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§l. INTRODUCTION

THE aim of this paper is to indicate a method of enumeration of positive
rational numbers. Such an enumeration consists in establishing a (1 — 1)
correspondence between the elements of the set R of positive rationals (or
a subset of it) and those of the set I+ of positive integers. A few methods
of enumeration of rationals have been indicated in Wilder* (pp. 80-81, 106~
107).

In the following, we shall also study some of the properties of the median
series (defined below) which is akin to the Farey series and also about the
rfunction defined by Hermes.! We make use of the properties of the
median series and the r-function to enumerate the positive rationals > 1.

Hermes, on the basis of his 7-function, proves certain results which,
we are bound to think, are motivated by the structure of the median series
studied in the paper. However Hermes does not obtain all the results
obtained here and in particular Hermes does not interpret the binary scale
representation of an integer # in relation to the structure of the median series.

Hermes® paper was as a matter of fact suggested by a paper of Stern®
in which he introduces the series called the Stern’s series

So-- (r,9)

S;.. (r,r+s,9)

S,.. (r2r+s,r+sr—+2s5)
and so on. If r=0, s=1in S; then this series becomes identical with the
numerator of the median series M;. If r=1, s =0, the series becomes

identical with the denominator of M;. From our point of view the import-
ance of Stern’s series is subordinate to that of the median series.

The significance of the partial quotients in the division transformation
for two numbers a and b relatively prime, is also brought out in terms of
the median approximations defined in Section 5. These approximations
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The Enumeration of Positive Rational Numbers 13

are also the approximations of Vahlen3 but they differ from those of Vahlen
in the method of introduction. 'While Vahlen introduces the approximations
to a real number p in connection with Farey series and is able to prove the
important result that the approximations can be arranged in a single series
Oy, Ggy Gy vvnnnnn so that aj, aj,, are the two consecutive terms of Fj, the
Farey series of i-th order, between which the real number p lies, we however
define the same approximations in relation to the structure of the median
series and Vahlen’s series arrangement is no longer true for the median
approximations defined by us. The relation between the Farey series and
median series do not seem to be fully known though we can show that the
Farey series F; is a part of the median series M; but not a part of M;_,. The
latter part is evident since the terms 1/i belong to M; but not to M;_;. To
prove that F;c M; we can use the following result which can be easily proved :
““The sum of the partial quotients of a rational number m/n in lowest terms
is equal to or less than the greater of m and n.”

Hermes’ =-function is introduced here in Section 6 specifically by means
of the order in M; and the recurrence relations on which Hermes bases his
definition of the r-function are directly deduced in Section 6, from the order
properties of the median series.

The results in Sections 5 and 6 are believed to be new. The auxiliary
properties of medians, necessary for proving them, have been collected in
Section 4.

I am indebted to Dr. R. Vaidyanathaswamy for his guidance and to
Mr. S. Swetharanyam for his help in preparing this paper in its final form.

§2. NOTATIONS AND DEFINITIONS
2.1. The =-function of Hermes is defined by the recurrence relation
7, =1and 7y = 77 + T(2* 1-n)

where 27 < n < 2v*1,

2.2. The Gaussian bracket is defined by (2.1.1)
[ 1=1, [a]=aand
[a, B’ Ty 7’ 5, E’ "]’ crery Z] (2.2.1)

=[a,B, ...., ] [e&,m, ... 00+ e, By oy ¥y ..., L.

2.3. If any positive integer » has the unique alternating binary scale
expansion

n=20 20 420 + 20, (2.3.1)
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O<ag<a<a<....<a) with odd number of terms (i.e., A even),
then

Tn=7'(a0,a1""‘ao,a2—"‘a1,....,ax_a)\_]_) (2.3.2)

=(1+a0, al—'ao,az"‘al,-...,ah"‘a)\_l) (2.3-3)

[vide Hermes! (satz 1)]. The fact that the alternating binary scale expansion
is unique for a given integer and that there are an odd number of terms in
such an expansion is true for n =1, 2, 3 for, 1 = 2°,2=21 3=2°—21
422, Let us now assume that this is true for all integers less than N (say)
where 2/1 <« N < 2%, Now N can be uniquely written in the form

N =2kt 420 420 | 20
where k—1>a,>a,> .... >an =0. (2.3.4)
Let now the alternating binary scale expansion of N — 2k-1 be

N — 2k =204 20 (odd number of terms)

Then
N = 2k-1 1 ga41 20 (even number of terms)

=9.0k1_ k-1 gm+1i__9ob 4
=9k —2k-14 2@+1 _2b L . (odd number of terms).

