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w INTRODUCTION 

THE airo of this paper is to indicate a method of enumeration of  positive 
rational numbers. Such an enumeration consists in establishing a ( 1 -  1) 
correspondence between the elements of  the set R + of  positive rationals (or 
a subset of it) and those of the set I+ of positive integers. A few methods 
of enumeration of rationals have been indicated in Wildex a (pp. 80-81, 106- 

107). 

In the following, we shall also study some of the properties of  the median 
series (defined below) which is akin to the Farey series and also about the 
-r-function defined by Hermes. 1 We make use of  the properties of  the 
median series and the -r-function to enumerate the positive rationals > 1. 

Hermes, on the basis of his ~--function, proves certain results which, 
we ate bound to think, are motivated by the structure of the median series 
studied in the paper. However Hermes does not obtain all the results 
obtained here and in particular Hermes does not interpret the binary scale 
representation of an integer n in relation to the structure of the median series. 

Hermes'  paper was a s a  matter of  fact suggested by a paper of  Stern 2 
in which he introduces the series called the Stern's series 

So.. (r, s) 

$1.. (r,r + s,s) 

$2.. (r, 2r + s,r + s,r + 2s, s) 

and so on. I f  r -- 0, s = 1 in St then this series becomes identical with the 
numerator of the median series M~. If  r = 1, s = 0, the series becomes 
identical with the denominator of Mi. From our point of view the import- 
ance of Stern's series is subordinate to that of  the median series. 

The significance of the partial quotients in the division transformation 
for two numbers a and b relatively prime, is also brought out in terms o f  
the median approximations defined in Section 5. These approximations 

12 
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are also the approximations of  Vahlen a but  they differ from those of  Vahlen 
in the method of  introduction. While Vahlen introduces the approximations 
to a real number p in connection with Farey series and is able to prove the 
important result that the approximations can be arranged in a single series 
`.1, `*2, ̀ *3, " . . . . . . .  SO that ai, c�91 1 are the two consecutive terms of  Fi, the 
Farey series of  i-th order, between which the real number p lies, we however 
define the same approximations in relation to the structure of  the median 
series and Vahlen's series arrangement is no longer true for the median 
approximations defined by us. The relation between the Farey series and 
median series do not seem to be fully known though we can show that the 
Farey series Fi is a part of the median series M i but  n o t a  part of  Mi_ 1. The 
latter part  is evident since the terms 1/i belong to Mi but  not to Mi_ 1. To 
prove that F iC  Mi we can use the following result which can be easily proved : 
" T h e  sum of  the partial quotients of  a rational number m/n in lowest terms 
is equal to or less than the greater of  m and n." 

Hermes'  r-function is introduced here in Section 6 specifically by means 
of  the order in Mi and the recurrence relations on which Hermes bases bis 
definition of  the r-function are directly deduced in Section 6, from the order 
properties of  the median series. 

The results in Sections 5 and 6 are bel ieved to be new. The auxiliary 
properties of  medians, necessary for proving them, have been collected in 
Section 4. 

I am indebted to Dr. R. Vaidyanathaswamy f o r  bis guidance and to 
Mr. S. Swetharanyam for his help in preparing this paper in its final form. 

2.1 .  

% : 1 and tu = fin-2") -}- ~'(2x+i+l_n) 

where 2" < n < 2 ~+1. 

2 .2 .  The Gaussian bracket is defined by 

[ ] = 1, [`*] = `*  and 

['*,3, . . . .  ,7 ,  a, , , n ,  . . . . ,  ~] 

2 .3 .  

expansion 

w NOTATIONS AND DEFINITIONS 

The r-function of  Hermes is defined by the recurrence relation 

( 2 . 1 . 1 )  

(2 .2 .1)  

= [`*,/~, . . . . ,  ~1 [ , ,  ,7, . . . .  ~] + [`*, 5,  . . . .  , 7 1  [,7, . . . .  , ~]. 

