
PIR: PMaC's Idiom Recognizer

Catherine Olschanowsky, Allan Snavely
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA

{cmills,allans}@cs.ucsd.edu

Mitesh R. Meswani, Laura Carrington
San Diego Supercomputer Center

University of California, San Diego
La Jolla, CA

{mitesh,lcarring}@sdsc.edu

Abstract—The speed of the memory subsystem often constrains
the performance of large-scale parallel applications. Experts
tune such applications to use hierarchical memory subsystems
efficiently. Hardware accelerators, such as GPUs, can
potentially improve memory performance beyond the
capabilities of traditional hierarchical systems. However, the
addition of such specialized hardware complicates code porting
and tuning. During porting and tuning expert application
engineers manually browse source code and identify memory
access patterns that are candidates for optimization and
tuning. HPC applications typically contain thousands to
hundreds of thousands of lines of code, creating a labor-
intensive challenge for the expert. PIR, PMaC’s Static Idiom
Recognizer, automates the pattern recognition process.

 PIR recognizes specified patterns and tags the source
code where they appear using static analysis. This paper
describes the PIR implementation and defines a subset of
idioms commonly found in HPC applications. We examine the
effectiveness of the tool, demonstrating 95% identification
accuracy and present the results of using PIR on two HPC
applications.

Keywords-automation; performance; static analysis; tuning

I. INTRODUCTION
Performance tuning of High Performance Computing

(HPC) applications often centers on memory performance.
Expert HPC application engineers manipulate parallel
application code to best utilize complex hierarchical memory
subsystems. Even with expert tuning, HPC application
performance is often limited by memory performance.
Recent fundamental changes to HPC resource architectures
will potentially relieve this performance bottleneck, but at
the same time complicate application porting and tuning.

In an effort to improve memory performance many new
HPC resources include multi-core chips and specialized
acceleration hardware such as Graphics Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGAs). Not
all application code is suitable for execution on accelerator
hardware; effective utilization of this hardware requires time
consuming analysis of existing application code to determine
sections whose performance will benefit from porting.

Early examples of these new architectures include
Roadrunner at Los Alamos National Laboratory, which is
composed of a dual core AMD Opteron processor paired
with an IBM cell accelerator [1]. Roadrunner spent over a

year in the number one spot on the Top500 list. Another
example, the Convey HC-1 [2] employs hybrid-core
computing, a multi-core processor paired with FPGAs. This
machine has significant potential for large performance
gains, according to performance models. However, in both of
these cases achieving this performance requires that specific
sections of code be chosen and ported for execution on the
accelerator hardware.

The programmer must locate and customize application
code to take advantage of the specialized hardware. She may
replace common operations with highly optimized
architecture-aware libraries such as BLAS or use special
purpose hardware. Regardless of the optimization choice, a
programmer must manually browse source code to identify
opportunities.

This identification process is extremely labor-intensive.
HPC applications consist of thousands to hundreds of
thousands of lines of code that have been written to
maximize performance on existing memory hierarchies;
readability may be an afterthought.

Memory performance has long been a major obstacle to
performance for HPC applications. In fact, the memory wall
[3] has driven recent innovations such as hybrid-core
computing. These innovations attempt to provide memory
performance where traditional cache hierarchies cannot by
allowing more flexibility and explicit control of data
management and movement. Hence, memory access patterns
are used to identify sections of code for optimization.

PIR (PMaC’s Idiom Recognizer) is a static analysis tool
that automates the process of identifying candidate sections
of code. PIR automatically recognizes user-specified
memory access patterns, called idioms, within application
source code. This greatly reduces the amount of code that an
expert must analyze manually.

PIR’s design provides the flexibility to identify
optimization opportunities for many different hardware
configurations. The user provides descriptions of the idioms
to be identified. As a starting point, PIR provides a set of
commonly useful idioms and access to an Idiom definition
syntax that allows for user customization of the idioms.

This paper presents the implementation of PIR,
experimental evidence of its effectiveness and an example
application tuning workflow using real HPC applications.
We show that the idiom recognition is accurate within 95%.
Furthermore, we demonstrate that PIR can be used to quickly
identify areas of code with optimization potential.

