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Abstract—The speed of the memory subsystem often constrains 
the performance of large-scale parallel applications.  Experts 
tune such applications to use hierarchical memory subsystems 
efficiently. Hardware accelerators, such as GPUs, can 
potentially improve memory performance beyond the 
capabilities of traditional hierarchical systems. However, the 
addition of such specialized hardware complicates code porting 
and tuning. During porting and tuning expert application 
engineers manually browse source code and identify memory 
access patterns that are candidates for optimization and 
tuning. HPC applications typically contain thousands to 
hundreds of thousands of lines of code, creating a labor-
intensive challenge for the expert. PIR, PMaC’s Static Idiom 
Recognizer, automates the pattern recognition process. 

             PIR recognizes specified patterns and tags the source 
code where they appear using static analysis. This paper 
describes the PIR implementation and defines a subset of 
idioms commonly found in HPC applications. We examine the 
effectiveness of the tool, demonstrating 95% identification 
accuracy and present the results of using PIR on two HPC 
applications. 
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I.  INTRODUCTION 
Performance tuning of High Performance Computing 

(HPC) applications often centers on memory performance. 
Expert HPC application engineers manipulate parallel 
application code to best utilize complex hierarchical memory 
subsystems. Even with expert tuning, HPC application 
performance is often limited by memory performance. 
Recent fundamental changes to HPC resource architectures 
will potentially relieve this performance bottleneck, but at 
the same time complicate application porting and tuning. 

In an effort to improve memory performance many new 
HPC resources include multi-core chips and specialized 
acceleration hardware such as Graphics Processing Units 
(GPUs) and Field Programmable Gate Arrays (FPGAs). Not 
all application code is suitable for execution on accelerator 
hardware; effective utilization of this hardware requires time 
consuming analysis of existing application code to determine 
sections whose performance will benefit from porting. 

Early examples of these new architectures include 
Roadrunner at Los Alamos National Laboratory, which is 
composed of a dual core AMD Opteron processor paired 
with an IBM cell accelerator [1]. Roadrunner spent over a 

year in the number one spot on the Top500 list. Another 
example, the Convey HC-1 [2] employs hybrid-core 
computing, a multi-core processor paired with FPGAs. This 
machine has significant potential for large performance 
gains, according to performance models. However, in both of 
these cases achieving this performance requires that specific 
sections of code be chosen and ported for execution on the 
accelerator hardware. 

The programmer must locate and customize application 
code to take advantage of the specialized hardware. She may 
replace common operations with highly optimized 
architecture-aware libraries such as BLAS or use special 
purpose hardware. Regardless of the optimization choice, a 
programmer must manually browse source code to identify 
opportunities. 

This identification process is extremely labor-intensive. 
HPC applications consist of thousands to hundreds of 
thousands of lines of code that have been written to 
maximize performance on existing memory hierarchies; 
readability may be an afterthought. 

Memory performance has long been a major obstacle to 
performance for HPC applications. In fact, the memory wall 
[3] has driven recent innovations such as hybrid-core 
computing. These innovations attempt to provide memory 
performance where traditional cache hierarchies cannot by 
allowing more flexibility and explicit control of data 
management and movement. Hence, memory access patterns 
are used to identify sections of code for optimization. 

PIR (PMaC’s Idiom Recognizer) is a static analysis tool 
that automates the process of identifying candidate sections 
of code. PIR automatically recognizes user-specified 
memory access patterns, called idioms, within application 
source code. This greatly reduces the amount of code that an 
expert must analyze manually. 

PIR’s design provides the flexibility to identify 
optimization opportunities for many different hardware 
configurations. The user provides descriptions of the idioms 
to be identified. As a starting point, PIR provides a set of 
commonly useful idioms and access to an Idiom definition 
syntax that allows for user customization of the idioms. 

This paper presents the implementation of PIR, 
experimental evidence of its effectiveness and an example 
application tuning workflow using real HPC applications. 
We show that the idiom recognition is accurate within 95%. 
Furthermore, we demonstrate that PIR can be used to quickly 
identify areas of code with optimization potential. 



