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Abstract 

The Common Core State Standards make clear that teachers should use the number line to 
represent integer operations in Grades 6, 7 and 8, continuing the development of number 
line understanding begun in earlier grades. In this paper, we will investigate the basics of 
the colored chip and number line models for representing integers and their operations. 
We will then draw connections between the two models. Finally, we will argue that the 
number line model is an important one that should be taught alongside or in lieu of the chip 
model in order to deepen students’ understanding operations with integers, rational 
numbers, and real numbers in general. 
Keywords: Rational number, operations, Common Core, instruction, number line, vectors 

 

Introduction 

 Many teachers are familiar with the “colored chip” model for teaching integer 

concepts and integer operations. Briefly, different colored chips are used to represent 

positive or negative units that can then be combined in ways that model operations with 

integers. However, the CCSS-M make it clear that teachers should use the number line to 

represent integer operations as well; in fact Standard 7.NS.A.1 in Grade 7 states students: 

7.NS.A.1: Apply and extend previous understandings of addition and subtraction to add and 
subtract rational numbers; represent addition and subtraction on a horizontal or vertical 
number line diagram. 
 

                                                        
1 chrisdohfr@gmail.com 
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Clearly, addition and subtraction should be represented on the number line. But if teachers 

are only familiar with using the chip model for integer operations, then how do they make 

the transition to using the number line? This article will explore the connection between 

these two representations for addition and subtraction and make a strong case for using 

both as multiple representations of a challenging mathematical concept. 

 There are several reasons for representing operations using the number line, not 

the least of which is that students must learn to perform operations with rational numbers, 

not just integers. Since the colored chip model can only reasonably illustrate integers and 

their operations, another model should be used that incorporates all rational numbers and 

is also mathematically sound.  

 In this paper, we will investigate the basics of the colored chip and number line 

models for representing integers and their operations. We will then resolve the challenge 

of connecting the two models. Finally, we will argue that the number line model is an 

important one that should be taught alongside or in lieu of the chip model in order to 

deepen students’ understanding of operations with integers, rational numbers, and real 

numbers in general. 

The Colored Chip Model: Basics 

 Generally, the colored chip model for integers uses one colored chip to represent a 

positive unit, and another colored chip to represent a negative unit. In this paper, we will 

use a circular yellow chip to represent a positive unit and a circular red chip to represent a 

negative unit. Readers familiar with the colored chip model will recall the notion of a “zero 

pair”, that is, that a pair consisting of a positive and negative unit “cancels” out to make 

zero and therefore does not affect the value of the quantity shown. 



  TME, vol. 14, nos1,2&.3, p. 311 

   

 

Figure 1: Zero Pairs with Colored Chips 

 

Addition with the Colored Chip Model 

 The operation of addition with the chip model is rather simple, employing a 

“grouping together” interpretation of addition. This means that when an addition 

statement 𝑎 + 𝑏 is presented, we interpret the statement as meaning to start with quantity 

𝑎, introduce quantity 𝑏 (“add 𝑏”) and then determine the resulting value after this action, 

removing zero pairs that are formed. It is important to note here that addition is 

interpreted as an action, i.e. something “is done” or “happens” to the quantity 𝑎.  

Subtraction with the Colored Chip Model 

 Representing the operation of subtraction with the colored chip model takes more 

ingenuity. Typically, the subtraction sentence 𝑎 − 𝑏 is represented with a “take away” 

interpretation of subtraction: we begin with the minuend, 𝑎 units, and attempt to take 

away the subtrahend, 𝑏 units. It is important to note here that subtraction is again 

interpreted as an action: something is being done to the minuend. However, when there is 

not enough to take away, as in the case of −7 − 3 (i.e., you cannot take away 3 positives 

from 7 negatives), zero pairs come into play. The idea is to start with the minuend, 

represented here as 7 negatives, and then to introduce as many zero pairs as needed so 

The value of the chips shown is “+2” as four yellow chips (+4) and four red chips 
(−4) combine to make 0. 
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that 3 positives can be removed. The result is then tallied up, and the difference of 10 

negatives, or −10, is deduced. This is illustrated in Figure 2. 

