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Abstract. Common nouns and noun phrases have usually been analyzed semantically as 
predicates. In quantified sentences, these predicates take variables as arguments. This paper 
develops and defends an analysis in which common nouns and noun phrases themselves are 
treated as variables, rather than as predicates taking variables as arguments. Several apparent 
challenges for this view will be addressed, including the modal non-rigidity of common 
nouns. Two major advantages to treating common nouns as variables will be presented: Such 
an analysis predicts that all nominal quantification is conservative, rather than requiring 
conservativity to be stipulated as a constraint on determiner denotations; and it makes 
possible some improvements to the analysis of the temperature paradox, allowing for 
quantificational examples without adding a spurious layer of modal variability.  
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1. Introduction 
 
Common nouns are frequently analyzed semantically as predicates. Beginning logic students 
are trained to represent sentences like (1)a. using formulas like (1)b., in which the 1-place 
predicate M seems to correspond directly to the common noun man, just as the 1-place 
predicate S corresponds to the verb smiles: 
 
(1) a. Every man smiles. 

b. ∀x[M(x) → S(x)] 
 

M and S here are syntactically and semantically similar in every way: Both combine with an 
argument to form a formula; both are the sort of thing which can be truthfully or falsely 
predicated of an individual; and therefore both are naturally analyzed as denoting the set of 
individuals of which they can be truthfully predicated (or almost equivalently, the 
characteristic function of this set). 
 
Montague (1973) treated common nouns as belonging to logical type 〈〈s, e〉, t〉 — that is, as 
1-place predicates of “individual concepts.” Following Bennett (1975), most subsequent 
literature in the Montague-derived tradition (including major textbooks such as Dowty, et al. 
(1981), Gamut (1991), Heim and Kratzer (1998) and many others) has analyzed them as 
belonging to type 〈e, t〉 — as 1-place predicates of individuals. In both approaches, common 
nouns are treated identically to intransitive verbs. Exceptions are sometimes made for 
relational nouns such as mother, brother, top, bottom, etc., which are then treated as being of 

                                                 
1 This paper was presented to the Harvard Linguistics Circle in addition to Sinn und 
Bedeutung. Thanks to the audiences at both talks, and especially to Nicholas Asher, Gennaro 
Chierchia and Uli Sauerland for comments and suggestions. 



type 〈e, 〈e, t〉〉; but this still gives such nouns the status of predicates — just 2-place 
predicates rather than 1-place. 
 
Proper names, in contrast, are most often treated as being of type e. That is, each proper name 
is analyzed in such a way that it denotes some particular individual, rather than “holding 
true” of all the individuals in some class. This results in a sharp division of semantic function 
with proper names on one side but verbs and common nouns together on the other. This 
division is preserved even in most analyses which do not treat proper names as individual-
denoting — for example by assimilating proper names to quantifiers, as in Russell’s (1910) 
theory of proper names as “disguised definite descriptions” or in more modern treatments of 
names and quantifiers as second order predicates (whether of type 〈〈e, t〉, t〉 or Montague’s 
more baroque 〈〈s, 〈〈s, e〉, t〉〉, t〉). 
  
Occasionally, proper names have been analyzed as predicates (Quine (1960), Fara (2015)), 
but then, of course, common nouns are treated as predicates too: verbs, common nouns and 
proper names are all treated similarly, with no clear semantic correlate to the 
morphosyntactic distinction between verbs and nouns (whether proper or common). 
 
What I will argue in this paper is that common nouns are similar in semantic type to proper 
names, and differ in type from verbs. The morphosyntactic distinction between nouns and 
verbs thus corresponds directly to a difference in semantic type. More particularly, I will 
argue that common nouns are variables, in roughly the same sense as the variables of 
predicate logic. Man is more like the x in (1)b. than the M. 
 
This is not an entirely new idea. Lepore and Ludwig (2007), for example, say “In ‘All men’, 
‘men’ functions as if it were a variable restricted to taking on as values only men…” But this 
suggestion appears only in their informal discussion. In their formalization, common nouns 
are not treated this way — or analyzed at all, really: Lepore and Ludwig give formalized 
rules only for interpreting a simplified artificial version of English which does not contain 
sentences like (1)a. but only predicate-logic-like formulas such as (2): 
 
(2) [Every x : x is a man](x smiles) 

 
No interpretation rule is given for the single word man (or any other common noun), but only 
for the whole open formula ‘x is a man’. If any semantic analysis of the single word man is 
intended, it is not made explicit; and the notation here, with separate elements ‘x’ and ‘man’, 
does not suggest that the noun itself is a variable, despite Lepore and Ludwig’s informal 
discussion. 
 
To my knowledge, the idea that common nouns are variables has never been developed or 
defended in detail.2 The idea faces a number of technical and theoretical challenges: How can 
we deal with relational nouns? With mass nouns? With quantification? With intensionality? 
Can such an analysis be made compositional? Even if all these challenges are met, is there 
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idea that common nouns are variables is also, I suspect, the motivating intuition behind Breul 
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any advantage to treating common nouns as variables, or does this idea turn out to be 
equivalent (or inferior) to a treatment of common nouns as predicates? 
 