The rest of this paper is organized as follows: Section II 
describes the implementation of the PIR tool and Section III 
describes the definition of a subset of commonly occurring 
idioms in HPC. Section IV describes our experiments to 
evaluate effectiveness of PIR and section V outlines a 
possible usage scenario. Section VI provides a summary of 
related work and Section VII describes conclusions and 
future work. 

II. PIR APPROACH 
PIR is a general framework that identifies common 

memory access patterns, idioms, within application code. 
The idioms of interest may vary between different 
architectures. For instance, one device may be specially 
equipped to handle random memory accesses while another 
is focused on speeding up consecutive accesses to large areas 
of memory. PIR, when supplied the appropriate idiom 
definitions, is capable of locating idioms for both. 

PIR identifies patterns in application code by examining 
the compiler intermediate representation. An intermediate 
representation (IR) [4] is a data structure used internally by 
compilers after the code is parsed. An IR is a tree that 
contains control flow and data dependency information. This 
information is used by the compiler to optimize the source 
code. The optimizations are executed as transformations on 
the IR. Ultimately, the transformed IR is translated into 
machine specific assembly code. By focusing on the IR, PIR 
identifies patterns and structures suitable for porting before 
they are altered for machine-specific ISA mapping. 

PIR is implemented within the GNU compiler collection 
(GCC) [7] taking advantage of its language and machine 
independent design. GCC is implemented in a modular 
fashion allowing the middle-end (the main body of GCC 
source code) of the compiler to be used for many languages. 
Figure 1 shows a high-level diagram of the GCC 
architecture.  The front end contains language specific 
parsing code, the middle end is language and architecture 
independent and the back end contains architecture specific 
code. PIR is implemented as an optimization pass in the 
middle end of the compiler. 

Although the operation of PIR is through a compiler, the 
result is not an executable, but a list of potential idiom 
locations. The implementation of PIR within GCC allows it 
to search for idioms within both FORTRAN and C without 
separate specialized code. 

A series of optimization passes are performed by GCC 
after the GIMPLE form has been generated and transformed 
into Single Static Assignment (SSA) form. PIR is inserted 
directly after the loop optimization pass has been initialized. 
This allows access to all of the information necessary for 
loop level optimizations, but simplifies idiom recognition 
because the optimizations have not yet been executed. 

 

A. GCC IR Illustration 
The GCC IR is best explained via example; refer to the 

code snippet shown in Figure 2. This is a simple example of 
the stream idiom. More specifically it is a stream reduction, 
because the values are accumulated to a single variable 

rather than assigned to another array. This code is used 
throughout this section to illustrate the PIR approach. 

Understanding an idiom definition requires knowing 
what the IR for that idiom looks like. Figure 3 shows the 
GCC IR for this code snippet (the information for this 
diagram is printed by PIR). A node in the tree represents 
each operation and variable in the statement. For operations 
the child relationship indicates an operand. For variables, the 
child relationship indicates a step in the use-def chain. 

The GCC IR uses a specific vocabulary, GIMPLE, to 
describe each node in the tree.  PIR specifically examines 
portions of the tree that have a statement at the root (node 1). 
A statement implies that the result of an expression is being 
stored to a register or to memory. Other node names used in 
GIMPLE that are of interest include the following: ssa name 
(variable), binary_op, array, and const. 

 

Figure 1.  GCC Architecture Overview [5] 

                   For i= 0,…,n 
                        sum = sum + A[i]; 

Figure 2.  Example instance of the stream idiom 

 

 
Figure 3.  Example of the GCC IR 



A statement node has two children, the first is the 
description of the left hand side, which can be as simple as 
an ssa name or it can be an expression describing a memory 
address, in this case it is the former. The second child is the 
right hand side. Node 2 represents the variable that will 
contain the result of the binary operation represented by node 
3. 