I f  any positive integer n has the unique alternating binary scale 

n = 2 at -- 2 al q- 2 a ' -  . . . . . . . .  -k 2 ax, (2.3.1)  
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( 0 ~ < a o <  a ~ < a 2 <  . . . .  < a x )  with odd number of terms ( i .e . ,  ~ even), 

then 

�9 ~ =  �9 (a0, a l - - a o ,  a 2 - -  al,  . . . .  , a x - - a x - ~  (2.3.2) 

= ( 1  + a 0 ,  a l - -  ao, a ~ - - a l ,  . . . . , a x - - a x - ~  (2.3.3) 

[vide I-Iermes x (satz 1)]. The fact that the alternating binary scale expansion 
is unique for a given integer and that there are an odd number of terms in 
such an expansion i s t rue  for n = l ,  2, 3 for, 1 = 2  ~ , 2 = 2 1  , 3 = 2  ~  
q- 2 2. Let us now assume that this is true for all integers less than N (say) 
where 2 k'-x < N _< 2 ~. Now N can be uniquely written in the form 

N = 2 ~1  + 2 a~ + 2 a' + . . . .  -t- 2 a" 

w h e r e k - -  1 > a l > a 2 >  . . . .  >ah>__0 .  

Let now the alternating binary scale expansion of N -  2 k-1 be 

N _ 2 k - l = 2 a ' + l - - 2 b q -  . . . .  

(2.3.4)  

(odd number of  terms) 

Then 

N ----- 2 k-1 + 2 a1+1 -- 2 b + . . . .  (even number of  terms) 

= 2.2 rr -- 2 k'--1 q- 2 a'+l -- 2 b -t- . . . .  

= 2 k -- 2 k-1 + 2 a1+1 -- 2 b + . . . .  (odd number of  terms). 

This is an alternating binary scale representation of  N with an odd number 
of  terms and this is unique because (2.3.4) is unique. 

2.4. The Median series is defined as follows: 

0 1  Mo=(~0) 
1 ~1(~191 

and so on. 
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w DIVISION TRANSFORMATION AlqD EUCLIDEAN ALGORITHM 

It is known that given any two positive integers a and b, an Euclidean 
algorithm can be constructed in the form 

a = bao + bo 

b = boa1 + bl 

bo = bla2 + b., 

(0 < bo < b) 

(0 < bl < bo) 

(0 < b 2 < b 0 

bn-3 = bn-e ah-1 + bn-1 (0 < bn-1 < bn-2) 

bŸ = bn-1 ah (ah > 1) (3.1) 

which ultimately yields the Greatest Common Divisor (hereafter denoted as 
(GCD) of  a and b. The numbers ao, al, az, . . . . ,  ah which appear in the 
successive stages of the division transformation are called the partial quotients 
in the Euc!idean algorithm. It is also known that the rational a/b can be put 
in the forro of a regular ¡ continued fraction (hereafter denoted as CF) 

a 1 1 1 (3.2) ~=Co+~+ ~+ ...... +c~ 

The numbers Co, cl, co, . . . .  are called the partial quotients of  the continued 
fraction. It is easi!y seen that the equations 

ai = c~ (i = 0, 1, 2, 3, . . . .  , n) 

ate true; that is, the partial quotients obtained in the above two operations 
are respectively the same. 

The number of partial quotients can always be made odd;  for if it is 
even, then ar~ can be replaced by the two partial quotients (ah-l, 1) so that the 
CF becomes 

a 1 1 1 1 
~ = a 0 + ~ + a 2 +  . . . .  + ~--__x + i .  

In (3.1) bn-1 is the GCD of a and b. The remainders b0, bl, b2, . . . . ,  bn~ 
at each stage of the operation can be eliminated in terms of  ao, ax, a~, . . . .  , a n 
and bn-1 and then we get 

b.-e = b~-i ah 

bn-a = bn-i [an-i, ah] 

bn-4 = bn-1 [an-~, ah-l, ah] 
. . . . . . . . . . . . . . . . . . . .  . . . .  ~ . . ~ o , ~  . . , . . , .  