I think that each of these challenges can be answered, and that there are in fact several 
advantages to treating common nouns as variables, over treating them as predicates. Showing 
this in detail is a larger project than can be presented in this short paper, so I will focus here 
on meeting just one of the “challenges” and two of the “advantages.” Specifically, I will show 
how we can reconcile an analysis of common nouns as variables with the fact that typical 
common nouns are modally non-rigid; and I will argue that such an analysis predicts that all 
nominal quantification is conservative, so that conservativity does not need to be stipulated as 
a condition on determiner denotations; and that it makes possible some improvements to the 
analysis of the temperature paradox, allowing for quantificational examples without adding a 
spurious layer of modal variability.  
 
2. First Pass: Common Nouns as Variables 
 
What does it mean to say that common nouns are variables? This will depend on exactly what 
a “variable” is, of course. Unfortunately, there is no universally agreed-on, standard 
definition of variables, so our main thesis is somewhat obscure at the outset. We shall 
therefore have to begin with a technique for the semantic analysis of variables which I think 
most readers will at least find familiar, and show how common nouns can be treated as 
variables using this technique. In the end, I will adopt a somewhat different approach to the 
semantics of variables; but starting with a more familiar technique should at least clarify the 
intuition underlying the claim that common nouns are variables. 
 
In this familiar technique, expressions are assigned denotations relative to a series of 
parameter values, including an assignment of values to variables. Semantic rules are given in 
such a way that one can derive equations of the form in (3), where α is a linguistic 
expression, g is an assignment of values to variables, and the three dots abbreviate whatever 
other parameters denotations are relativized to: 
 
(3) ⟦α⟧…, g = a 

 

Variables are expressions whose denotations are fixed directly by the assignment of values to 
variables. That is, α is a variable iff for all g (and all ways of filling in the three dots):  
 
(4) ⟦α⟧…, g = g(α) 

 
Variable binding is analyzed as the assignment of denotations relative to a given assignment g 
based on denotations relative to assignments which agree with g in what they assign to all 
variables other than the one being bound.3 For example, we can define standard variable 
binding operators like ∀ and ∃ as in (5): 
 

                                                 
3 This phrasing does not imply that the relevant assignments differ from g in what they assign 
to the variable being bound. Any assignment g agrees with itself on all variables other than α 
(for any variable α). 



(5) a. ⟦∀αφ⟧…, g = 1 iff ⟦φ⟧…, h = 1 for all h agreeing with g on all variables other than α. 
b. ⟦∃αφ⟧…, g = 1 iff ⟦φ⟧…, h = 1 for at least one h agreeing with g on all variables other 

than α. 
 
With this understanding of what variables and binding are as background, how can we treat 
common nouns as variables?  
 
Instead of giving lexical stipulations like those in (6), we may specify the meanings of 
common nouns as part of the definition of an assignment of values to variables, as in (7): 
 
(6) a. ⟦student⟧ = λx . x is a student 

a. ⟦professor⟧ = λx . x is a professor 
 

(7) g is an assignment of values to variables iff  
a. g is a function with domain {x | x is a common noun token4 or …}; 
b. If α is a token of student, then g(α) is a student; 
c. If α is a token of professor, then g(α) is a professor; 
d. etc. 

 
It should be noted that under (7), student and professor are of type e, not 〈e, t〉. 
 
We shall have to revise the definition in (7) several times before the end of this paper; but let 
us adopt it for the moment, and explore how it may function in a larger theory of 
quantification and binding for English. 
 
I assume that LF representations are derived via an operation of Quantifier Raising, which 
adjoins a quantifier phrase to its scope, leaving a trace in its original position. I will also 
assume here that Quantifier Raising is clause-bounded. This means we normally cannot use it 
to obtain transparent readings for quantifier phrases in opaque contexts; but alternative 
techniques are available, and perhaps better motivated anyway.5 
 
By the antecedent of a trace, let us mean the NP of the DP whose trace it is. That is: 
 
(8) Where δ is a determiner token and κ is a common noun phrase token: antecedent(trace(δ 

κ)) = κ. 
 
Note that this is a slightly non-standard use of the term antecedent. In [every professor [e 
smiles]], professor, not every professor, is the antecedent of e. We do not assume that traces 
are co-indexed with their antecedents (or with the DPs containing their antecedents). The 
analysis is compatible with such co-indexation, but does not require it, provided there is some 
way of identifying the antecedent of each trace. 
 

                                                 
4 Instead of assigning values to expression tokens, we could assign values to pairs of an 
expression type and a context of use. In the long run, this may be the preferable option; but a 
consideration of the issue here would force a long digression from our central concerns in this 
paper, so I assign values to tokens here in the interest of simplicity.  
 
5 See, e.g., Cresswell (1990). 



Traces will be interpreted as variables, with a requirement that (relative to any assignment of 
values to variables g) a trace co-denotes with its antecedent: 
(9) g is an assignment of values to variables iff  

a. g is a function with domain {x | x is a common noun token, trace token or…}; 
b. If α is a token of student, then g(α) is a student; 
c. If α is a token of professor, then g(α) is a professor; 
d. etc.; 
e. If ε is a trace token, then g(ε) = g(antecedent(ε)). 

 
We write “g ~κ h” to mean that assignment h agrees with assignment g on all common noun 
phrases other than κ. Now we can define every syncategorematically: 
 
(10) ⟦every κ φ⟧g = 1 if ∀h [g ~κ h → ⟦φ⟧h = 1];  

0 if ∃h[g ~κ h & ⟦φ⟧h = 0]. 
 