The right hand side of the statement describes the 
addition as well as the array access and computation of the 
loop induction variable. The direct children of the binary 
operation node (node 3) describe the operands. Node 6 is a 
declaration that describes the starting point of the array. 
Node 7 describes the index. 

Nodes 7-12 represent the increment of the loop induction 
variable i, i.e., i= i+1.  Node 7 is variable for the loop 
induction variable i. It is attached to a phi node because it 
has data dependencies going to two places. Node 9, const, is 
the original assignment of i to 0 at the beginning of the loop.  
The first child of the phi node (node 8) is the ssa name node 
that represents i. The first child of the binary operation node 
(node 11) is the same ssa name node. 

Every statement in the application code has a tree similar 
to this created in the IR. They are organized into groups 
called basic blocks. Each basic block contains a series of 
statements that PIR examines. 

B. PIR Implementation 
PIR recursively traverses the IR for each statement 

searching for patterns. Each node of the GCC IR is well 
defined and has a small number of children. The GCC 
infrastructure provides the ability to walk the tree. 

An important note about the implementation is that it 
looks for the existence of a pattern, not the absence of one. 
This means that the pattern needs to be carefully designed. 
For instance, looking for an ssa name on the left hand side of 
our working example, would match almost every statement 
in the application. By specifying that it must be found at 
level 0 the desired affect is achieved. 

A few of the nodes require special handling, specifically 
ssa name. This node represents a variable and does not have 
any children. We follow the use-def chains in order to get to 
the statement that resulted in that variable. During this 
process it is important to be sure that we do not loop back on 
the same variable, as this would cause an infinite loop. 

Labeling variables is necessary when recognizing a 
reduction pattern such as the one in the working example 
(Figure 3). It is necessary to know that the variable node 
represented on the left hand side is the same as the variable 
node that is the first operand to the binary operation on the 
right hand side. 

It is possible to check for a dependence on the loop 
induction variable of a loop. The existing loop optimization 
code of GCC contains the dependency information. PIR 
accesses the internal data structure and internally names the 
variables in order to perform dependency checks and 
matches between the left and right hand side. This is 
necessary for identifying idioms such as transpose, described 
in the next section. 

C. Idiom Definition Syntax 
PIR allows users to create custom idioms using the idiom 

definition syntax. An idiom definition describes a pattern 
that, if present, indicates the presence of a specific idiom. 
Not every node in the tree has to be taken as part of the 
idiom signature. For the code snippet shown in Figure 3, 
only the grey nodes are taken as part of the signature. The 
definition must be specific enough to avoid false positives, 
and at the same time, avoid being overly complicated. 

The idiom patterns are identified in a text file and read by 
PIR at runtime. This enables the patterns to be changed 
without requiring a recompile of the PIR source code. 

Figure 4 shows one possible idiom definition for the 
running example, a stream reduction. The first entry specifies 
the label that each identified statement should be labeled 
with. The next group of statements describes the right hand 
side of a qualifying statement. The first field in the group 
states that there are four nodes specified on the right hand 
side.  

GIMPLE specifies a class and a code for each node in the 
tree. The class is a grouping mechanism and the code is a 
more specific indicator. For example, the addition operator 
belongs to the class tcc_binary and has the code plus_expr. 
The subtraction operator also belongs to the tcc_binary class, 
but has the code minus_expr. 

 

 
1:  label=STREAM_RED2 
 2:  rhs_count=4 
 3:  rhs_class[0]=tcc_binary 
 4:  rhs_code[0]=-1 
 5:  rhs_nesting[0]=-1 
 6:  rhs_iv[0]=-1 
 7:  rhs_class[1]=tcc_exceptional 
 8:  rhs_code[1]=SSA_NAME,0 
 9:  rhs_nesting[1]=0 
10:  rhs_iv[1]=-1 
11:  rhs_class[2]=tcc_reference 
12:  rhs_code[2]=ARRAY_REF 
13:  rhs_nesting[2]=0 
14:  rhs_iv[2]=-1 
15:  rhs_class[3]=tcc_binary 
15:  rhs_code[3]=-1 
17:  rhs_nesting[3]=-1 
18:  rhs_iv[3]=0 
19:  lhs_count=1 
20:  lhs_class[0]=tcc_exceptional 
21:  lhs_code[0]=SSA_NAME,0 
22:  lhs_nesting[0]=-1 
23:  lhs_iv[0]=-1 
24:  idiom_end 
 