bo = b~-i  [a2, a3, . . . . ,  ah]. 
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Finally we have 

and 
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b -= bn-1 [al, a2, a 3 , . . . . ,  ah] 

a = bn-1 (ao, al,  a.z, . . . .  , ah)  (3.3) 

Since bn-1  is the GCD of a and b, it follows that 

the integers represented by the two Gaussian brackets in (3.3) ate 

relatively prime. (3.4) 

The result of  the elimination is also the expression of a/b  as the regular finite 
continued fraction 

a 1 1 1 
b = ao -k al -k ~ - k  . . . .  - k a ¡  

_ l a 0 ,  a l ,  a ~ ,  . . . . ,  ah] 
- -  [ a l ,  a 2 ,  a 3 ,  �9 �9 �9 � 9  ah]" 

It follows that if a / b  is in its lowest terms 

a = [ao, al ,  a2, . . . .  , an] 

b = [aL, a2, a3, . . . .  , ah]. (3.5) 

F rom the above we see that the positive rational R = a /b  can be made 
to correspond to a sequence of integers ao, a l , . . . . ,  ah  (ao >_ 0, ai > 0 for 
i = 1, 2, 3, . . . .  , n) which are the partial quotients in the CF expansion of  
R and these partial quotients completely specify the rational number. If  
a/b  > 1 (so that ao >_ 1) is in its lowest terms, then the reverse of  the CF is 
equal to another rational number 

R '  = [ a r ~ ,  a r ~ - l ,  �9 �9 � 9  a l ,  ao] 
[ah- l ,  an-~, . . . .  , a l ,  ao] 

Pro. 
Pn,-1 

where p~ is the numerator of the n-th convergent of the original CF. We can 
call R'  as the associate of R. Ir is clear that the relation between a rational 
number and its associate is symmetrical. 

Therefore we obtain that ir ai >_ 1 (i ---- 0, 1, 2, . . . .  , n) 

[a0, al ,  . . . .  , ard = lar ,  ara-l, . . . .  , % ao]~ (3.6) 
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With any rational number R = a/b we shaU associate the function o (R) = 
the sum of  the partial quotients in the CF development of R ;  i.e., 

c r ( R ) = a o + a l +  . . . .  + a h .  If  R and R' are associates, 

then a ( R ) =  cr (R'). The significance of  this function is brought out  later 
on.  

w THE MEDIAN AND THE ELEMENTARY PROPERTIES OF THE MEDIAN SERIES 

We define the median of two positive rationals a/b and c/d (in lowest 
temas) to be (a + c)/(b + cO. Some of the important properties of  the 
median are 

4 .1 .1 .  The median rol~m2 of  two unequal positive rationals a/b and 
c/d lies between them and is different from them (a property of  ratios). 

The determinants bc -- ad, mlb -- m~a, m2c -- mld of a/b, ml/m~, 
two by two) are equal. Conversely, if the determinants of  the 
are equal for three ratios, then each one is the median of  the other 

4 .1 .2 .  
c/d (taken 
above type 
two. 

4 .1 .3 .  

4 .1 .4 .  
of  b/a and 

Ifbc -- ad = 1, then the median ofa/b and c/dis in lowest terms. 

I f  ml/m~ is the median of  a/b and c/d, then m2/ml is the median 
d/c. 

For the construction of the median series, we start with the extreme 
irreducible fractions 0/1 and 1/0. We denote M 0 = ( 0 / 1  , 1/0). Any 
Mi+l, i = 0, 1, 2, . . . .  is obtained from Mi by itroducing between every 
two successive terms of Mi their median. Thus we get the median series 
mentioned in (2.4). Mi is called the median series of i-th order. The 
following are some of the basic properties of the median series: 

4 .2 .1 .  Every term in each of  the median series is in lowest terms and 
the terms in a median series are in natural order from left to right and ate 
all distinct. Further any two successive terms in a median series have deter- 
minant 1. 

4 .2 .2 .  Every term of M~ not in Mi-1 is the median of the two adjacent 
terms in Mi-1. These terms are irreducible. Every term of Mi which occurs 
also in Mi<  is the median of the two adjacent terms in Mi. These terms are 
however necessarily reducible. 