 

 

Figure 2: Subtracting when there is not enough to take away. 

 

Two more cases of subtraction are illustrated in Figure 3, in which including zero pairs is 

used when there are not enough to take away. 

 

Figure 3: Subtracting Integers with the Colored Chip Model and Zero Pairs 

By comparing number sentences and the results, teachers can use the colored chip models 

for addition and subtraction in tandem to illustrate the fact that 𝑎 − 𝑏 = 𝑎 + (−𝑏), that is, 

that subtraction is equivalent to adding the opposite. Notice that the actions involved in 

When there are not enough chips to take away, a student first adds in zero pairs, enough so that 
she can take away the subtrahend.  The student then removes the indicated number of chips and 

determines the result. Here, we subtract −7 − 3 by adding in at least three zero pairs, so that 
three positives (+3) can be removed. 

Add 
enough 

zero pairs 

4 − 6 = −2 

Subtracting Two Positive Integers (Not 
enough to take away) 

5 − (−3) = 8 

Subtracting Different Signed Integers 
(Nothing to take away) 
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obtaining the result in each case are different. The interested reader should explore this 

relationship. 

The Number Line Model: Basics 

 The number line model for representing numbers posits that every real number is 

represented by a single point on a continuous line that extends indefinitely in each 

direction, with positive numbers located to the right of 0, and negative numbers located to 

the left of 0. The formality of the argument is beyond this paper, but the number line can be 

thought of as a model that justifies the existence of real numbers (e.g. irrational numbers, 

which cannot be easily represented by other means, can be considered to be locations on 

the number line). 

With the number line model and integers, and furthermore with rational numbers, 

numbers have a bit of a dual nature: they are represented with points on the number line, 

but also with vectors. A vector can be thought of as simply a directed line segment, usually 

represented by an arrow. On the number line, the length of the arrow is the absolute value 

of the number it represents, while the direction in which the arrow points represents the 

sign of the number. Important with vectors, and for many challenging to understand at 

first, is that the only things that characterize a vector—and hence the number it 

represents—are its direction and length. Thus, the same vector (number) can be 

represented in different locations, depending on the starting point (the tail of the vector) 

and the ending point (the head of the vector; see Figure 4. Note that the zero-vector might 

be represented as just a dot over the point 0. 
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Figure 4: Basic Representation of Integers with Vectors on a Number Line 

Important in using the number line model is an understanding of opposites. The 

Common Core Standards introduce the notion of opposites in Grade 6 (6.NS.B.6), noting 

that introducing a negative sign in front of a quantity results in a new quantity located on 

the other side of zero at the same distance of the original quantity. Thus, we accept as a 

property of working with vectors on the number line that introducing a negative sign 

(taking the opposite) effectively changes the direction of the original arrow. See Figure 5 

for an illustration. 

 

Figure 5: Opposites lie on opposite sides of the number line but at equal distances. 

While number line models have been used in the past for integer operations, many 

of them rely on using motion for representing the operation in question, for instance, 

walking forwards and backwards to represent addition and subtraction. However, we 

quickly encounter problems with representing situations like subtracting a negative 

number; for this, an arbitrary rule akin to “walking backwards in a negative direction 

means walking forwards” is often introduced. While in any model representing operations 

can be troublesome and often involves introducing rules, we wish to do so only when 

Figure 3: A vector’s length and direction determine the number it represents. 
Thus, the same number can be represented in different ways. This is crucial to 

understanding operations on the number line. 

0 

+5 +5 −3 0 

 
 

The opposite of −7 must be +7 since it must be located at the same 
distance from zero as −7 but on the other side.  Thus, −(−7) = 7. 

0 

+7 −7 

−(−𝟕) 
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completely necessary and in a way that is consistent with students’ previous and later 

mathematical learning. 