Figure 4.   One possible idiom definition for a stream reduction 



Line 3 in Figure 4 indicates that a binary operation must 
take place on the right hand side of the candidate statement. 
The next line indicates that any binary operation is 
acceptable. Line 5 indicates the nesting requirement. The 
binary operation is the top most operation in this statement 
and so there is no nesting requirement here, indicated with a 
-1. 

A loop induction variable is commonly referred to as the 
loop index. In the case of our example this is i. Line 6 
indicates that there is no requirement that this binary 
operation depend directly on a loop induction variable. 

The same pattern is continued for each of the nodes in the 
definition. A few interesting attributes are worth pointing 
out. On Line 8 the code (SSA_NAME) is followed by a 
comma and a 0. This indicates that the variable should be 
labeled. The labels are numeric and always start at 0. Line 21 
uses the same pattern and the same label. This indicates that 
the variable on the left hand side and the right had side of the 
statement must match. Line 9 indicates that the ssa name 
node must be nested (be an operand of) the binary operation. 
In this case the 0 corresponds to the index used in the labels 
describing the binary node. 

III. COMMON IDIOMS 
PIR includes seven idiom definitions we have found to 

common in HPC applications. The idioms are described in 
the following section. All of the code samples are assumed to 
be part of a loop, i (and j) are loop induction variables. 

 
• Stream: A[i] = A[i] + B[i] 

The stream idiom includes accesses that step through 
arrays. In the above example two arrays are being stepped 
through simultaneously, but the stream idiom is not limited 
to this case. Stepping through any array in a loop where the 
index is determined by a loop induction variable is 
considered a stream. 

 
• Transpose: A[i][j] = B[j][i] 

The transpose idiom involves a matrix transpose, 
essentially reordering an array using the loop induction 
variable. 

 
• Gather: A[i] = B[C[i]] 

The gather idiom includes gathering data from a 
potentially random access area in memory to a sequential 
array. In this example the random accesses are created using 
an index array, C. 

 
• Scatter: A[B[i]] = C[i] 

The scatter idiom is essentially the opposite of gather. 
Values are read from a sequential area of memory and saved 
to an area accessed in a potentially random manner. 

 
• Reduction: s = s + A[i] 

A reduction can be formed from a stream, as in the 
working example, or a gather. It implies that the value 
returned from the read portion of the idiom is assigned to a 
temporary variable. 

 

• Stencil: A[i] = A[i-1] + A[i+1] 
A stencil idiom involves accessing an array in a 

sequential manner, including a dependency between 
iterations of the loop. 

IV. EFFECTIVENESS AND PERFORMANCE 
PIR facilitates application code optimization by listing 

specific areas of the code that fit a predefined pattern. The 
listing is provided in order to save the developer time when 
searching for optimization opportunities. Its effectiveness in 
this process depends on three abilities: finding all of the 
instances of a pattern (coverage), finding only the 
occurrences of the pattern (accuracy) and finding the patterns 
in a reasonable amount of time (performance). 

Coverage and accuracy are evaluated by comparing the 
PIR generated idiom listing with a manually created listing. 
An expert read each line of code in a set of HPC benchmarks 
and generated a list of idioms for a set of patterns. False 
positives and misses were recorded during a comparison of 
the expert created and PIR generated listings. 

The NAS Parallel Benchmarks (NPBs) [7] were used as 
the benchmarks. The NPBs represent some of the 
calculations that dominate execution time in HPC 
applications.  A subset of the NPBs was used: BT, CG, EP, 
FT, MG, LU, and SP. 