The rest of this paper is organized as follows: Section II
describes the implementation of the PIR tool and Section III
describes the definition of a subset of commonly occurring
idioms in HPC. Section IV describes our experiments to
evaluate effectiveness of PIR and section V outlines a
possible usage scenario. Section VI provides a summary of
related work and Section VII describes conclusions and
future work.

II. PIR APPROACH
PIR is a general framework that identifies common

memory access patterns, idioms, within application code.
The idioms of interest may vary between different
architectures. For instance, one device may be specially
equipped to handle random memory accesses while another
is focused on speeding up consecutive accesses to large areas
of memory. PIR, when supplied the appropriate idiom
definitions, is capable of locating idioms for both.

PIR identifies patterns in application code by examining
the compiler intermediate representation. An intermediate
representation (IR) [4] is a data structure used internally by
compilers after the code is parsed. An IR is a tree that
contains control flow and data dependency information. This
information is used by the compiler to optimize the source
code. The optimizations are executed as transformations on
the IR. Ultimately, the transformed IR is translated into
machine specific assembly code. By focusing on the IR, PIR
identifies patterns and structures suitable for porting before
they are altered for machine-specific ISA mapping.

PIR is implemented within the GNU compiler collection
(GCC) [7] taking advantage of its language and machine
independent design. GCC is implemented in a modular
fashion allowing the middle-end (the main body of GCC
source code) of the compiler to be used for many languages.
Figure 1 shows a high-level diagram of the GCC
architecture. The front end contains language specific
parsing code, the middle end is language and architecture
independent and the back end contains architecture specific
code. PIR is implemented as an optimization pass in the
middle end of the compiler.

Although the operation of PIR is through a compiler, the
result is not an executable, but a list of potential idiom
locations. The implementation of PIR within GCC allows it
to search for idioms within both FORTRAN and C without
separate specialized code.

A series of optimization passes are performed by GCC
after the GIMPLE form has been generated and transformed
into Single Static Assignment (SSA) form. PIR is inserted
directly after the loop optimization pass has been initialized.
This allows access to all of the information necessary for
loop level optimizations, but simplifies idiom recognition
because the optimizations have not yet been executed.

A. GCC IR Illustration
The GCC IR is best explained via example; refer to the

code snippet shown in Figure 2. This is a simple example of
the stream idiom. More specifically it is a stream reduction,
because the values are accumulated to a single variable

rather than assigned to another array. This code is used
throughout this section to illustrate the PIR approach.

Understanding an idiom definition requires knowing
what the IR for that idiom looks like. Figure 3 shows the
GCC IR for this code snippet (the information for this
diagram is printed by PIR). A node in the tree represents
each operation and variable in the statement. For operations
the child relationship indicates an operand. For variables, the
child relationship indicates a step in the use-def chain.

The GCC IR uses a specific vocabulary, GIMPLE, to
describe each node in the tree. PIR specifically examines
portions of the tree that have a statement at the root (node 1).
A statement implies that the result of an expression is being
stored to a register or to memory. Other node names used in
GIMPLE that are of interest include the following: ssa name
(variable), binary_op, array, and const.

Figure 1. GCC Architecture Overview [5]

 For i= 0,…,n
 sum = sum + A[i];

Figure 2. Example instance of the stream idiom

Figure 3. Example of the GCC IR

A statement node has two children, the first is the
description of the left hand side, which can be as simple as
an ssa name or it can be an expression describing a memory
address, in this case it is the former. The second child is the
right hand side. Node 2 represents the variable that will
contain the result of the binary operation represented by node
3.

The right hand side of the statement describes the
addition as well as the array access and computation of the
loop induction variable. The direct children of the binary
operation node (node 3) describe the operands. Node 6 is a
declaration that describes the starting point of the array.
Node 7 describes the index.

Nodes 7-12 represent the increment of the loop induction
variable i, i.e., i= i+1. Node 7 is variable for the loop
induction variable i. It is attached to a phi node because it
has data dependencies going to two places. Node 9, const, is
the original assignment of i to 0 at the beginning of the loop.
The first child of the phi node (node 8) is the ssa name node
that represents i. The first child of the binary operation node
(node 11) is the same ssa name node.

Every statement in the application code has a tree similar
to this created in the IR. They are organized into groups
called basic blocks. Each basic block contains a series of
statements that PIR examines.

B. PIR Implementation
PIR recursively traverses the IR for each statement

searching for patterns. Each node of the GCC IR is well
defined and has a small number of children. The GCC
infrastructure provides the ability to walk the tree.