4 .2 .3 .  The median series Mi contains 2 ~ -k 1 terms. Hence the even 
(odd) terms as counted from the left are also the even (odd) terms as counted 
from the right. The terms in Mi+x that are not in Mi ate the even terms and 
these continue as odd terms in succeeding series. 

A2 
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4.2 .4 .  The r-th term ffom the left in Mi is the reciprocal of the r-th 
term from the right. So the middle term is its own reciprocal and so is 1. 
(It  can be seen that the median series of i-th order is got by adding to the 
Fa.rey series of i-th order, its reflection about 1.) 

4 .2 .5 .  The middle term of the left half of  Mi is 1/2. The r-th tenr, s 
to the right and the left of  1/2 add up to I. 

4 .2 .6 .  The r-th term from the left (right) in Mi occurs as the (21" -- l)-th 
term from the left (right) in Mi+l; hence as (4r -- 3)-th term in Mi+2 and so 
in general as {2 k (r -- 1) + 1}-th term in Mi+k. 

4 .2 .7 .  So ii" 2 c is the highest power of  2 dividing r -- 1, then r-th term 
from right (left) of  Mi occurs in Mi--e as the 2 c~-th term from the right (left) 
where 

r - - i  
~ = - ~ ; ~  + �89 

Being an even term, this term occurs for the first time in Mi-c. 

w T H E  MEDIAN SERIES, (VAHLEN'S)  APPROXIMATIONS AND THE 

ENUMERATION OF ~OSITIVE RATIONAL NUMBERS 

The following is an interpretation based on the idea of approximations 
to a rational number in terms of the partial quotients ao, al, a2, . . . . ,  ah of 
the CF expansion of the rational number and this brings out the relation 
between the approximations and the median series and also the fact that the 
rational number 9 occurs for the first time (and so as an even term) in M#tp). 

It is clear that Mo has no terrn betewen p and 1/0. It can be seen that the 
largest value of  i such that there is no term between p and 1/0 in M~ is a o. 
The penultimate elements 1, 2, 3, . . . . ,  a0 in M1, M2, . . . . ,  Ma, respectively, 
may therefore be called the first a0 median approximations to p.* 

Again the largest value of i such that in Ma0+i there is no term between 
g and ao/1 is evidently ax. The numbers ao 4- 1/1, ao 4- 1/2, . . . . ,  ao 4- 1/a~ 
of  Mao+l, Ma0+2, . . . . ,  Ma,+a, respectively, in the interval (p, 1/0) gire the 
second set of  median approximations to p.~" Proceeding thus we have 

5.1. ai is the maxirnum value of  t such that there is no term in 
Ma,+m+a,+ . . . .  +ai,--1 4- t between p and ao 4- l /al  4- 1la2 4- . . . .  4- 1/ai-i 
( i = 2 ,  3, . . . .  , n). 

* The successive temas in Mi between which p lies are (i[I, 1/0), i = 1, 2, 3 . . . . . .  a o. 

of The successive temas in M.~ between whicla p lies are (ao/l , v o + l / 0 ,  i = 1 ,  2, 3 . . . . .  , a t. 
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5.2.  The ith set of  approximations to P a r e :  ao -t- 1la1+ 1 l a 2 + . . . .  
q- 1 / a i - 2 §  1/t ( t =  1, 2, . . . . ,  a i_l ;  i = 2 , 3 ,  . . . . , n +  1). 

5.3. Thus the total number  of  approximations to p i s  a0 + a~ § . . . .  
+ ah = cr (p). This shows that  p occurs for the first time in M~(p). Ir is 
to be noted tha t  all the convergents o f  the CF  occur among  these approxima-  
tions. 