This is an alternating binary scale representation of N with an odd number
of terms and this is unique because (2.3.4) is unique.

2.4. The Median series is defined as follows:

Y
M= (041)

and so on.
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§3. DIVISION TRANSFORMATION AND EUCLIDEAN ALGORITHM

It is known that given any two positive integers ¢ and b, an Euclidean
algorithm can be constructed in the form

= bay + b, 0 <by< b
b =boa, + by (0 <5, < by)
by = bya; + b, (0 <5, <b)
bp-3 = bnsany + by, 0 <bpny < bpy)
bn_2 = bn_l an (an > 1) (3 . 1)

which ultimately yields the Greatest Common Divisor (hereafter denoted as
(GCD) of a and ». The numbers a,, ay, @5, - ..., a, Which appear in the
successive stages of the division transformation are called the partial quotients
in the Euclidean algorithm. It isalso known that the rational a/b can be put
in the form of a regular finite continued fraction (hereafter denoted as CF)

a 1 1 1

B—co+a+ E‘2+ ...... +al. (3.2)
The numbers ¢y, ¢;, ¢y, .... are called the partial quotients of the continued
fraction. It is easily seen that the equations

a; = ¢ (i=0,1,2,3,....,n)

are true; that is, the partial quotients obtained in the above two operations
are respectively the same.

The number of partial quotients can always be made odd; for if it is

even, then a,, can be replaced by the two partial quotients (an_;, 1) so that the
CF becomes

a 1 1 1 1
l‘,'—ao'}‘gl'l'a—z-{- +an——_1+T
In (3.1) bn-, is the GCD of a and b. The remainders bg, by, by, ..., by,
at each stage of the operation can be eliminated in terms of a,, a,, a,,

R
and bp_, and then we get

bps = bpy an

bn-z = bp [an—, anl

bu-s = bn_y [an—p, an—, an]

......................................
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Finally we have

b = b'n—l [ah g, a3,y -« -, an]

and
a=bp(ay, a1,03 ....,0ay) 3.3)
Since by, is the GCD of ¢ and 5, it follows that
the integers represented by the two Gaussian brackets in (3.3) are
relatively prime. (3.4

The resuit of the elimination is also the expression of a/b as the regular finite
continued fraction

a 1 1 1

B=ao+[—zl+ a—i- -{—a—n
— [aO, ala a2s ""9an]‘
[ay, as, a3, - ..., aq]

It follows that if a/b is in its lowest terms
a=[ay, ay, as, - ..., an)
b= [ab as, ds, "",an]' (3-5)

From the above we see that the positive rational R = a/b can be made
to correspond to a sequence of integers ao, ay,...., an (@y =0, a; > 0 for
i=1,2,3, ...., n) which are the partial quotients in the CF expansion of
R and these partial quotients completely specify the rational number. If
a/b > 1 (so that g, > 1) is in its lowest terms, then the reverse of the CF is
equal to another rational number

R = lan, Gny, - - - -5 G1, G}
[an-1, Gn-gs - - - 5 @1, Ao}
— Pn
Dna

where py, is the numerator of the n-th convergent of the original CF. We can
call R’ as the associate of R. It is clear that the relation between a rational
number and its associate is symmetrical.

Therefore we obtain that if ¢; >1 (i=0,1, 2, ...., n)

[ao, al, s ey an] = [an, an_l, oo ey al’ ao]n (3.6)
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With any rational number R = a/b we shall associate the function o (R) =
the sum of the partial quotients in the CF development of R; i.e.,

o(R)=a,+a,+ .... +ap. If R and R’ are associates,

then o (R) = o (R’). The significance of this function is brought out later
on.

§4. THE MEDIAN AND THE ELEMENTARY PROPERTIES OF THE MEDIAN SERIES

We define the median of two positive rationals «/b and c/d (in lowest
terms) to be (a + ¢)/(b + d). Some of the important properties of the
median are

4.1.1. The median m,/m, of two unequal positive rationals «/b and
c/d lies between them and is different from them (a property of ratios).

4.1.2. The determinants bc — ad, m)b — mya, myc — m,d of a/b, m,/m,,
c/d (taken two by two) are equal. Conversely, if the determinants of the
above type are equal for three ratios, then each one is the median of the other
two.