An important note about the implementation is that it
looks for the existence of a pattern, not the absence of one.
This means that the pattern needs to be carefully designed.
For instance, looking for an ssa name on the left hand side of
our working example, would match almost every statement
in the application. By specifying that it must be found at
level 0 the desired affect is achieved.

A few of the nodes require special handling, specifically
ssa name. This node represents a variable and does not have
any children. We follow the use-def chains in order to get to
the statement that resulted in that variable. During this
process it is important to be sure that we do not loop back on
the same variable, as this would cause an infinite loop.

Labeling variables is necessary when recognizing a
reduction pattern such as the one in the working example
(Figure 3). It is necessary to know that the variable node
represented on the left hand side is the same as the variable
node that is the first operand to the binary operation on the
right hand side.

It is possible to check for a dependence on the loop
induction variable of a loop. The existing loop optimization
code of GCC contains the dependency information. PIR
accesses the internal data structure and internally names the
variables in order to perform dependency checks and
matches between the left and right hand side. This is
necessary for identifying idioms such as transpose, described
in the next section.

C. Idiom Definition Syntax
PIR allows users to create custom idioms using the idiom

definition syntax. An idiom definition describes a pattern
that, if present, indicates the presence of a specific idiom.
Not every node in the tree has to be taken as part of the
idiom signature. For the code snippet shown in Figure 3,
only the grey nodes are taken as part of the signature. The
definition must be specific enough to avoid false positives,
and at the same time, avoid being overly complicated.

The idiom patterns are identified in a text file and read by
PIR at runtime. This enables the patterns to be changed
without requiring a recompile of the PIR source code.

Figure 4 shows one possible idiom definition for the
running example, a stream reduction. The first entry specifies
the label that each identified statement should be labeled
with. The next group of statements describes the right hand
side of a qualifying statement. The first field in the group
states that there are four nodes specified on the right hand
side.

GIMPLE specifies a class and a code for each node in the
tree. The class is a grouping mechanism and the code is a
more specific indicator. For example, the addition operator
belongs to the class tcc_binary and has the code plus_expr.
The subtraction operator also belongs to the tcc_binary class,
but has the code minus_expr.

1: label=STREAM_RED2
 2: rhs_count=4
 3: rhs_class[0]=tcc_binary
 4: rhs_code[0]=-1
 5: rhs_nesting[0]=-1
 6: rhs_iv[0]=-1
 7: rhs_class[1]=tcc_exceptional
 8: rhs_code[1]=SSA_NAME,0
 9: rhs_nesting[1]=0
10: rhs_iv[1]=-1
11: rhs_class[2]=tcc_reference
12: rhs_code[2]=ARRAY_REF
13: rhs_nesting[2]=0
14: rhs_iv[2]=-1
15: rhs_class[3]=tcc_binary
15: rhs_code[3]=-1
17: rhs_nesting[3]=-1
18: rhs_iv[3]=0
19: lhs_count=1
20: lhs_class[0]=tcc_exceptional
21: lhs_code[0]=SSA_NAME,0
22: lhs_nesting[0]=-1
23: lhs_iv[0]=-1
24: idiom_end

Figure 4. One possible idiom definition for a stream reduction

Line 3 in Figure 4 indicates that a binary operation must
take place on the right hand side of the candidate statement.
The next line indicates that any binary operation is
acceptable. Line 5 indicates the nesting requirement. The
binary operation is the top most operation in this statement
and so there is no nesting requirement here, indicated with a
-1.

A loop induction variable is commonly referred to as the
loop index. In the case of our example this is i. Line 6
indicates that there is no requirement that this binary
operation depend directly on a loop induction variable.

The same pattern is continued for each of the nodes in the
definition. A few interesting attributes are worth pointing
out. On Line 8 the code (SSA_NAME) is followed by a
comma and a 0. This indicates that the variable should be
labeled. The labels are numeric and always start at 0. Line 21
uses the same pattern and the same label. This indicates that
the variable on the left hand side and the right had side of the
statement must match. Line 9 indicates that the ssa name
node must be nested (be an operand of) the binary operation.
In this case the 0 corresponds to the index used in the labels
describing the binary node.