We now proceed to find the exact order in which the convergents a0, 
ao --k 1~al, ao -k 1~al -k 1 /a2 , . . . .  occur in the respective median series Ma,,  
Mao+a,, �9 . . . .  F rom the above reasoning relating to the approximations 
it is clear that  

5.4. ao and 1/0 are consecutive in Mao and p lies between them;  

5.5. a o a n d a o +  1/al are consecutive in Mao+al and p lies between them ; 
and so on. We note that a o occurs in Ma. as the 2a~ term and hence occurs 
in Mao+al as {2 a' (2 a~ -- 1) + 1}-th term. Since ao + 1~al is the term next 
to ao in Mao~al its order is 2 a ' ( 2  a ~  1 ) §  H e n c e a o §  occurs in 
Ma0+a~+a, as the {2 a' (2 a~+a~ --  2 a~ + 1) § 1}-th term. Since ao § 1/az + 1/a~ 
is the term preceding a o + 1la1 in Mao+al+a, its order is 2 a~ --2al+a~ a'. 
Hence in general 

5.6. the i-th convergent ao + 1~al + 1la2 q- . . . .  + I/a occurs in 
Ma0+a,+ . . . .  +a~ as the p-th term where p = 2 a*+a'+ . . . .  +ai--2a'+ . . . .  +a*- t- 
. . . .  + ( _  1)i 2 a, + {1 + (--1)/+1}. 

Proo f . - -Le t  this be true for the i-th convergent.  We shall prove tha t  this 
is then true when i is replaced by i + 1. The term (--1)/+1 indicates that  ir i 
is old, the order  of  (i + 1)-th convergent in Mao+ . . . . . .  +a~+, Js one more  and 
if  i is even one less, than the order in Ma,+ . . . .  a~+l of  the i-th convergent.  
F r o m  (5.6) and (4.2.6)  the i-th convergent has in Ma,+ . . . .  +a,+l, the order  

2 a ~ + l ( p _  1 ) +  1 = 2 a , +  . . . .  +a~+l_  . . . .  + ( _ 1 ) i + 1 2 a ~ _ 1 +  1. 

Hence the (i-l- 1)-th convergent has in Ma~ . . . .  +a~+l the order equal to 

2a,+ . . . .  +a,~a _ . . . .  + (_1)/+1 2a,+1 q_ {1 -t- (--1)/+2}, 

which is the same as (5.6) with (i § 1) instead of  i. Since the result has been 
verified for i = 1, 2 it holds generally. 

The above is also true for the n-th convergent, that  is O. For  the sake 
of  convenience let us take n to be even so that the CF has ah odd number  of  
terms. We then have the 
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THEOREM 1. A rational number p occurs for  the first time as q-th term 
in Macp) ; i f  p has partial quotients ao, al,  . . . . ,  ah (n even) then, 

q = 2ao+ . . . .  +a, _ 2a1+ . . . .  +a,, + . . . .  + 2a, 

1 1 1 
p = a o + a  + ~ +  ....  + - -  a,r/." 

I t  can be seen that  since ah > 0, q is even as ought  to be the case since 

0 occurs  in M,cp) fo r  the first t ime. 

COROLLARY.--The number  p occurs  as the 2r- th term o f  M,,(p~ where 

cr = cr (p) = a o -t- al  + . . . .  + ah (n even) 

r = 2 ~-1 --  2 ~-l-a~ -k- . . . .  -}- 2a"-1. 

N o t e . - - I f  # < 1, then a0 = 0 and in this case the ¡  two terms o f  r 

cancel  each other .  

F r o m  the corol la ry  we see that  we can associate with the par t ia l  quot ients  
o f  p, the integer r = 2 ~-1 - -  2 c-l-at -1- . . . .  n t- 2 a"-l, cr = a (p) and then we 
ate  in a pos i t ion  to say that  p occurs as the 2r-th term in M,(0~. Conversely 
i f  we pick out  any term in Mi which occurs  for  the first time, its order  is an 
even n u m b e r  2r and we may show as fol lows that  any such r can be repre- 
sented as an al ternat ing binary scale representa t ion with odd  n u m b er  o f  

terms star t ing with 2 ~-~. 

Fo r ,  we know that  any integer r can be uniquely expressed as an  alter- 
nat ing b inary  scale representa t ion with odd  n u m b er  o f  terms in the forro 

r = 2 a~ - -  2 a' + . . . .  + 2 a" (n even) 

(ao > al > a~ > . . . .  > ah >_ 0). 