4.1.3. Ifbc — ad = 1, then the median of a/b and ¢/d is in lowest terms.

4.1.4. If my/m, is the median of a/b and c/d, then m,/m, is the median
of b/a and dJc.

For the construction of the median series, we start with the extreme
irreducible fractions 0/1 and 1/0. We denote M, = (0/1, 1/0). Any
M, i=0,1,2,....is obtained from M; by itroducing between every
two successive terms of M; their median. Thus we get the median series
mentioned in (2.4). M; is called the median series of i-th order. The
following are some of the basic properties of the median series:

4.2.1. Every term in each of the median series is in lowest terms and
the terms in a median series are in natural order from left to right and are
all distinct. Further any two successive terms in a median series have deter-
minant 1.

4.2.2. Every term of M; not in M;_,; is the median of the two adjacent
terms in M;_;. These terms are irreducible. Every term of M; which occurs
also in M;_, is the median of the two adjacent terms in M;. These terms are
however necessarily reducible.

4.2.3. The median series M; contains 2! + 1 terms. Hence the even
(odd) terms as counted from the left are also the even (odd) terms as counted
from the right. The terms in My, that are not in M; are the even terms and

these continue as odd terms in succeeding series.
A2
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4.2.4. The r-th term from the left in M; is the reciprocal of the r-th
term from the right. So the middle term is its own reciprocal and so is 1.
(It can be seen that the median series of i-th order is got by adding to the
Farey series of i-th order, its reflection about 1.)

4.2.5. The middle term of the left half of M; is 1/2. The r-th terms
to the right and the left of 1/2 add up to 1.

4.2.6. The r-th term from the left (right) in M; occurs as the (2r — 1)-th
term from the left (right) in M;.,; hence as (4r — 3)-th term in M;,, and so
in general as {2¥ (r — 1) + 1}-th term in M.

4.2.7. So if 2¢ is the highest power of 2 dividing r — 1, then r-th term
from right (left) of M; occurs in M; as the 2 a-th term from the right (left)
where

r—1
o= e T

Being an even term, this term occurs for the first time in M;_c.

§5. THE MEDIAN SERIES, (VAHLEN’S) APPROXIMATIONS AND THE
ENUMERATION OF POSITIVE RATIONAL NUMBERS

The following is an interpretation based on the idea of approximations
to a rational number in terms of the partial quotients ay, a,, ay, ...., ay of
the CF expansion of the rational number and this brings out the relation
between the approximations and the median series and also the fact that the
rational number p occurs for the first time (and so as an even term) in My,,.

It is clear that M, has no term betewen p and 1/0. It can be seen that the
largest value of i such that there is no term between p and 1/0 in Mj is a,.
The penultimate elements 1,2, 3, ...., a;in M;, M,, ...., Mg, respectively,
may therefore be called the first g, median approximations to p.*

Again the largest value of i such that in Mg,,; there is no term between
p and g/l is evidently a,. The numbers a, + 1/1, ao + 1/2, ...., a4 + 1/a,
of Mg,+1» Mage2s - ---» Ma,a, Tespectively, in the interval (p, 1/0) give the
second set of median approximations to p.f Proceeding thus we have

5.1. a; is the maximum value of ¢ such that there is no term in

Ma'w‘_i,aﬂ_. co e i1 + t thWCen P and ao + 1/01 + 1/02 "]"' “eae + I/ai_l
(i=2,3 ...., n.

* The successive terms in M; between which p lies are (ifl, 1/0), i=1,2,3, ...., a,.
t The successive terms in Mgo+; between which p lies are (a/1, g5 +1/5),i=1,2,3, ...., a;.
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5.2. The ith set of approximations to p are: a, -+ 1/ay+ 1/as+. ...
L g, + 1t (t=1,2, ...., a34; i=2,3,....,n+1).

5.3. Thus the total number of approximations to p is @y + a; + .. ..
+ ap = o (p). This shows that p occurs for the first time in Mg,,. It is
to be noted that all the convergents of the CF occur among these approxima-
tions.