It is easy to confirm that this gives the correct result that Every professor e smiles is true iff 
for every x such that x is a professor, x smiles. Other quantifiers can be defined analogously 
(but revisions will be necessary to deal with more complex cases). 
 
It is perhaps worth noting at this point that if we analyze quantification in the way just 
sketched, there is no semantic motivation any more to have QR move whole DPs, rather than 
just determiners, or to have QR leave traces. We could get the same effect simply by moving 
the determiner, and leaving the NP in situ. But let us leave that issue aside, in order to 
concentrate on semantic matters rather than syntax. 
 
3. First Advantage: Conservativity is Predicted 
 
Even though our analysis is not in its final form, we can already see one advantage to treating 
common nouns in this way, rather than treating them as predicates: The analysis predicts that 
all nominal quantification is conservative.6 
 
This claim must be clarified, because the relevant notion of conservativity here is not exactly 
the traditional textbook sense. The standard definition is in (11): 
 
(11) D is conservative iff for all A, B: D(A, B) iff D(A, A∩B) 
 
But if we take D to be a determiner denotation, A to be a common noun phrase denotation, 
and B to be a predicate denotation, this definition presupposes that common nouns denote 
sets. Analyses which treat common nouns in some other way will never claim that 
determiners are conservative in exactly this sense. In order to compare theories, we need a 
more general notion of conservativity, which is not tied so tightly to a particular approach to 
the analysis of common nouns and determiners. 
 

                                                 
6 The suggestions made in this section may be interestingly compared to proposals like those 
in Fox (2002), Sauerland (2004), Sauerland (2007), Romoli (2015); but such a comparison 
will have to wait for another occasion. 



A more useful way to conceptualize conservativity for our current purposes is to recognize 
that the intuitive content of the standard definition is that A functions as a domain of 
quantification. That is, in ascertaining whether D(A, B), one need not consider those 
members of B which are not in A. Put differently (and more sloppily and English-
specifically): in determining the truth value of a sentence of the form D N VP, you only need 
to consider the N’s: Which N’s does VP apply to and which N’s doesn’t VP apply to? You 
never need to consider the truth value that results from applying VP to something which isn’t 
an N. 
 
In any analysis, some distinction must be drawn between the things which a given noun 
accurately describes and those which it doesn’t. If common nouns are analyzed as denoting 
sets, these are the members of the set denoted by the noun; if common nouns are analyzed as 
denoting functions of type 〈e, t〉, these are the things mapped onto 1 by the function denoted 
by the noun; if common nouns are analyzed as variables, these are the things assigned to the 
noun by the various assignments of values to variables. No matter which approach is taken, a 
theory claims that determiner quantification is conservative iff whenever a determiner-noun 
combination combines with a predicate P to form a sentence, the truth value of that sentence 
can be ascertained by considering only how P applies to the things accurately described by 
the noun, so that the truth values which result from applying P to things not accurately 
described by the noun are irrelevant. 
 
Now we can see how conservativity falls out from the general approach to determiner 
quantification just outlined. Assignments of values to variables, in this approach, are 
functions from common noun phrases (and traces) to individuals. For any such function, the 
individual assigned to a given noun N is something which “is an N” — something which 
would be a member of the extension of N in a more conventional analysis. As one considers a 
class of assignments which differ from one another at most in what they assign to N, 
therefore, one is effectively considering the things which are accurately described by the 
noun. As long as object-language quantification over individuals is analyzed in terms of 
metalanguage quantification over assignments of values to variables, and as long as 
determiner-noun combinations are interpreted by quantifying over those assignments which 
agree on all variables other than the noun with which the determiner combines, conservativity 
is automatic. 
 
To give just a little more detail: Assume that interpretation rules for quantifiers conform to 
the following general template, based on the rule for every: 
 
(12) ⟦δ κ φ⟧g  = 1 if for δ-many assignments of values to variables h such that g ~κ h, ⟦φ⟧h 

= 1;  
= 0 if it is not the case that for δ-many assignments of values to variables h 

such that g ~κ h, ⟦φ⟧h = 1.  
 
Rules conforming to this template derive a value for ⟦δ κ φ⟧g  based on ⟦φ⟧h , for various 
assignments h which differ from g at most in what they assign to κ (and any trace with κ as 
its antecedent). But h(κ) will always be something which is accurately described by κ, and so 
will h(ε), where antecedent(ε) = κ. There simply are no assignments of values to variables 
relative to which ε receives a value which is not accurately describable by κ, so it makes no 



sense to ask whether the truth value of φ is relative to such assignments is relevant to the 
truth value of the whole sentence [δ κ φ].  
 
That is, quantification is just over those individuals which are accurately described by the 
noun, which is to say, the quantification is conservative — and this follows from the general 
architecture of the theory. In contrast, if we assume simply that determiners denote 2-place 
relations between sets (or functions of type 〈〈e, t〉, 〈〈e, t〉, t〉〉), nothing guarantees 
conservativity; it must be independently stipulated.7 
 
4. Adding Intensionality: Non-Rigid Variables 
 
Analyzing common nouns as variables will not work properly in an intensional semantics, if 
we treat variables in the traditional way. Standard versions of intensional logic and quantified 
modal logic incorporate a principle like that in (13): 
 
(13) If α is a variable, then ⟦α⟧M,w,g = g(α). 
 