III. COMMON IDIOMS
PIR includes seven idiom definitions we have found to

common in HPC applications. The idioms are described in
the following section. All of the code samples are assumed to
be part of a loop, i (and j) are loop induction variables.

• Stream: A[i] = A[i] + B[i]

The stream idiom includes accesses that step through
arrays. In the above example two arrays are being stepped
through simultaneously, but the stream idiom is not limited
to this case. Stepping through any array in a loop where the
index is determined by a loop induction variable is
considered a stream.

• Transpose: A[i][j] = B[j][i]

The transpose idiom involves a matrix transpose,
essentially reordering an array using the loop induction
variable.

• Gather: A[i] = B[C[i]]

The gather idiom includes gathering data from a
potentially random access area in memory to a sequential
array. In this example the random accesses are created using
an index array, C.

• Scatter: A[B[i]] = C[i]

The scatter idiom is essentially the opposite of gather.
Values are read from a sequential area of memory and saved
to an area accessed in a potentially random manner.

• Reduction: s = s + A[i]

A reduction can be formed from a stream, as in the
working example, or a gather. It implies that the value
returned from the read portion of the idiom is assigned to a
temporary variable.

• Stencil: A[i] = A[i-1] + A[i+1]
A stencil idiom involves accessing an array in a

sequential manner, including a dependency between
iterations of the loop.

IV. EFFECTIVENESS AND PERFORMANCE
PIR facilitates application code optimization by listing

specific areas of the code that fit a predefined pattern. The
listing is provided in order to save the developer time when
searching for optimization opportunities. Its effectiveness in
this process depends on three abilities: finding all of the
instances of a pattern (coverage), finding only the
occurrences of the pattern (accuracy) and finding the patterns
in a reasonable amount of time (performance).

Coverage and accuracy are evaluated by comparing the
PIR generated idiom listing with a manually created listing.
An expert read each line of code in a set of HPC benchmarks
and generated a list of idioms for a set of patterns. False
positives and misses were recorded during a comparison of
the expert created and PIR generated listings.

The NAS Parallel Benchmarks (NPBs) [7] were used as
the benchmarks. The NPBs represent some of the
calculations that dominate execution time in HPC
applications. A subset of the NPBs was used: BT, CG, EP,
FT, MG, LU, and SP.

The evaluation is performed for the stream, gather and
scatter idioms. These idioms provide a good evaluation of
the tool because they are common in the NPBs, they require
loop induction variable analysis, and they highlight the
differences between FORTRAN and C arrays that
complicate Idiom definition creation.

The included Idiom definitions are designed to find
idioms within data that is statically allocated on the stack.
This is an important distinction, because GCC represents
data from the stack and the heap differently. It is possible to
define Idiom definitions to recognize idioms on heap data,
but the NPBs almost exclusively use the stack, therefore,
only the stack data is included in this evaluation.

Table 1 summarizes the results of these experiments. The
benchmarks are named in the first columns followed by their
respective basic block and source code line counts. For each
of the three idioms, stream, gather and scatter the number of
lines marked as an idiom is shown in the column labeled
PIR. This is followed by the reduction in the size of the
search space resulting in using PIR as well as the number of
false positives (FP) and the number of idioms missed by PIR
(labeled miss).

Reducing the search space is a primary goal and PIR and
the results show that this is done well. On average the search
space is reduced by 95%. In some cases the entire
benchmark is eliminated. The lowest reductions take place in
stream. This is expected because stream is such a common
pattern. The average reduction over gather and scatter is
nearly 99%.

The data shows that coverage, the most important metric,
is very good; PIR consistently finds over 95% of all the
desired idioms.

The accuracy, expressed as false positives, is high for the
stream idiom. The gather and scatter idioms highlight a
specific problem with this approach for FORTRAN codes.
Distinguishing an N-dimensional array access (N > 2) in
FORTRAN from a gather is challenging. The compiler IR
for each of these types of accesses is similar. The gather false
positive rate is high because the gather signature also
matches all N-dimensional array access.

It is possible to prevent the N-dimensional array false

positives by narrowing the definition of gather. Doing this
would cause some legitimate gather idioms to be missed as
well, but depending on the user’s goals, it is a potential
solution.

Table 2 presents the time overhead for running PIR and
looking for stream, gather and scatter. The overhead is on the
scale of minutes rather than the hours or days it would take
to achieve this manually. Compared to the time saved, the
overhead is insignificant. The largest penalty, which took
place compiling over 9000 lines of code, is approximately
one minute.