We now proceed to find the exact order in which the convergents a,,
ay + 1/ay, ay + 1/a; + 1/a,,. ... occur in the respective median series My,
Mg,+a,» ----. From the above reasoning relating to the approximations
it is clear that

5.4. a, and 1/0 are consecutive in Mg, and p lies between them;

5.5. ayand ay+ 1/a, are consecutive in My .4, and p lies between them ;
and so on. We note that g, occurs in Mg, as the 2%-th term and hence occurs
in Mg,iq, as {2 (2% — 1) + 1}-th term. Since @, + 1/a; is the term next
to a, in Mg,iq, its order is 2% (2% — 1) 4+ 2. Hence g, + 1/a, occurs in
Mg, 1a,+a, s the {202 (2%:+0 — 20+ & 1) + ]1}-th term. Since ay + 1/a; + 1/a,
is the term preceding a, 4- 1/a; in Mg 4q,1q, its order is 28++3:2 _20:+az4 703
Hence in general

5.6. the i-th convergent ay+ l/a; + lfa;+ .... + 1/a occurs in
Mg ia,4- - - -+a; @s the p-th term where p = 2000t - 40,2k .. 4841
oo (DR 2% {1 (D

Proof.—Let this be true for the i-th convergent. We shall prove that this
is then true when i is replaced by i + 1. The term (— )¥! indicates that if i
is old, the order of (i + 1)-th convergent in Mg ....... +qi+y 18 ONE more and
if i is even one less, than the order in Mg, ... g4, of the i-th convergent.
From (5.6) and (4.2.6) the i-th convergent has in Mg.. ... 4,4, the order

206 (p— 1) £ 1 =20+, 4GHL | (—])H12a61 4 |
Hence the (i + 1)-th convergent has in Mg;. ... g+, the order equal to
2ot - +@iy1 (= )R 286 4 (] | (1),

which is the same as (5.6) with (i + 1) instead of /. Since the result has been
verified for i =1, 2 it holds generally.

The above is also true for the »-th convergent, that is p. For the sake
of convenience let us take » to be even so that the CF has an odd number of
terms. We then have the
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THEOREM 1. A rational number p occurs for the first time as q-th term
in My, ; if p has partial quotients ay, a,, .. .., ap (n even) then,

q___2a0+....+au__2a1+....+au+ +2a"
. 1,1 1
p=atg t ot g

It can be seen that since a, > 0, g is even as ought to be the case since
p occurs in My, for the first time.

COROLLARY.—The number p occurs as the 2r-th term of My, where

=c(p=ay+a,+ .... +ap, (n even)
p=20-1_—_20-1-0c L 420",

Note.—If p < 1, then a; =0 and in this case the first two terms of r
cancel each other.

From the corollary we see that we can associate with the partial quotients
of p, the integer r = 20-1— 20-1-8 4 .. 4 201 ¢ =g¢(p) and then we
are in a position to say that p occurs as the 2r-th term in My, . Conversely
if we pick out any term in M; which occurs for the first time, its order is an
even number 2r and we may show as follows that any such r can be repre-
sented as an alternating binary scale representation with odd number of

terms starting with 27-1,
For, we know that any integer r can be uniquely expressed as an alter-
nating binary scale representation with odd number of terms in the form
F=2% —20 4 ... 420 (n even)
(@>a,>a,> ....>an=>0).

If r > 22 (so that p > 1) its alternating binary scale representation will
begin with 21~ and we can, by the corollary, obtain its partial quotients and
in particular the first partial quotient of the corresponding 2r-th term in M;

will be greater than zero. If r < 2i-2 (so that p < 1), the alternating binary
scale representation will begin with 2™ (m < i — 2); we shall then add to

this representation the initial term so that
p=2F1_2i-1p2m .
The partial quotients are now given in order (0, i —1 —m, ....).

5.7. Thus we are not only able to give the precise order 2r of the
number p and the median series M, in which it occurs for the first time but
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conversely, given any term, say 2r-th in an arbitrary M;, we are able to obtain
its partial quotients.

Consequently, the corollary establishes a (1 — 1) correspondence bet-
ween a given rational number p > 1 and an integer r in the form of an alter-
nating binary scale representation with odd number of terms, making it
possible to enumerate the rational numbers greater than 1.

We next deduce from the corollary, the following theorem which shall
be used in the next section.

THEOREM 2. The sequence of numbers which are the R-th terms from the
right in all the median series, form an increasing arithmetic progression with
common difference 1.

Proof
Case 1.—Let R be an even number 2. Let p be the 2r-th term from the
right in M; and let it have the partial quotients a4, @y, ... ., a, (neven). Since

2r-th term from the ;ight is the (2 —2r + 2)-th term from the left, we have
by Theorem 1, 22" —r + 1) =2" — 2% 4+ ... + 2% (5 even) sO that

poe=2b1-00 _ QismGe-ti o 20e-1 ], (5.8)
This is therefore the unique alternating binary scale representation for r.
If p’ be the 2r-th term from the right in M;, similarly we have,
r = 2btk-1-bo __ gitk-1-be-bx 4+ ..., —2bm1

where by, b,, ...., by are the partial quotients in the CF expansion of p'.
Comparing this with (5.8) we have

by=ay,+k; bi=a;(i>0); m=n.