This gives the effect that for all w, w′, ⟦α⟧M,w,g = ⟦α⟧M,w′,g. That is, variables are modally rigid. 
But now recall (9)b.: “If α is a token of student, then g(α) is a student.” In which world must 
g(α) be a student? Since no world is mentioned, we standardly assume the condition is meant 
to apply in the actual world w@. Since variables are rigid, this gives the effect that for any w, 
⟦student⟧M,w,g is a student in w@ — but nothing requires ⟦student⟧M,w,g to be a student in w. 
This is obviously wrong — it results in incorrect truth conditions for sentences like (14): 
 
(14) John believes that every student e smiles 
 
Assuming our current semantics including (9), (10) and (13), combined with a standard 
possible-worlds analysis of believe along the lines of Hintikka (1969), (14) is assigned a 
reading which is true (in the actual world w@) iff in every world w compatible with John’s 
belief state (in w@), everyone who is a student in w@ smiles in w. It is not assigned a reading 
which is true (in w@) iff in every world w compatible with John’s belief state (in w@), 
everyone who is a student in w smiles in w. In other words, the analysis wrongly predicts that 
all common nouns should be interpreted transparently. 
 
To allow opaque readings, we need to allow modally non-rigid variables.8 This requires us to 
revise our definition of an assignment of values to variables: 
 
(15) g is an assignment of values to variables iff  

                                                 
7 Our discussion in this section raises the question of how to deal with only and other 
quantifiers which appear not to be conservative. I assume in such cases, the quantifier binds a 
variable which is constructed in part based on intonational focus or other factors, rather than 
simply binding the NP (if any) which serves as its syntactic complement. That is, the 
quantification in such cases is not strictly “nominal.” A detailed consideration of such cases 
will have to await another occasion. 
8 These have rarely been suggested before, but see e.g. Hughes and Cresswell (1968: 195–
201). 



a. g is a partial9 function with domain {x | x is a common noun token, trace token 
or…}⨯W; 

b. If α is a token of student: for all w, if there exists an x such that x = g(α, w), then 
g(α, w) is a student in w; 

c. If α is a token of professor: for all w, if there exists an x such that x = g(α, w), then 
g(α, w) is a professor in w; 

d. etc.; 
e. If ε is a trace token, then for all w, g(ε, w) = g(antecedent(ε), w). 

 
Making this change necessitates corresponding revisions to our definition for the double 
brackets, and to our definition of what it means for one assignment to agree with another on 
all values other than a particular one: 
 
(16) If α is a variable, then for all worlds w and assignments g: ⟦α⟧w,g = g(α, w). 

 
(17) g ~κ,w h iff  

a. there exists some x such that h(κ, w) = x; and  
b. for all common noun phrases ν  and worlds w′: if ν ≠ κ then g(ν, w′) = h(ν, w′). 

 
We also need to revise our rule for every to reflect the change made in (17): 
 
(18) ⟦every κ φ⟧w,g = 1 if ∀h [g ~κ,w h → ⟦φ⟧w,h = 1];  

  0 if ∃h[g ~κ,w h & ⟦φ⟧w,h = 0]. 
 
It is easy to confirm that our rules now give the desired modal profile for sentences like Every 
student e smiles. 
 
However, our revisions have introduced another problem. Some variables should be rigid — 
specifically pronouns, assuming these can be bound across the borders of intensional 
contexts. 
 
For example, consider (19), assuming that professor is the antecedent of she.  
 
(19) [Every professor e believes [that she smiles]] 
 
If we treat the pronoun here the way we have treated traces — as codenoting, in each world 
w, with its antecedent — we assign the wrong truth conditions. Intuitively, (19) is true in w@ 
only if for every x such that x is a professor in w@, in every world w compatible with x’s 
belief state in w@, x smiles in w. But if we require, for every assignment g, world w and 
pronoun π, that g(π, w) = g(antecedent(π), w) — like we did with traces — we do not get that 
reading, because nothing requires that g(she, w) = g(professor, w@). Quantifying on 
assignments that agree with g on all values other than g(professor, w@) will not quantify over 
values for she in the “belief worlds”. 
 

                                                 
9 We allow g to be a partial function because in some worlds, there aren’t any students or 
professors. 



To solve this problem, we must again revise our definition of assignment functions, so that 
each one is keyed to a particular world: 
 
(20) g is an assignment of values to variables for w (or “w-assignment”) iff  

a. g is a partial function with domain {x | x is a common noun token, trace token, 
pronoun token, or…}⨯W; 

b. If α is a token of student: for all w′: if there exists an x such that x = g(α, w′), then 
g(α, w′) is a student in w′; 

c. If α is a token of professor: for all w′: if there exists an x such that x = g(α, w′), 
then g(α, w′) is a professor in w′; 

d. etc.;  
e. If ε is a trace token, then g(ε, w′) = g(antecedent(ε), w′); 
f. If π is a pronoun token, then g(π, w′) = g(antecedent(π), w). 

 
Note the difference between clauses e. and f. Relative to each world wʹ, a trace is required to 
denote the same thing as the denotation of its antecedent in wʹ, but a pronoun is required to 
denote the same thing as the denotation of its antecedent in w, the world to which the 
assignment is keyed. This guarantees that relative to any given assignment, the denotation of 
a pronoun is modally rigid. 
 
Now we revise the tilde notation so that agreeing assignments must be keyed to the same 
world: 
 
(21) g ~κ,w h iff  

a. g and h are both w-assignments; 
b. there exists some x such that h(κ, w) = x; and 
c. for all common noun phrases ν and worlds w′: if ν ≠ κ then g(ν, w′) = h(ν, w′). 