I f  r >_ 2 i--2 (so that  p > 1) its a l ternat ing binary scale representa t ion wiU 
begin with 2 i-1 and we can, by the corol lary,  obtain its partial  quot ients  and 
in par t icular  the first par t ia l  quot ient  o f  the cor responding  2r- th term in Mi  
wiU be greater  than  zero.  I f  r < 2 ~-2 (so that  p < 1), the al ternat ing binary 
scale representa t ion  wiU begin with 2 m (m < i - -  2);  we shall then add  to 

this representa t ion  the initial term so that  

r = 2 / - 1 - 2  i - l q - 2  m -  �9 . . . .  

The  par t ia l  quot ients  are now given in o rder  (0, i - -  1 - -  m, . . . . ) .  

5 .7 .  Thus  we are not  only able to gire the precise order  2r o f  the 

number  p a n d  the median  series Ma in which it occurs for  the first t ime but  
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conversely, given any terna, say 2r-th in an arbitrary M~, we are able to obtain 
its partial quotients. 

Consequently, the corollary establishes a (1 -- 1) correspondence bet- 
ween a given rational number p > 1 and an integer r in the form of  an alter- 
nating binary scale representation with odd number of  terms, making ir 
possible to enumerate the rational numbers greater than 1. 

We next deduce from the corollary, the following theorem which shall 
be used in the next section. 

THEOREM 2. The sequenee o f  numbers which are the R-th terms from the 
right in all the median series, form ah increas#Tg arithmetic progression with 
common difference 1. 

Proof 

Case 1.--Let  R be an even number 2r. Let p be the 2r-th term from the 
right in M~ and let it have the partial quotients ao, al, . . . . ,  ah (n evenk. Since 
2r-th term from the right is the (2 i --  2 r q- 2)-th term from the left, we have 
by Theorem 1, 2 (2 i--1 -- r + 1) = 2 ~ -- 2 i--a~ + . . . .  + 2 a" (n even) so that 

r = 2 i-l-a~ -- 2 T M  q- . . . .  q- -- 2 a"-I q-- 1. (5.8) 

This is therefore the unique alternating binary scale representation for r. 

I f  p' be the 2r-th term from the right in Mi+k similarly we have, 

r = 2 i+k-l-b~ -- 2 i+k-l-b~ + . . . .  -- 2 b'--x q- 1 

where bo, bl, . . . . ,  bre are the partial quotients in the CF expansion of  p'. 
Comparing this with (5.8) we have 

b 0 = a o - q - k ;  b i = - - a ~ ( i > 0 ) ;  m = n .  

Thus the terms in M~ and Mi+k differ only by k, the difference in the orders 
of  the median series. 

Case 2. - -Let  now R be an odd number = 2ej  + 1 ( j  odd). Then by 
(4.2.7)  it follows that R-th term of  Mi occurs as ( j  + 1)-th term from the 
right in Mi-e and this is even. Similarly R-th term from the right in Mi+k 
occurs as ( j  q- 1)-th term from the right in Mi+k-e. Since j + 1 is even, the 
arguments of  case (i) hold here and we have the theorem. 

From (4.2.4)  we now have 

5.9. Ir  the R-th term from the left of  M i is  a/b, then the R-th term from 
the left of  M~+t~ is (a/ka + b). 
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5.10. Hence, the numerators of the R-th terms from the left in Mi, 
Mt+~, . . . . ,  (R __< 2 i+~) are the same; that is, the numerator is independent 
of  i. Also, the denominators f o r m a n  arithmetic progression with common 
difference equal to the corresp3nding numerator.  

w THE RELATION BETWEEN THE TERMS OF THE MEDIAN 

SERIES AND THE "r-FUNCTION 

The corollary under Theorem I and (5.7) show that the rational numbers 
are completely enumerated by the sequence of the median series. If  any 
rational number p occurs for the first time in M~ as 2r-th term, then we call cr, 
r as the median co-ordinates of p. F rom what has preceded, the partial 
quotients of  o can be found by the expression of r in the alternating binary 
scale, p itself can be expressed by Gaussian brackets in terms of the partial 
quotients. 