The evaluation is performed for the stream, gather and 
scatter idioms. These idioms provide a good evaluation of 
the tool because they are common in the NPBs, they require 
loop induction variable analysis, and they highlight the 
differences between FORTRAN and C arrays that 
complicate Idiom definition creation. 

The included Idiom definitions are designed to find 
idioms within data that is statically allocated on the stack. 
This is an important distinction, because GCC represents 
data from the stack and the heap differently. It is possible to 
define Idiom definitions to recognize idioms on heap data, 
but the NPBs almost exclusively use the stack, therefore, 
only the stack data is included in this evaluation. 

Table 1 summarizes the results of these experiments. The 
benchmarks are named in the first columns followed by their 
respective basic block and source code line counts. For each 
of the three idioms, stream, gather and scatter the number of 
lines marked as an idiom is shown in the column labeled 
PIR. This is followed by the reduction in the size of the 
search space resulting in using PIR as well as the number of 
false positives (FP) and the number of idioms missed by PIR 
(labeled miss). 

Reducing the search space is a primary goal and PIR and 
the results show that this is done well. On average the search 
space is reduced by 95%. In some cases the entire 
benchmark is eliminated. The lowest reductions take place in 
stream. This is expected because stream is such a common 
pattern. The average reduction over gather and scatter is 
nearly 99%. 



The data shows that coverage, the most important metric, 
is very good; PIR consistently finds over 95% of all the 
desired idioms. 

The accuracy, expressed as false positives, is high for the 
stream idiom. The gather and scatter idioms highlight a 
specific problem with this approach for FORTRAN codes. 
Distinguishing an N-dimensional array access (N > 2) in 
FORTRAN from a gather is challenging. The compiler IR 
for each of these types of accesses is similar. The gather false 
positive rate is high because the gather signature also 
matches all N-dimensional array access. 

 
It is possible to prevent the N-dimensional array false 

positives by narrowing the definition of gather. Doing this 
would cause some legitimate gather idioms to be missed as 
well, but depending on the user’s goals, it is a potential 
solution. 

Table 2 presents the time overhead for running PIR and 
looking for stream, gather and scatter. The overhead is on the 
scale of minutes rather than the hours or days it would take 
to achieve this manually. Compared to the time saved, the 
overhead is insignificant. The largest penalty, which took 
place compiling over 9000 lines of code, is approximately 
one minute. 

PIR is an effective tool for narrowing the search space 
for optimization opportunities. Even with the high false 
positive rate for gather and scatter, the number of lines that 
need to be inspected is reduced by almost 99% in both of 
those cases. 

V. USE CASE 
PIR alone reduced the number of lines to be examined 

manually by 99% for gather and scatter. Used in conjunction 
with a tracing tool such as pmacInst [8] the optimization 
search space is reduced even further. This search space 
reduction is achieved by ranking the idioms found by PIR 
according to their execution frequencies, supplied by 
pmacInst. This process quickly identifies areas for 
optimization or eliminates the possibility that a specific 
application will be improved by porting it to use accelerator 
hardware. 

We demonstrate this process and present the results of 
searching for gather and scatter idioms on two full scale 
HPC applications, FLASH and HMMER. 

* FLASH: The FLASH [9] application is developed by 
the DOE-supported ASC / Alliance Center for Astrophysical 
Thermonuclear Flashes at the University of Chicago. This 
application is written using C and Fortran90 and has 
approximately 130,000 lines of code. We analyze FLASH 
version 3.1 in this paper. 

* HMMER: The HMMER [10] application generates 
profile hidden markov models which are then used for 
searching sequence databases for homologs of protein 
sequences, and for making protein sequence alignments. This 
application is written in C language and consists of 
approximately 27,000 lines of code. We analyze version 
2.3.2 MPI implementation [11] in this paper. 

 
Gather and scatter are two fundamental operations that 

are popular in many parallel algorithms such as sorting and 
hashing [12]. These operations can potentially be optimized 
by special purpose hardware such as GPUs [13] or custom 
accelerators such as FPGAs. 