 
Our rule for every in (18) can remain notationally the same, but operates differently due to 
the replacement of (17) with (21). In (18), g and h are now both required to be w-assignments 
— so relative to h, any pronouns in φ will rigidly denote what κ denotes relative to h in w. 
This ensures that (19) will be true relative to a world w only if for every x such that x is a 
professor in w, for every w′ compatible with x’s belief state in w, x smiles in w′. The person 
who smiles in each professor’s belief worlds is correctly required to be that same person who 
is a professor in w, and holds the belief. There is no requirement that every professor must be 
a professor in all her belief worlds. 
 
5. Second Advantage: The Temperature Paradox 
 
We can now turn to a second major advantage to treating common nouns as variables: It 
allows some improvements in how we analyze the temperature paradox. The paradox and its 
proposed solution in Montague (1973) are familiar to most readers and will only be briefly 
sketched here: The argument in (22) is of a form which seems naturally representable as in 
(23), but (23) is a valid argument and (22) is not. 
 
(22) The temperature is rising. 

The temperature is 90.   



Therefore, 90 is rising.  
 

(23) ∃x[temperature(x) & ∀y[temperature(y) → x = y] & rise(x)]  
∃x[temperature(x) & ∀y[temperature(y) → x = y] & x = n] 
∴ rise(n) 

 
Montague’s solution is to treat rise as a predicate of functions from indices (including times) 
to individuals, but treat is as holding (at a given index) between two such functions iff they 
return the same value for that index.10 Under this analysis, (22) can be paraphrased as (24), 
which is easily seen as invalid: 
 
(24) The unique temperature function is a rising function. 

The unique temperature function and the 90 function currently yield the same value. 
Therefore the 90 function is a rising function. 

 
The analysis is made more formal through the use of ∧- and ∨-operators, defined as in (25) 
and (26): 
 
(25) ⟦∧α⟧M,w,t,g = that function f with domain W⨯T such that for all w′ ∈ W, t′ ∈ T: f(w′, t′) = 

⟦α⟧M,w′,t′,g 
 
(26) ⟦∨α⟧M,w,t,g = ⟦α⟧M,w,t,g(w, t)  

Now the argument may be represented as (27) rather than (23): 

(27) ∃x[temperature(x) & ∀y[temperature(y) → x = y] & rise(x)] 
∃x[temperature(x) & ∀y[temperature(y) → x = y] & ∨x = ∨n] 

  ∴rise(∧n) 
 

In (27), the variables x and y are of type ⟨s, e⟩, not of type e. Hence rise and temperature 
must both be of type ⟨⟨s, e⟩, t⟩. In the case of rise, this is intuitive and appropriate. What 
counts as rising at a time t depends on how things are at times other than t. It is impossible to 
ascertain whether the temperature is rising at a moment by examining a photograph of a 
thermometer taken at that moment; one needs multiple photographs, taken at different times. 
It therefore makes sense to treat rise as taking functions from times to numbers as its 
arguments, so that rise can “see” what is going on at other times; there is a clear intuitive 
basis for treating rise as temporally intensional. 

But the situation with temperature is quite different: To tell whether a particular value is the 
temperature at a given moment, a single photograph taken at that moment suffices, and 

                                                 

10 I have simplified Montague’s analysis here by setting aside some irrelevant complications 
with type assignment. 

 



photographs taken at other times are irrelevant. There isn’t the same intuitive basis for letting 
temperature take functions from times to numbers as its arguments as there is for rise; 
temperature is not temporally intensional in its conditions of application like rise is. 

This feature of Montague’s analysis leads to a problem pointed out by Anil Gupta.11 
Intuitively, the argument in (28) is valid. But it is translated into Intensional Logic as in (29), 
and (29) is not a valid argument: 

(28) Necessarily, the temperature is the price. 
The temperature is rising. 
Therefore, the price is rising. 
 

(29) □∃x[temperature(x) & ∀y[temperature(y) → x = y] & ∃z[price(z) & ∀y[price(y) → 
z = y] & ∨x = ∨z] 
∃x[temperature(x) & ∀y[temperature(y) → x = y] & rise(x)] 
∴∃x[price(x) & ∀y[price(y) → x = y] & rise(x)] 

 
To see that (29) is invalid, let T1, T2, T3, P1, P2, P3 be the functions given in (30). Now 
consider a model where temperature holds at ⟨w1, t1⟩ uniquely of T1, at ⟨w1, t2⟩ of T2, and at 
⟨w1, t3⟩ of T3, and where price holds at ⟨w1, t1⟩ uniquely of P1, at ⟨w1, t2⟩ of P2, and at ⟨w1, t3⟩ 
of P3: 
 
(30) T1(w1, t1) = 99  T2(w1, t1) = 89  T3(w1, t1) = 79 

T1(w1, t2) = 100 T2(w1, t2) = 90  T3(w1, t2) = 80 
T1(w1, t3) = 101 T2(w1, t3) = 91  T3(w1, t3) = 81 
 
P1(w1, t1) = 99  P2(w1, t1) = 91  P3(w1, t1) = 83 
P1(w1, t2) = 98  P2(w1, t2) = 90  P3(w1, t2) = 82 
P1(w1, t3) = 97  P2(w1, t3) = 89  P3(w1, t3) = 81 