PIR is an effective tool for narrowing the search space
for optimization opportunities. Even with the high false
positive rate for gather and scatter, the number of lines that
need to be inspected is reduced by almost 99% in both of
those cases.

V. USE CASE
PIR alone reduced the number of lines to be examined

manually by 99% for gather and scatter. Used in conjunction
with a tracing tool such as pmacInst [8] the optimization
search space is reduced even further. This search space
reduction is achieved by ranking the idioms found by PIR
according to their execution frequencies, supplied by
pmacInst. This process quickly identifies areas for
optimization or eliminates the possibility that a specific
application will be improved by porting it to use accelerator
hardware.

We demonstrate this process and present the results of
searching for gather and scatter idioms on two full scale
HPC applications, FLASH and HMMER.

* FLASH: The FLASH [9] application is developed by
the DOE-supported ASC / Alliance Center for Astrophysical
Thermonuclear Flashes at the University of Chicago. This
application is written using C and Fortran90 and has
approximately 130,000 lines of code. We analyze FLASH
version 3.1 in this paper.

* HMMER: The HMMER [10] application generates
profile hidden markov models which are then used for
searching sequence databases for homologs of protein
sequences, and for making protein sequence alignments. This
application is written in C language and consists of
approximately 27,000 lines of code. We analyze version
2.3.2 MPI implementation [11] in this paper.

Gather and scatter are two fundamental operations that

are popular in many parallel algorithms such as sorting and
hashing [12]. These operations can potentially be optimized
by special purpose hardware such as GPUs [13] or custom
accelerators such as FPGAs.

Benchmark/Idiom

Count Stream Gather Scatter

 BB Line PIR % Red. FP Miss PIR % Red. FP Miss PIR % Red. FP Miss

BT 3958 9040 1440 84.1% 28 13 0 100.0% 0 0 398 95.6% 384 0

CG 1052 1787 108 94.0% 0 5 4 99.8% 0 1 6 99.7% 0 0

EP 342 317 0 100.0% 0 0 0 100.0% 0 0 0 100.0% 0 0

FT 1980 1993 58 97.1% 1 1 0 100.0% 0 0 0 100.0% 0 0

LU 3686 5926 1082 81.7% 2 0 0 100.0% 0 0 0 100.0% 0 0

MG 3416 2479 307 87.6% 4 2 15 99.4% 15 0 0 100.0% 0 0

SP 5388 4796 1814 62.2% 65 37 339 92.9% 309 0 317 93.4% 312 0

TABLE I. PIR ACCURACY AND COVERAGE (FP=FALSE POSITIVE,%RED.=SEARCH SPACE REDUCTION)

Benchmark/App.

Count Time (seconds)
 BB Line GCC PIR Diff

BT 3958 9040 0.17 65.60 65.43

CG 1052 1787 0.01 1.20 1.19

EP 342 317 0.01 0.36 0.35

FT 1980 1993 0.01 1.83 1.82

LU 3686 5926 10.52 26.83 16.31

MG 3416 2479 3.91 9.44 5.53

SP 5388 4796 13.52 108.16 94.64

TABLE II. PIR OVERHEAD

Figure 5. Sample Code Annotation

The gather and scatter idioms are identified in the
application source code using PIR. The application is also
analyzed using pmacInst. PmacInst rewrites application
binaries and inserts instrumentation code for tracing. The
traces contain execution frequency information that, when
combined with idiom locations, can be used to pinpoint the
most advantageous areas of application code to port to
accelerator hardware.

Figure 5 depicts the use of PIR and pmacInst for analysis.
Using the PIR tool, we automatically identify the
occurrences of gather/scatter idioms. Table 3 shows a sample
output from PIR, which identifies the file name, line number,
function, and type of idiom identified. Using this we
developed post-processing scripts to annotate the source
code with the idiom information; an example code snippet is
shown in Figure 6.

Next, in order to estimate the frequency of execution of
each basic block we use the pmacInst tool to instrument
every basic block of each application. Additionally, this tool
was also configured to output the line number, function
name, and file name of each basic block. Post-processing
scripts then process the output of pmacInst and PIR. They
generate a report about the basic block execution frequency
of every function that contains idioms. Table 4 shows a
sample output produced by this analysis.

