
LECTURE 9

Integers, Rational Numbers, and Algebraic Numbers

In the set N of natural numbers only the operations of addition and multiplication can be defined. For
allowing the operations of subtraction and division quickly take us out of the set N;

2 ∈ N and3 ∈ N but2− 3 = −1 /∈ N

1 ∈ N and2 ∈ N but1÷ 2 =
1

2
�= N

The set Z of integers is formed by expanding N to obtain a set that is closed under subtraction as well as
addition.

Z = {0,−1,+1,−2,+2,−3,+3, . . . } .

The new set Z is not closed under division, however. One therefore expands Z to include fractions as well
and arrives at the number field Q, the rational numbers. More formally, the set Q of rational numbers is
the set of all ratios of integers:

Q =

{
p

q
| p, q ∈ Z , q �= 0

}

The rational numbers appear to be a very satisfactory algebraic system until one begins to tries to solve
equations like

x2 = 2 .

It turns out that there is no rational number that satisfies this equation. To see this, suppose there exists
integers p, q such that

2 =

(
p

q

)2
.

We can without loss of generality assume that p and q have no common divisors (i.e., that the fraction p

q
is

reduced as far as possible). We have

2q2 = p2

so p2 is even. Hence p is even. Therefore, p is of the form p = 2k for some k ∈ Z. But then
2q2 = 4k2

or

q2 = 2k2

so q is even, so p and q have a common divisor - a contradiction since p and q are can be assumed to be
relatively prime. Thus, no such p and q exist.

Yet
√
2 certainly exists; at the very least one can represent the number

√
2 geometrically as the diagonal

length of a square whose sides have unit length. To handle such numbers we must widen our number field
even further.

Definition 9.1. A number is called an algebraic number if if satisfies a polynomial equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0(9.1)

where the coefficients an, an−1, . . . , a0 are all integers, an �= 0, and n > 0.
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We note that rational numbers are always algebraic numbers since a rational number p

q
is a solution of

qx+ (−p) = 0 .

On the other hand, not every real number is algebraic. Certain numbers like π or e are known not to satisfy
any algebraic equation like (2.1). Numbers which can not be represented as the solutions of equations like
(2.1) are called transcendental. It is in general a very difficult problem to decide whether a given number

is transcendental or algebraic. e, π, eπ , and
√
2
√
2
are all transcendental. The last case, however, was not

proved until 1934. It is unknown whether ππ, eπ, or e+ π are algebraic or transcendental.

However, we do have a test to decide whether an algebraic number is rational or not.

Theorem 9.2. (Rational Zeros Theorem) Suppose that an, an−1, . . . , a0 are integers and that r is a rational
number satisfying the polynomial equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

where n ≥ 1 , an �= 0 and a0 �= 0. Write r = p

q
where p and q are integers such that q �= 0 and having no

common factors except ±1. Then q divides an and p divides a0.

Proof. We first recall the Fundamental Theorem of Arithmetic which states that every integer n has a
factorization

n = (p1)
a1 (p2)

a2 · · · (pk)ak
where the {pi} are distinct prime numbers and that this factorization is unique up to the ordering of factors
and the sign of pairs of factors.

Suppose that r = p

q
has the stated properties. So

an

(
p

q

)n

+ an−1

(
p

q

)n−1

+ · · ·+ a1

(
p

q

)
+ a0 = 0 .

Multiplying both sides by qn yields

anp
n + an−1qp

n−1 + · · ·a1pqn−1 + a0q = 0 ,(9.2)

or

a0q
n = p

(−anpn−1 − an−1qp
n−2 − · · · − a1q

n−1) .

Hence, p divides aoq
n. Since p and q are assumed to have no common factors, p must divide ao.

Alternatively, we can also rewrite (2.2) as

anp = q
(−an−1pn−1 − · · · − a1pq

n−2 − a0q
n−1)

and so q divides anp. Since p and q are assumed to have no common factors, q must divide an.

Example: Show that the solution of x2 − 6 is irrational.

According to the theorem above, if p

q
is a solution of x2 − 6 = 0 then p must divide 6 and q must divide 1.

Thus, the only possible rational solutions are

x = ±1,±2,±3,±6 .

But then

x2 = 1,4, 9, 36 �= 6 .

So no rational solution exists.

3. Fields and Ordered Fields
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The rational numbers Q and the real numbers R are examples of what is called an ordered field . More
generally, a field is a set F upon which operations of “addition” and “multiplication” are defined and for
which the following axioms are satisfied:

A1. a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F .
A2. a+ b = b+ a for all a, b ∈ F .
A3. There exists 0 ∈ F such that a+0 = a for all a ∈ F .
A4. For each a ∈ F there is an element −a ∈ F such that a + (−a) = 0.
M1. a(bc) = (ab)c for all a, b, c ∈ F .
M2. ab = ba for all a, b ∈ F .
M3. There exists 1 ∈ F such that a · 1 = a for all a ∈ F .
M4. For each a ∈ F , there exists a−1 ∈ F such that aa−1 = 1.
DL. a(b+ c) = ab+ bc for all a, b, c ∈ F .

Theorem 9.3. Suppose F is a field. Then if a, b, c ∈ F

(i) a+ c = b+ c implies a = b.
ii) a · 0 = 0 for all a ∈ F .

(iii) (−a)b = −(ab) for all a, b ∈ F .
(iv) (−a)(−b) = ab for all a, b ∈ F .
(v) ac = bc and c �= 0 implies a = b.
(vi) ab = 0 implies either a = 0 or b = 0.

An ordered field is a field F with the an order relation � satisfying the following axioms:

O1. Given a, b ∈ F , then either a � b or b � a.
O2. If a � b and b � a, then a = b.
O3. If a � b and b � c, then a � c.
O4. If a � b, then a+ c � b+ c.
O5. If a � b and 0 � c, then ac � bc.

In the theorem below we use the notation a ≺ b to mean a � b and a �= b.

Theorem 9.4. If F is an ordered field is an ordered field and a, b, c ∈ F , then:

(i) If a � b, then −b � −a.
(ii) If a � b and c � 0, then bc � ac.
(iii) If 0 � a and 0 � b, then 0 � ab.
(iv) 0 � a2 for all a ∈ F .
(v) 0 ≺ 1.
(vi) if 0 ≺ a, then 0 ≺ a−1.
(vii) if 0 ≺ a ≺ b, then 0 ≺ b−1 ≺ a−1.

Taking F = Q and � to coincide with the the usual numerical inequality≤, the above properties should seem
quite elementary. However, in our context (the axiomatic development of number fields) these statements
are properties which must first be proved before they can be employed. This we shall do next time.