 
It is easy to see that the first premise of (29) is true: at each world-time pair there is a unique 
temperature function, and a unique price function, and the two functions return the same 
current value — 99 at ⟨w1, t1⟩, 90 at ⟨w1, t2⟩, and 81 at ⟨w1, t3⟩. The second premise of (29) is 
also true at all indices, under an intuitive definition of rise and an assumption that t1 precedes 
t2 and t2 precedes t3: At each index, the unique temperature function is a rising function, 
returning a higher value at each successive time. For example, at ⟨w1, t2⟩ the unique 
temperature function is T2, which returns 89 at ⟨w1, t1⟩, 90 at ⟨w1, t2⟩, and 91 at ⟨w1, t3⟩. 
However, the conclusion of (29) is false at every index, since at every index the unique price 
function is a falling function, not a rising one. 
 
In Lasersohn (2005) I suggested a solution to this problem, which unfortunately did not work. 
I argued that the source of the problem was in treating the as a variable-binding quantifier. In 
the sentence The temperature is rising, this quantificational analysis of the requires 
temperature to take the same variable is its argument as is rising does, which in turn forces 
temperature into the intuitively unjustified type ⟨⟨s, e⟩, t⟩, which allows different temperature 

                                                 
11 Gupta’s problem is outlined in Dowty, et al. (1981: Appendix III) 



functions (and not just different temperature values) at different times, which leads to 
Gupta’s problem. But if we switched to a non-quantificational analysis of the, I argued, we 
could avoid using a single variable both as argument to temperature and as argument to is 
rising. Specifically, if we represent the temperature as ℩x temperature(x), where 
temperature is of type ⟨e, t⟩ and the iota-operator is interpreted as in (31), then The 
temperature is rising can be represented as in (32): 
 
(31) ⟦℩x P(x)⟧M,w,t,g = the unique element u such that ⟦P⟧M,w,t,g(u) = 1 if there is such a 

unique element, undefined otherwise. 
 

(32) rise(∧℩x temperature(x)) 
 
At each index, ℩x temperature(x) denotes the unique temperature (value) at that index. By 
the semantics of the ∧-operator in (25), ∧℩x temperature(x) will rigidly denote the function 
mapping each index onto the unique temperature at that index. In this way, we derive just one 
temperature function — the same one at every index — and just one price function. Hence, if 
at every index the temperature function yields the same value as the price function (so they 
are really the very same function), and the temperature function is a rising function, then the 
price function must be a rising function too. Gupta’s problem is eliminated. 
 
However, this solution cannot be correct, as Romero (2008) was quick to point out. By tying 
the solution to a non-quantificational analysis of the, I made it impossible to deal with more 
clearly quantificational examples in the same way. But such examples exist; in fact, 
Montague himself gave such an example, perhaps because he anticipated the kind of analysis 
I was proposing: 
 
(33) A price rises. 

Every price is a number. 
Therefore, a number rises. 

 
In light of such examples, I concede the point that the temperature paradox does not really 
provide us with evidence for a non-quantificational theory of the definite article. 
Considerations of space preclude a review of Romero’s very interesting analysis here, but it 
should be acknowledged that it accounts successfully for the validity of Gupta’s argument. 
 
However, it also retains an odd feature of Montague’s original analysis, which seems to me to 
be very unintuitive: It allows nouns like temperature to denote different sets of functions 
relative to different times. That is, we can have temporal variation not just in what values get 
returned by the temperature function (or functions), but in which functions count as 
temperature functions in the first place. 
 
Intuitively, that can’t happen. Suppose we are talking about the temperature of one particular 
object, in one particular world. If at time t1, the temperature function for that object in that 
world maps t1 to 90, t2 to 91, and t3 to 92, then it cannot happen that at t2, the temperature 
function for that object in that world maps t1 to 85, t2 to 84, and t3 to 83. This kind of 
temporal variation is easy enough to rule out by meaning postulate (or some similar lexical 



stipulation), but it would be preferable, if possible, to find a more “architectural” solution, 
which prevented a case like this from coming up in the first place. 
 
If we analyze common nouns as variables, and allow variables to be temporally non-rigid in 
the same way as we allowed them to be modally non-rigid, such a solution is available. First, 
to allow for temporal intensionality, we revise the definition of assignment functions in (20) 
so that assignments give values to variable-world-time triples, and add a clause for the noun 
temperature: 
 
(34) g is an assignment of values to variables for w, t (or “w,t-assignment”) iff  

a. g is a partial function with domain {x | x is a common noun token or trace 
token or pronoun token or …}⨯W ⨯T 

b. If α is a token of student: for all w′, t′: if there exists an x such that x = g(α, w′, 
t′), then g(α, w′, t′) is a student in w′ at t′; 

c. If α is a token of professor: for all w′, t′: if there exists an x such that x = g(α, 
w′, t′), then g(α, w′, t′) is a professor in w′ at t′; 

d. If α is a token of temperature: there is some pragmatically relevant object or 
location x, such that for all w′, t′: x exists at w′, t′ iff g(α, w′, t′) is the 
temperature of x in w′ at t′ (in the relevant scale — ˚F, ˚C, etc.) 

e. etc.;  
f. If ε is a trace token: for all w′, t′: g(ε, w′, t′) = g(antecedent(ε), w′, t′); 
g. If π is a pronoun token: for all w′, t′: g(π, w′, t′) = g(antecedent(π), w, t). 