Addition with the Number Line Model 

 We represent addition with vectors by placing vectors “head to tail” and 

determining the resulting vector. This applies to any of the cases illustrated earlier with the 

colored chip model, and is illustrated in Figure 6. Something immediately apparent is that 

positive and negative units combine to “cancel out” their directions, similar to what 

happens with the colored chip model. Readers should model for themselves what happens 

when a number and its opposite are added together to make 0. 

 

Figure 6: Addition with the Number Line (Vector) Model 

Subtraction with the Number Line Model 

 If subtraction on the number line is interpreted as take away, it is not clear what is 

being taken away at all, and we run into the same earlier issue in not always having enough 

to take away. Furthermore, while it is perhaps possible to represent a zero pair on the 

number line and take away the corresponding subtrahend, this representation is 

cumbersome and inconsistent with the way vector subtraction is represented in higher 

5 + (−3) = 2 
Adding Different Signs, Result Positive 

−5 + (−3) = −8 
Adding Two Negative Integers 

−6 + 2 = −4 
Adding Different Signs, Result Negative 

6 + 4 = 10 
Adding Two Positive Integers 

0 

+6 +4 

+10 

0 +5 

−3 
+2 

0 

−4 

−6 +2 

0 

−5 −3 

−8 
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mathematics. The key then, is to use a different interpretation when visualizing subtraction 

on the number line. 

 One of the prominent features of the CCSS-M is the progressive development of 

ideas across grade levels. Subtraction with rational numbers on the number line takes 

advantage of this by interpreting subtraction not as take away but as a question of 

“comparison”, referred to here as a compare problem.2 Specifically, we consider a 

subtraction problem 𝑎 − 𝑏 as an equivalent “unknown addend” problem, that is, 

“𝑎 − 𝑏 = □” means “𝑏 + □ = 𝑎.” In other words, 𝑎 − 𝑏 = □ is equivalent to asking, “What 

do I add to 𝑏 to get to 𝑎 on the number line?” We then use our understanding of addition of 

vectors to answer the question. 

 For example, when subtracting in a problem like 10 − (−3), we rewrite the problem 

as −3 + □ = 10.  This becomes the problem of which vector one would add to −3 in order 

to end up at the vector that points to +10. Notice the reliance on the connection between 

addition and subtraction for this strategy, as well as the understanding of vector addition. 

We start by representing −3 with a vector as the starting place and then representing 10 

with a vector as the ending place, and then think about which vector would bring us from 

−3 to +10. This is illustrated in Figure 7. 

                                                        
2 Specifically, in the CCSS-M/CGI framework, this is the compare, difference unknown 
interpretation of subtraction. 
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Figure 7: Representing Subtraction with "Adding On" on the Number Line 

Figure 8 illustrates two more examples of using the comparison interpretation of 

subtraction and the missing addend strategy for finding the difference.  

 

Figure 8: Subtracting Integers on the Number Line with the Compare Interpretation of Subtraction. 

 The number line model can be used to show that the result of subtracting a number 

and adding its opposite are the same, much like with the chip model. Note that the two 

operations 𝑎 − 𝑏 and 𝑎 + (−𝑏) look very different on the number line; the reader is 

encouraged to explore these two situations. 

Connection Between the Two Models 

 The connection between addition with colored chips and addition with vectors is 

fairly clear. For example, we see that in the case of adding positive and negative units, 

“canceling” to create zero pairs corresponds to moving in an opposite direction on the 

number line, effectively backtracking in either the positive or negative direction. Figure 9 

shows the same example of adding positive and negative numbers using each model. 

 

 
 
 

We represent the problem 10 − (−3) as asking, “What do I add to 
−3 to get up to +10?” We see that a vector of length 13 pointing in 

the positive direction will suffice. This vector represents +13. 

