000x = 241.22122122 . . .

x = 0.24122122 . . .

999x = 240.98

x =
240.98

999
=

24098

99900
=

12049

49950
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Example. Express (0.473)8 as a base-10 rational number in lowest terms.

Since the number has period 3, I multiply both sides by 83 = 512:

x = (0.473)8 = (0.473473 . . .)8

512 · x = (473.473473 . . .)8

Next, subtract the first equation from the second, being careful about the bases: I have base-10 on the
left, but base-8on the right.

512 · x = (473.473473 . . .)8

x = (0.473473 . . .)8

511x = (473)8 = 315

x =
315

511
=

45

73

In the next two problems, I’ll use the formula for the sum of a geometric series:

a+ ar + ar2 + ar3 + · · ·+ arn + · · · = a

1− r
.

Example. Suppose b is an integer and b > 4. Express the following as a rational function of b:

(0.13 13 13 . . .)b.

Using the formula for the sum of a geometric series, I have

(0.13 13 13 . . .)b =
1

b
+

3

b2
+

1

b3
+

3

b4
+

1

b5
+

3

b6
+ · · ·

=
b+ 3

b2
+

b+ 3

b4
+

b+ 3

b6
+ · · ·

=

b+ 3

b2

1− 1

b2

=
b+ 3

b2 − 1

Example. Suppose b is an integer and b > 3. Express the following as a rational function of b:

(0.(b− 2)1 (b− 2)1 (b− 2)1 . . .)b.

Using the formula for the sum of a geometric series, I have

(0.(b− 2)1 (b− 2)1 (b− 2)1 . . .)b =
b− 2

b
+

1

b2
+

b− 2

b3
+

1

b4
+ · · ·

=
b2 − 2b+ 1

b2
+

b2 − 2b+ 1

b4
+ · · ·

=

b2 − 2b+ 1

b2

1− 1

b2

=
b2 − 2b+ 1

b2 − 1

=
b− 1

b+ 1
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Proposition. A rational number can be represented by either a terminating decimal, or a periodic decimal.

Proof. (Sketch) Suppose
p

q
is a rational number in lowest terms, so (p, q) = 1, and 0 <

p

q
< 1.

I’ve already shown that
p

q
ca be represented by a terminating decimal if and only if q = 2a5b for some

a, b ≥ 0.
I’ll consider the case where (q, 10) = 1, so q is not divisible by 2 or by 5. By Euler’s theorem,

10φ(q) = 1 (mod q) .

Since some positive power of 10 is equal to 1 mod q, there must be a smallest positive power n such
that 10n = 1 (mod q). (This is called the order of 10 mod q.) Thus,

10n = mq + 1 for some m ∈ Z
+.

I have

10n · p
q
=

(mq + 1)p

q
=

mqp

q
+

p

q
= mp+

p

q
.

On the other hand, I have the decimal expansion

p

q
=

a1

10
+

a2

102
+ · · ·+ an

10n
+ x.

Here x represents the remainder of the decimal expansion, so

x =
an+1

10n+1
+

an+2

10n+2
+

an+3

10n+3
+ · · · .

Note that
10nx =

an+1

10
+

an+2

102
+

an+3

103
+ · · · .

Hence, 0 < 10nx < 1.

So multiplying the equation for
p

q
by 10n, I get

10n · p
q
=

(

10n−1a1 + 10n−2a2 + · · ·+ an
)

+ 10nx.

Comparing the two equations for 10n · p
q
, I have

mp+
p

q
=

(

10n−1a1 + 10n−2a2 + · · ·+ an
)

+ 10nx.

I have an integer on either side, namely mp and 10n−1a1 + 10n−2a2 + · · · + an. I also have on either

side numbers in the range (0, 1), namely
p

q
and 10nx. This is only possible if

p

q
= 10nx. This means that at

the (n+1)st place the decimal being constructed is the decimal for the original
p

q
. Hence, the decimal must

repeat after that point.

I’ll omit the case where q = 2a5bq′, where (q′, 10) = 1. In this case, the decimal has a pre-preriod before
it begins to repeat.

For example, consider the rational fraction
10

21
. I have φ(21) = 12, and checking powers I find that

106 = 1 (mod 21), and this is the smallest positive power of 10 equal to 1 mod 21. Thus, I expect the
decimal to have period 6. In fact,

10

21
= 0.809523 809523 . . . .
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