 
Notice that according to (34)d., for each assignment function g and token of the noun 
temperature there is one particular object or location whose temperature at various times and 
worlds is tracked by the values which g assigns to that token (relative to those times and 
worlds). The value which g assigns to a token of temperature relative to a world w and time t 
is just a number — an entity of type e — not a function or set of functions. So for any given 
world and any given object, there will be just one function which picks out the temperature of 
that object in that world at each time — not different such functions at different times. This 
eliminates the source of Gupta’s problem. 
 
In a semantic theory using (34), the intension of a token of temperature relative to a given 
assignment g will naturally be a function mapping each world-time pair onto the temperature 
of one particular object or location in that world at that time.  
 
Verbs like rise must remain at type ⟨⟨s, e⟩, t⟩. But now we have a problem: If traces are 
required to co-denote with their antecedents, and nouns like temperature are type e, then the 
trace left by phrases like the temperature or every price will also be of type e, so it will not be 
of the right type to serve as argument to rise. Therefore, we now allow traces (and pronouns) 
of type ⟨s, e⟩. If a trace or pronoun is in position to fill an ⟨s, e⟩ argument place, the 
trace/pronoun must be of type ⟨s, e⟩. If it is in position to fill a type e argument place, it must 
be of type e. If a trace or pronoun is of type ⟨s, e⟩, its denotation must be the same as the 
intension of its antecedent, rather than its extension. More formally, we replace (34)f., g. with 
(35)a., (35)b.: 
 



(35) a. If ε is a trace token: for all w′, t′: g(ε, w′, t′) = g(antecedent(ε), w′, t′) or g(ε, w′, t′) 
= that function f: W⨯T→De such that for all w″, t″, f(w″, t″) = g(antecedent(ε), w″, 
t″), according as ε is of type e or of type ⟨s, e⟩; 

 
b. If π is a pronoun token: for all w′, t′: g(π, w′, t′) = g(antecedent(π), w, t) or g(π, w′, 

t′) = that function f: W⨯T→De such that for all w″, t″, f(w″, t″) = g(antecedent(ε), 
w″, t″), according as π is of type e or of type ⟨s, e⟩. 

 
Finally, we need to make the obvious updates to the notation used in our rules and 
definitions, to reflect the fact that assignments are now to a time parameter in addition to a 
world. We replace (21) with (36): 
 
(36) g ~κ,w,t h iff  

a. g and h are both w,t-assignments; 
b. there exists some x such that h(κ, w, t) = x, and 
c. for all common noun phrases ν, worlds w′ and times t′:  

if ν ≠ κ, then g(ν, w′, t′) = h(ν, w′, t′). 
 
And (18) with (37): 
 
(37) ⟦every κ φ⟧w,t,g =  

  1 if ∀h [g ~κ,w,t h → ⟦φ⟧w,t,h = 1];  
  0 if ∃h[g ~κ,w,t h & ⟦φ⟧w,t,h = 0]. 

 
Now our semantics (unlike that of Lasersohn (2005)) will assign a coherent interpretation to 
sentences like [Every temperature [e rises]]. In order to serve as argument to rises, the trace e 
must be of type ⟨s, e⟩. Therefore, relative to any assignment g, it must denote the intension of 
its antecedent, temperature, relative to g. Relative to g, the intension of temperature is a 
function tracking the temperature of one particular object or location — but relative to 
another assignment, the intension of the temperature might a function tracking the 
temperature of some other relevant object or location. The sentence is true relative to an 
assignment g iff [e rises] is true relative to every assignment h agreeing with g on all nouns 
other than temperature. That is, it is true if the temperature function of each relevant object or 
location is a rising function. 
 
The original temperature paradox argument correctly comes out invalid, even if we adopt a 
quantificational analysis of definites. We may define the as in (38): 
 
(38) ⟦the κ φ⟧w,t,g = 1 if ∃h[g ~κ,w,t h & ∀i [g ~κ,w,t i → h = i] & ⟦φ⟧w,t,h = 1];  

  0 if ¬∃h[g ~κ,w,t h & ∀i [g ~κ,w,t i → h = i] & ⟦φ⟧w,t,h = 1]. 
 
Consider the truth condition assigned to (39) under this rule: 
 
(39) [The temperature [e rises]] 
 
In order for (39) to be true relative to an assignment g (in w, at t), there must be exactly one 
assignment h which agrees with g on all common noun tokens other than the token of  



temperature in this example. If h agrees with g in this way, there must be some pragmatically 
relevant object or location, whose temperature h assigns to this token at each world and time. 
Since h is unique, there can be only one function which maps a pragmatically relevant object 
or location onto its temperature at each world and time. That is to say, despite the fact that 
temperature is of type e, according to our rules (39) requires a unique temperature function, 
not just a unique temperature value. Of course this unique temperature function must also be 
a rising function in order for (39) to be true. 
 
In contrast, (40) is true (relative to w, t, g) iff the value of the unique temperature function at 
w, t is 90; the trace here is of type e, and therefore denotes the extension, not the intension of 
its antecedent. 
 
(40) [The temperature [e is ninety]] 
 
Assuming that the intension of ninety is the constant function mapping each world-time pair 
onto 90, (41) will always be false, even if (39) and (40) are true: 
 
(41) [Ninety rises] 

 
It is also easy to see that Gupta’s argument comes out valid. Sentence (42)a. equates, at all 
world-time pairs, the value of the unique temperature function with the value of the unique 
price function. If the unique temperature function yields the same value at every pair as the 
unique price function, then they are the same function; so if the temperature function is 
rising, the price function is rising. 
 