Benchmark/Idiom    

Count Stream Gather Scatter 

  BB Line PIR % Red. FP Miss PIR % Red. FP Miss PIR % Red. FP Miss 

BT 3958 9040 1440 84.1% 28 13 0 100.0% 0 0 398 95.6% 384 0 

CG 1052 1787 108 94.0% 0 5 4 99.8% 0 1 6 99.7% 0 0 

EP 342 317 0 100.0% 0 0 0 100.0% 0 0 0 100.0% 0 0 

FT 1980 1993 58 97.1% 1 1 0 100.0% 0 0 0 100.0% 0 0 

LU 3686 5926 1082 81.7% 2 0 0 100.0% 0 0 0 100.0% 0 0 

MG 3416 2479 307 87.6% 4 2 15 99.4% 15 0 0 100.0% 0 0 

SP 5388 4796 1814 62.2% 65 37 339 92.9% 309 0 317 93.4% 312 0 
 

TABLE I.  PIR ACCURACY AND COVERAGE (FP=FALSE POSITIVE,%RED.=SEARCH SPACE REDUCTION) 

Benchmark/App.       

Count Time (seconds) 
  BB Line GCC PIR Diff 

BT 3958 9040 0.17 65.60 65.43 

CG 1052 1787 0.01 1.20 1.19 

EP 342 317 0.01 0.36 0.35 

FT 1980 1993 0.01 1.83 1.82 

LU 3686 5926  10.52  26.83 16.31 

MG 3416 2479  3.91  9.44 5.53 

SP 5388 4796  13.52  108.16 94.64 
 

TABLE II.  PIR OVERHEAD 



 
Figure 5. Sample Code Annotation 

The gather and scatter idioms are identified in the 
application source code using PIR. The application is also 
analyzed using pmacInst. PmacInst rewrites application 
binaries and inserts instrumentation code for tracing. The 
traces contain execution frequency information that, when 
combined with idiom locations, can be used to pinpoint the 
most advantageous areas of application code to port to 
accelerator hardware. 

Figure 5 depicts the use of PIR and pmacInst for analysis. 
Using the PIR tool, we automatically identify the 
occurrences of gather/scatter idioms. Table 3 shows a sample 
output from PIR, which identifies the file name, line number, 
function, and type of idiom identified. Using this we 
developed post-processing scripts to annotate the source 
code with the idiom information; an example code snippet is 
shown in Figure 6. 

Next, in order to estimate the frequency of execution of 
each basic block we use the pmacInst tool to instrument 
every basic block of each application. Additionally, this tool 
was also configured to output the line number, function 
name, and file name of each basic block. Post-processing 
scripts then process the output of pmacInst and PIR. They 
generate a report about the basic block execution frequency 
of every function that contains idioms. Table 4 shows a 
sample output produced by this analysis. 

The instrumented binaries were run on the NAVY 
system, Babbage [14] that has 3072 IBM POWER5+ 
processors. FLASH was run on 128 CPUs using the white 
dwarf input and HMMER was run on 4 CPUs. Execution of 
the binaries produces trace files that are then analyzed by 
post processing scripts to produce reports similar to the one 
shown in Table 4.  

The search space for FLASH was reduced from over 125 
thousand lines of code to 53. PIR identified a total of 354 
possible instances of gather within FLASH; a 99% reduction 
in the possible search space for the user. Incorporating the 
data from pmacInst identified 53 instances that took place in 
code representing at least 1% of the total application basic 
block frequency. Of those 53 instances 36 were false 
positives leaving 17 statements to be examined. 

The search results for scatter are similar to those for 
gather. PIR identified 221 instances of scatter, which 
pmacInst narrowed to 26 significant instances with 13 false 
positives. 

In total the use of PIR and pmacInst reduced the search 
space for gather and scatter in FLASH down to 79 lines of 
code to be manually analyzed. 

The Gather idioms located in flash were found in basic 
blocks comprising 8.6% of the basic block frequency and the 
scatter comprised 16.2%. Depending on the speed up 
possible by porting these statements to an FPGA may 
increase performance, however, the results for HMMER 
argue that porting is not advantageous. 