0 

+10 −3 

+𝟏𝟏 

Start End 

4 − 6 = −2 
Subtracting Two Positive Integers 

 
 
 
 
 

What do I add to 6 to arrive at 4? I add −2. 

0 +6 

+4 

−2 

−5 − 3 = −8 
Subtracting a Positive from a Negative 

 
 
 
 
 

What do I add to 3 to arrive at −5? I add −8. 

0 

+3 −5 

−8 
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When it comes to subtraction, we still must address the issue that the colored chip 

model and number line model have been presented using different interpretations of 

subtraction, one with take away and the other with compare. The connection between 

these models lies in using the compare interpretation of subtraction with the colored chip 

model as well.   

Solving a problem of the form 𝑎 − 𝑏 with colored chips and the compare 

interpretation of subtraction involves asking the same question, “What must I add to 𝑏 to 

get the value 𝑎?” Astute readers will already see the connection to the number line 

interpretation, but we illustrate with the example −7 − 10. We rewrite this as the missing 

addend problem −10 + □ = −7, and try to figure out what the value of □ is. We illustrate 

the solution to the problem in Figure 10. 

 

Figure 10: Seeing Colored Chip Subtraction as Missing Addend, as opposed to Take Away. 

Colored Chip Model: 5 + (−7) Number Line Model: 5 + (−7) 
 

 
 
 

 

 
We see we can make 5 
zero pairs by 
“canceling”, with 2 
negatives leftover for a 
sum of −2. 

 

 
In the number line model, we see that 5 of the 
negative units contained in −7 take you down to 
0, and then there are 2 more negative units, 
which leaves us at −2. 

Figure 9: Connecting Addition Using the Different Models. 

0 +5 

−7 

−2 

Target:    −7   
 
Start:     −10   
 
Add On:  +3 
 
We see that we would add 3 positive units to eliminate 3 of the 
negative units in −10 to get to −7. That is, we find −7 − 10 = □ 
by solving −10 + □ = −7.  
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Notice that this strategy still involves the concept of zero pairs, but it avoids the issue of 

“not having enough to take away,” and needing to introduce zero pairs.  Figure 11 

illustrates the two different models with the problem 10 − (−5): 

 

Figure 11: Adding On with Chips and on Number Line. 

The picture clarifies the connection between representing the missing addend strategy for 

solving the subtraction problem using each model.  

The compare strategy with chips yields an explicit connection to the number line 

model for integer operations. Clearly, the missing addend strategy of finding how many 

chips must be added to the subtrahend to yield the minuend is related to asking which 

vector must be added to one vector on the number line (the subtrahend) to obtain another 

vector (the minuend). The two models can be summarized as follows: 

Colored Chip Model Compare Subtraction 

To solve 𝑎 − 𝑏 = □:  

1. Reframe the problem as 𝑏 + □ = 𝑎. 

2. Set out 𝑎 chips(positive or negative as 

necessary). This is the “Target.” 

3. Set out 𝑏 chips. This is the “Start.” 

4. Determine what to add to 𝑏 to yield 𝑎. This is the 

Number Line Model Compare Subtraction 

To solve 𝑎 − 𝑏 = □: 

1. Reframe the problem as 𝑏 + □ = 𝑎. 

2. Mark 𝑎 as a vector starting at 0 and ending at 𝑎. 

This is the “Target.” 

3. Mark 𝑏 as a vector starting at 0 and ending at 𝑏. 

This is the “Start.” 

Target:   +10   
 
Start:    −5   
 
Add On:  +15 
 
 
 
We see that we would add 15 positive units to 
eliminate the 5 negative units and make sure 
we are left with 10 positive units.  

 Start:    −5                    Target:   +10   
 
 
 
Add On:  +15  
 
 
 
We see that we would add a vector 
representing 15 positive units to start at −5 
and end at +10. 

0 +10 −5 

+10 −5 

+15 

0 
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“Add On.” 

5. Understand that the “Add On” represents the 

difference between the two numbers. 