(42) a. Necessarily, the temperature is the price. 

b. The temperature is rising. 
c. Therefore, the price is rising. 

 
6. Conclusions 
 
Common nouns which are usually analyzed predicates of type ⟨e, t⟩ may instead by analyzed 
as being of type e by treating them as restricted variables. Treating them this way, in 
combination with a standard understanding of what variable-binding is, predicts that all 
nominal quantification is conservative, and does so without any independent restriction on 
determiner meanings.  
 
In order to assign correct truth conditions to sentences in which common nouns appear in 
intensional contexts, an analysis which treats them as variables must allow variables to be 
modally non-rigid. Certain other variables, notably pronouns, should continue to be analyzed 
as rigid. 
 
Allowing modally non-rigid variables makes possible an analysis of the temperature paradox 
which can deal with quantificational examples, without requiring extra stipulations to rule out 
modal variation in which functions count as temperature functions, thus solving “Gupta’s 
problem.”  
 



These arguments are not by themselves sufficient to establish that common nouns should be 
analyzed as variables. That would be a far larger project, requiring much more thorough and 
intensive investigation than can be accomplished in a single paper. Several important 
challenges to this view have not been addressed here: How can we deal with relational 
nouns? With complex noun phrases containing modifiers? With mass and plural nouns? Can 
the treatment of quantification be formulated in such a way that determiners are assigned 
denotations, instead of being interpreted syncategorematically, as they were in this paper? I 
believe all these challenges can be met; but demonstrating this will have to wait for another 
occasion. 
 
Additional advantages to analyzing common nouns and noun phrases as variables also 
suggest themselves: Such an analysis may allow for a closer, more systematic correlation 
between syntactic categories and semantic types. If complex phrases like farmers who own a 
donkey can be treated as type e variables, a new pathway opens for the analysis of the 
“proportion problem” in sentences like Most farmers who own a donkey beat it. Treating 
common nouns as type e variables promises a more natural analysis of “collectivizing” 
conjunction of common nouns, as in the reading of this man and woman where it denotes a 
group whose members are a man and a woman. These and other topics must here be left to 
later investigation. 
 
References 

 
Bennett, Michael Ruisdael (1975) Some Extensions of a Montague Fragment of English. 

Indiana University Linguistics Club. 
Breul, Carsten (2013) Zu Artikeln und dem Logisch-Semantischen Typ von Nomina. 

Linguistische Berichte 235.309–336. 
Cresswell, M.J. (1990) Entities and Indices. Kluwer Academic Publishers. 
Dowty, David, Robert Eugene Wall and Stanley Peters (1981) Introduction to Montague 

Semantics. Reidel. 
Fara, Delia Graff (2015) Names Are Predicates. Philosophical Review 124.1.59–117. 
Fox, Danny (2002) Antecedent-Contained Deletion and the Copy Theory of Movement. 

Linguistic Inquiry 33.1.63–96. 
Gamut, L.T.F. (1991) Logic, Language and Meaning, Volume 2: Intensional Logic and 

Logical Grammar. University of Chicago Press. 
Heim, Irene and Angelika Kratzer (1998) Semantics in Generative Grammar. Blackwell. 
Hintikka, Jaakko (1969) Semantics for Propositional Attitudes. Philosophical Logic, ed. by J. 

W. Davis, D. J. Hockney and W. K. Wilson, 21–45. Reidel. 
Hughes, G.E. and M.J. Cresswell (1968) In Introduction to Modal Logic. Metheun. 
Lasersohn, Peter (2005) The Temperature Paradox as Evidence for a Presuppositional 

Analysis of Definite Descriptions. Linguistic Inquiry 36.1.127–130. 
Lepore, Ernest and Kirk Ludwig (2007) Donald Davidson’s Truth-Theoretic Semantics. 

Oxford University Press. 
Luo, Zhaohui (2012) Formal Semantics in Modern Type Theories with Coercive Subtyping. 

Linguistics and Philosophy 35.6.491–513. 
Montague, Richard (1973) The Proper Treatment of Quantification in Ordinary English. 

Approaches to Natural Language: Proceedings of the 1970 Stanford Workshop on 



Grammar and Semantics, ed. by K. J. J. Hintikka, J. M. E. Moravcsik and P. Suppes, 
221–242. Reidel. 

Quine, Willard Van Orman (1960) Word and Object. MIT Press. 
Romero, Maribel (2008) The Temperature Paradox and Temporal Interpretation. Linguistic 

Inquiry 39.4.655–667. 
Romoli, Jacopo (2015) A Structural Account of Conservativity. Semantics‐Syntax Interface 

2.1. 28–57. 
Russell, Bertrand (1910) Knowledge by Acquaintance and Knowledge by Description. 

Proceedings of the Aristotelian Society 11.108–128. 
Sauerland, Uli (2004) The Interpretation of Traces. Natural Language Semantics 12.1.63–

127. 
Sauerland, Uli (2007) Flat Binding: Binding without Sequences. Interfaces + Recursion = 

Grammar? Chomsky's Minimalism and the View from Syntax-Semantics, ed. by U. 
Sauerland and H.-M. Gärtner, 197–254. Mouton de Gruyter. 

 