The instrumented binaries were run on the NAVY
system, Babbage [14] that has 3072 IBM POWER5+
processors. FLASH was run on 128 CPUs using the white
dwarf input and HMMER was run on 4 CPUs. Execution of
the binaries produces trace files that are then analyzed by
post processing scripts to produce reports similar to the one
shown in Table 4.

The search space for FLASH was reduced from over 125
thousand lines of code to 53. PIR identified a total of 354
possible instances of gather within FLASH; a 99% reduction
in the possible search space for the user. Incorporating the
data from pmacInst identified 53 instances that took place in
code representing at least 1% of the total application basic
block frequency. Of those 53 instances 36 were false
positives leaving 17 statements to be examined.

The search results for scatter are similar to those for
gather. PIR identified 221 instances of scatter, which
pmacInst narrowed to 26 significant instances with 13 false
positives.

In total the use of PIR and pmacInst reduced the search
space for gather and scatter in FLASH down to 79 lines of
code to be manually analyzed.

The Gather idioms located in flash were found in basic
blocks comprising 8.6% of the basic block frequency and the
scatter comprised 16.2%. Depending on the speed up
possible by porting these statements to an FPGA may
increase performance, however, the results for HMMER
argue that porting is not advantageous.

No instances of the gather idiom were found in HMMER
and only 4 instances of scatter were identified. Those 4
instances took place in code that comprised less than 1% of
the basic block frequency. The use of PIR in this case is a
major win. If gather and scatter are the only idioms that will
benefit from a specific device, it is not worth pursuing for
this application. This decision is reached with minimal effort
on the developer’s part.

Get()
{
for(i=0; i<n; i++)
 A[i]=B[C[i]];/*PIR ft.c:Get:440
GATHER*/

File Name Line # Function Idiom

f1.c 2000 Add scatter

f2.c 4400 Get gather

TABLE III. SAMPLE PIR OUTPUT

File Name Line # Function Number of
Idioms

Basic Block
Frequency

%
f1.c 2000 Add 14 4.25%

f2.c 4400 Get 25 1.23%

TABLE IV. BASIC BLOCK FREQUENCY OUTPUT

Figure 5. PIR and pmacInst Workflow

VI. RELATED WORK
Idiom recognition has been implemented in several other

tools, but PIR’s focus on memory access patterns in HPC
applications distinguishes it from past work.

Rose [16] is an open source compiler framework
designed to generate source to source translators and
analyzers. Compass [17] uses the Rose infrastructure to
define simple patterns to verify the correctness of C, C++,
and FORTRAN programs. The patterns used by compass do
not refer to memory access patterns, rather coding rules. The
goal is not to find optimization opportunities, but to certify
code as secure.

Kowahati, et al. [18] developed an idiom recognizer built
on the Java Just-In-Time compiler. They define idioms that
can be potentially accelerated by special hardware-assist
instructions. Their research improved previous work done
for Java Compilers by recognizing patterns that are not exact
matches with the specified idiom patterns. Using their
approach, they were able to detect 75% more idioms than
previous work in Java Compatibility Kit (JCK) API [19].
Idioms in the context of this project refer to topological
attributes of the control flow graph of a program rather than
access patterns.

Pinter et al. [20] developed an idiom recognizer that can
identify parallelization opportunities within sequential C,
C++, and FORTRAN programs.

Pottenger et al. [21] developed an idiom recognizer that
worked in the Polaris compiler. Their idiom recognizer
searches for opportunities to eliminate induction variables
and find instances to parallelize reductions in FORTRAN
programs.

Hiroyuki [22] developed an idiom recognizer that
searches IR representation of FORTRAN programs to detect
large arrays in numerical applications. Using their recognizer
they show opportunities to improve the efficiency of BLAS
routines.

VII. CONCLUSIONS AND FUTURE WORK
Recent innovations in HPC systems (i.e. hybrid-multi-

core) have aggravated the challenge of optimizing memory
intensive applications. The complexity of such systems
makes the task of porting applications to the acceleration
hardware of these hybrid-multi-core systems extremely time
consuming. PMaC’s Idiom Recognizer greatly reduces the
manual effort required to pinpoint idioms within a large-
scale code that are amenable to running on these hybrid
cores.