But we can a d o p t a  short method by expressing the numerator and the 
denominator of p directly a s a  function of the median co-ordinates. We 
may define the numerator of the 2r-th term ffom the left in Mi to be/~ (r, i). 
But from (5.10) it follows that l~ (r ,  i )  is independent of i; that is,/~ (r, i) 
----/~ (r) say. This is in fact the ~--function of  Hermes defined in Section 2. 
The relation between these two functions is given by ~ (r )  = T r .  Also the 
denominator of  the 2r-th term in M~ is the numerator of its reciprocal, that 
is, the (2 i -  2 r -  q-2)-th term. Therefore the denominator of the 2r-th 

term is 

t~ (2 i'a - -  r + 1) = ~'r 
Thus 

2r-th term of M i -  ~'r (r < 2i-1), (6.1) 
Ÿ 

and this is in lowest terms. 

We now proceed to show a method of ealculating "rr. 

We have seen that given a positive integer r which has the unique alter- 
nating binary seale representation 

r = 2 i-1 -- 2 i-x-a~ + 2 i - l - a " - a '  - -  . . . .  + 2a"-1 (n even) 

(ao >_ O, a h  >_ 1), 

it follows from (2.3.1) and (2.3.2) that 

"r r = [a~,  a h - l ,  . . . .  , ao] 

= [a0, a l ,  . . . .  , ah]  by (3.6) 

= [a2, a3,  . . . . ,  ah] i f  ao = O. 
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From the alternating binary scale representations of the integers 1, 2, 3, 4, 5, 

viz., 

1 = 2 ~  2 = 2 1 ;  3 = 2  z - 2 1 + 2 ~  4----22; 5 - - 2 3 - 2 2  +20 , 

we get 

~-1=1, ~-2=2, -r 3 = 3 ,  ~-4=3,  * n = 4 .  

The recurrence relation for ~'n can be obtained from (5.9). 

2r-th term from the left in 

~'r (r < 2 i-1) 
' r (~~~- r+ l  ) 

M i - -  

Hence 

2r-th term in 

M i + l  - -  - -  
T?. 

7( 2t_?-+1 } 

"2" T + "F(2i--I--T+I) 

As these have been remarked to be in lowest terms we get, 

~'(2 ' - r+l)  : "rr + "r(2~-l-r+l)  ( r  < 2 ~1) 

Replacing i by (i + 1) and the r by (2 ~ -- a + 1) we get 

~'(2'+~~ = ~~ + ~'(2'-~+l) (~ < 2 i) 

This is precisely the recurrence relation of Hermes I (p. 372). 

We can now calculate any term (say k-th f rom the left) of  any Mi. 
the term be denoted by T (k, i). 

Case 1.--Let  k be even----2r. 

Then 

T (k, i) --  ~'r 
"r(2~-1_~,+1) 

_ _  7 k l 2  

by (6. I) 

For,  f rom (6.1) 

Coy 5 9) 

(6.2) 

Let 
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Case 2.- -When k is odd, k- t-  1 and k -  1 are both even. Since k-th 
term of  M i is the median of the adjacent terms, we have 

T (k, i) = Ÿ189  + ~'�89 (6.3) 
T�89 -~- T�89 

Or alternately, when k is odd, write k : 2ej + i (j odd). Then thJs term 
occurs for the first time as ( j  § 1)-th term in Mi-c, i.e., as the (j + 1)/2-th even 
term. 

Hence T ( k , i ) = T ( j +  1 , i - - c ) .  Hence by case (1) we have 

T (k, i) = rcJ+:~/z where k = 2 e j  + 1. (6.4) 
~-�89 

It can be verified that (6.3) and (6.4) are the same, using Ÿ proper- 
fies. 

1. Hermes, J. 

2. ,  Stern, M. A. 

3. Vahlen, K. Th. 

4. Wilder, R. L. 
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