Thus the terms in M; and M;, differ only by &, the difference in the orders
of the median series.

Case 2.—Let now R be an odd number = 2¢j + 1 (j odd). Then by
(4.2.7) it follows that R-th term of M; occurs as (j + 1)-th term from the
right in M;_¢ and this is even. Similarly R-th term from the right in M,
occurs as (j -+ 1)-th term from the right in Mj,,_.. Since j + 1 is even, the
arguments of case (i) hold here and we have the theorem.

From (4.2.4) we now have

5.9. If the R-th term from the left of M; is a/b, then the R-th term from
the left of M. is (a/ka + b).
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5.10. Hence, the numerators of the R-th terms from the left in M;,
My, - ..., (R < 2W41) are the same; that is, the numerator is independent
of i. Also, the denominators form an arithmetic progression with common
difference equal to the corresponding numerator.

§6. THE RELATION BETWEEN THE TERMS OF THE MEDIAN
SERIES AND THE 7-FUNCTION

The corollary under Theorem 1 and (5.7) show that the rational numbers
are completely enumerated by the sequence of the median series. If any
rational number p occurs for the first time in M, as 2r-th term, then we call o,
r as the median co-ordinates of p. From what has preceded, the partial
quotients of p can be found by the expression of r in the alternating binary
scale. p itself can be expressed by Gaussian brackets in terms of the partial
quotients.

But we can adopt a short method by expressing the numerator and the
denominator of p directly as a function of the median co-ordinates. We
may define the numerator of the 2r-th term from the left in M; to be w (r, 7).
But from (5.10) it follows that w (r, i) is independent of i; that is, u (r, i)
= (r) say. This is in fact the r-function of Hermes defined in Section 2.
The relation between these two functions is given by p(r) = 7.. Also the
denominator of the 2r-th term in M; is the numerator of its reciprocal, that
is, the (2t — 2r — + 2)-th term. Therefore the denominator of the 2r-th
term is

© (2i'1 —r+ 1) = 7giippy
Thus

Tr

2r-th term of M; = (r < 20D, 6.1

T(2-1-141)
and this is in lowest terms.
We now proceed to show a method of calculating 7.

We have seen that given a positive integer r which has the unique alter-
nating binary scale representation

po= 21 . 2118y 4 Qi-1-G-Gi 4 98,1 (p even)
(a9 =0,a, 2 1),
it follows from (2.3.1) and (2.3.2) that
T = [an, Gpgs + -« -, o]
= [ag, @y, + ..., 23] by (3.6)
= [as, a3, ....,ap)if g =0,
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From the alternating binary scale representations of the integers 1, 2, 3, 4, 5,
viz.,

1 =2°;2=21; 3=2%2—-21420; 4=22; 5=23—22420
we get

=1 15=2 7=3, 7,=3, ©5,=4.
The recurrence relation for 7, can be obtained from (5.9). For, from (6.1)

2r-th term from the left in

Tr

M; = r <21
R PP (r=279
Hence
2r-th term in
My, = —F.
v T(2t-r+1)
— Tr
Tr + T2 r) (y 59)
As these have been remarked to be in lowest terms we get,
Tei-re) = Tr + T iy (r <29
Replacing i by (i + 1) and the r by 2t — a + 1) we get
T(gita) = Ta T T(2'-at1) (e < Zi) (6.2)

This is precisely the recurrence relation of Hermes! (p. 372).

We can now calculate any term (say k-th from the left) of any M;. Let
the term be denoted by T (k, i).

Case 1.—Let k be even = 2r.

Then
T (k, i) = —
(e, 1) T2 i)
by (6.1)
_ T2

Ty(2i-k+2)
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Case 2.—When k is odd, k¥ + 1 and kK — 1 are both even. Since k-th
term of M; is the median of the adjacent terms, we have

T (k, i) = —te-n F Tidee (6.3)
Ty -k+3) T Th2~k+1)

Or alternately, when k is odd, write k = 2¢j 4 1 (jodd). Then this term

occurs for the first time as (j + 1)-th term in M;_¢, i.e., as the (j -+1)/2-th even
term.

Hence T(k,)=T( + 1,i— ¢). Hence by case (1) we have
T (k, i) = —udt1z where k = 2¢j -+ 1. (6.4)
T2 "°—j+1)

It can be verified that (6.3) and (6.4) are the same, using =-function proper-
ties.
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