We showed that the search space of large-scale HPC
applications was reduced by over 99% for locating gather
and scatter idioms. When used in conjunction with pmacInst
the reduction is even more impressive; for FLASH the
reduction is from ~130,000 lines of code to less than 100.
This type of reduction can result in significant time savings
for developers.

A potentially greater savings could be reached with the
addition of a confidence metric to each idiom match. This
will assist in evaluation false positives and allow the
programmer to ignore tenuous matches. Work is also in

progress for a tool that will automatically generate the idiom
definitions from sample code. Not all developers are familiar
with compiler intermediate representations, and automating
this step will increase usability significantly. These
additions, along with including a larger set of idioms
definitions are planned for the future.

ACKNOWLEDGMENT
This work was supported by the DoD and used elements

at the Extreme Scale Systems Center, located at ORNL and
funded by the DoD. The software used in this work was in
part developed by the DOE-supported ASC / Alliance Center
for Astrophysical Thermonuclear Flashes at the University of
Chicago. This research used resources of the National Center
for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

REFERENCES

[1] “Roadrunner.” http://www.lanl.gov/roadrunner/
[2] “Convey,” http://www.conveycomputer.com/
[3] Wulf, A.McKee S. Hitting the MemoryWall: Implications of

the Obvious.. Computer Architecture News, 1995.
[4] Aho, A., Sethi R., Ullman J., Compilers Principles,

Techniques and Tools. Addison-Wesley Publishing Company,
1986.

[5] “GCC Internals,” http://gcc.gnu.org/onlinedocs/gccint/
[6] “GNU C Compiler Internals/GNU C Compiler Architecture -

Wikibooks, collection of open-content textbooks,”
http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GN
U_C_Compiler_Architecture

[7] Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S.,
Carter, R.L., Dagum, L., Fatoohi, R.A., Frederickson, P.O.,
Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K. 1991.The Nas
Parallel Benchmarks. International Journal of High
Performance Computing Applications, 1991

[8] Tikir, M., Laurenzano, M., Carrington, L., and Snavely, A.
The PMaC Binary Instrumentation Library for PowerPC. In
Workshop on Bi-nary Instrumentation and Applications,
2006.

[9] “ASC Center for Astrophysical Thermonuclear Flashes,”
http://flash.uchicago.edu/website/home/

[10] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G.,
“Biological sequence analysis: Probabilistic Models of
Proteins and Nucleic Acids,” In Cambridge University Press,
1998.

[11] “mpiHmmer,” http://www.mpihmmer.org/
[12] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,

Krüger, J., Lefohn, A. E., and Purcell, T. J. A Survey of
general purpose compuation on graphics hardware. In
Computer Graphics Forum, 26.

[13] He, B., Govindaraju, N., Luo, Q., and Smith B. Efficient
Gather and Scatter Operations on Graphics Processors. In the
proceedings of SC07, 2007.

[14] “ Babbage,” http://www.navo.hpc.mil/babbage_about.html
[15] Schordan, M. and Quinlan, D. A Source-To-Source

Architecture for User-Defined Optimizations. In Joint

Modular Languages Conference held in conjunction with
EuroPar'03, August 2003

[16] “ROSE compiler project,” http://www.rosecompiler.org/
[17] Quinlan, D.J., et al.: Compass user manual (2008),

http://www.rosecompiler.org/compass.pdf
[18] Kawahito, M., Komatsu, H., Moriyama, T., Inoue, H., and

Nakatani, T. 2006. A new idiom recognition framework for
exploiting hardware-assist instructions. In Proceedings of the
12th international Conference on Architectural Support For
Programming Languages and Operating Systems (ASPLOS-
XII), 2006.

[19] Java Compatibility Kit, https://jck.dev.java.net/

[20] Pinter, S. S. and Pinter, R. Y. 1994. Program optimization and
parallelization using idioms. In ACM Trans. Program. Lang.
Syst, May. 1994.

[21] Pottenger, B. and Eigenmann, R. 1995. Idiom recognition in
the Polaris parallelizing compiler. In Proceedings of the 9th
international Conference on Supercomputing (ICS’95), July
1995.

[22] Hiroyuki, S. 2001. Array form representation of idiom
recognition system for numerical programs. In Proceedings of
the 2001 Conference on Apl: An Arrays Odyssey (APL’01),
2001.