No instances of the gather idiom were found in HMMER 
and only 4 instances of scatter were identified. Those 4 
instances took place in code that comprised less than 1% of 
the basic block frequency. The use of PIR in this case is a 
major win. If gather and scatter are the only idioms that will 
benefit from a specific device, it is not worth pursuing for 
this application. This decision is reached with minimal effort 
on the developer’s part. 

Get() 
{ 
for(i=0; i<n; i++) 
  A[i]=B[C[i]];/*PIR ft.c:Get:440 
GATHER*/ 

 

 

File Name Line # Function  Idiom 

f1.c 2000 Add scatter 

f2.c 4400 Get gather 

 

TABLE III.   SAMPLE PIR OUTPUT 

File Name Line # Function  Number of 
Idioms 

Basic Block 
Frequency 

% 
f1.c 2000 Add 14 4.25% 

f2.c 4400 Get 25 1.23% 

 

TABLE IV.  BASIC BLOCK FREQUENCY OUTPUT 

Figure 5.  PIR and pmacInst Workflow 



VI. RELATED WORK 
Idiom recognition has been implemented in several other 

tools, but PIR’s focus on memory access patterns in HPC 
applications distinguishes it from past work. 

Rose [16] is an open source compiler framework 
designed to generate source to source translators and 
analyzers. Compass [17] uses the Rose infrastructure to 
define simple patterns to verify the correctness of C, C++, 
and FORTRAN programs. The patterns used by compass do 
not refer to memory access patterns, rather coding rules. The 
goal is not to find optimization opportunities, but to certify 
code as secure. 

Kowahati, et al. [18] developed an idiom recognizer built 
on the Java Just-In-Time compiler. They define idioms that 
can be potentially accelerated by special hardware-assist 
instructions. Their research improved previous work done 
for Java Compilers by recognizing patterns that are not exact 
matches with the specified idiom patterns. Using their 
approach, they were able to detect 75% more idioms than 
previous work in Java Compatibility Kit (JCK) API [19]. 
Idioms in the context of this project refer to topological 
attributes of the control flow graph of a program rather than 
access patterns. 

Pinter et al. [20] developed an idiom recognizer that can 
identify parallelization opportunities within sequential C, 
C++, and FORTRAN programs. 

Pottenger et al. [21] developed an idiom recognizer that 
worked in the Polaris compiler. Their idiom recognizer 
searches for opportunities to eliminate induction variables 
and find instances to parallelize reductions in FORTRAN 
programs. 

Hiroyuki [22] developed an idiom recognizer that 
searches IR representation of FORTRAN programs to detect 
large arrays in numerical applications. Using their recognizer 
they show opportunities to improve the efficiency of BLAS 
routines. 

VII. CONCLUSIONS AND FUTURE WORK 
Recent innovations in HPC systems (i.e. hybrid-multi-

core) have aggravated the challenge of optimizing memory 
intensive applications. The complexity of such systems 
makes the task of porting applications to the acceleration 
hardware of these hybrid-multi-core systems extremely time 
consuming. PMaC’s Idiom Recognizer greatly reduces the 
manual effort required to pinpoint idioms within a large-
scale code that are amenable to running on these hybrid 
cores. 

We showed that the search space of large-scale HPC 
applications was reduced by over 99% for locating gather 
and scatter idioms. When used in conjunction with pmacInst 
the reduction is even more impressive; for FLASH the 
reduction is from ~130,000 lines of code to less than 100. 
This type of reduction can result in significant time savings 
for developers. 

A potentially greater savings could be reached with the 
addition of a confidence metric to each idiom match. This 
will assist in evaluation false positives and allow the 
programmer to ignore tenuous matches. Work is also in 

progress for a tool that will automatically generate the idiom 
definitions from sample code. Not all developers are familiar 
with compiler intermediate representations, and automating 
this step will increase usability significantly. These 
additions, along with including a larger set of idioms 
definitions are planned for the future. 
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