4. Determine what vector needs to be added to the 

head of vector 𝑏 to end up at the head of vector 𝑎. 

This is the “Add On.” 

5. Understand that the “Add On” represents the 

difference between the two numbers. 

 

Advantages of the Vector/Number Line Model 

 There are several potential advantages to using the number line model and the 

corresponding interpretations of the basic number operations presented here. 

1.  The Number Line Model can be used to model operations with Rational Numbers 

 One of the major drawbacks with using the integer chip model is that it is only 

feasible to use it to represent integers. When students move to problems like −1
2
− 3

4
, they 

simply need to accept on faith that the rules developed for integers extend to other 

numbers as well. However, the number line model will apply to operations with all positive 

and negative numbers since they can all be represented using vectors. 

2.  Relationship Between Operations 

 Throughout K-6, the CCSS-M are continually focusing on the algebraic relationships 

between operations.  Addition and subtraction are introduced simultaneously as “inverse 

operations,” as are multiplication and division.  The missing addend strategy for solving a 

compare subtraction problem on the number line or with colored chips makes explicit use 

of this relationship and can further enhance students’ understanding of this relationship. 

3.  Distance as Absolute Value of the Difference 

 The CCSS-M explicitly lay the foundation and set the expectation that students 

understand the quantity |𝑎 − 𝑏| as representing the distance between the numbers 𝑎 and 𝑏 
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on the number line. To arrive at this idea, one can use the number line interpretation of 

subtraction to explicitly illustrate that each of 𝑎 − 𝑏 and 𝑏 − 𝑎 represents the difference 

between the numbers 𝑎 and 𝑏, but with different directions. For example, while 

8 − (−4) = 12, the distance between 8 and −4, it is also the case that −4 − 8 = −12, which 

effectively gives the distance between −4 and −8 but in the opposite direction. 

 

Figure 12: Subtracting both 𝟖 − (−𝟒) = 𝟏𝟏 and −𝟒 − 𝟖 = −𝟏𝟏 shows that each gives the distance, only with a 
direction attached. Thus the absolute value removes the directionality and yields the distance. 

4.  Multiplication as scaling  

Those experienced with the chip model will be familiar with the difficulty in 

representing problems like “(−2) × (−3) = □” or “(−8) ÷ (−2) = □” using colored chips. 

We argue here that these can be represented with relative ease with the number line model 

if one appeals to the interpretation of multiplication as scaling, which is introduced in 

Grade 5 (5.NF.B.5.a) 

We can apply the interpretation of multiplication as scaling to solve a problem like 

“(−2) × (−3) = □” by simply interpreting it as, “What is the vector that is the opposite of 

the vector that is 2 times as long as the vector −3?” Clearly, this is the opposite of the vector 

−6, i.e. the answer is positive 6. Here we interpret the negative sign of the factor −2 as 

meaning “the opposite of”, as discussed earlier.  

For division, yet again we appeal to the relationship between operations: a problem 

like “(−8) ÷ (−4) = □” can be reframed as “□ ×  (−4) = (−8).” That is, we ask, “By what 

factor do I scale the vector (−4), and in what direction, to obtain the vector (−8)?”  

8 − (−4) = 12 −4 − 8 = −12 

0 −4 +8 

−𝟏𝟏 

0 −4 +8 

+𝟏𝟏 
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5.  Consistency with Later Vector Operations 

One final argument for using the number line model for rational number operations 

is the fact that the interpretations of the four operations with vectors on the number line 

align with the corresponding operations for vectors in 2- and 3-dimensions that students 

encounter in higher mathematics courses. Geometrically, such vectors are added by placing 

vectors head to tail and subtracted by considering a missing addend. This will correspond 

to adding and subtracting the components of the vectors, but the geometric interpretation 

is similar to the number line model interpretations. Furthermore, the number line model 

for multiplication described above can be connected to the geometric interpretation of 

scalar multiplication. 

Conclusion 

 The number line model for rational numbers and their operations plays an 

extremely important role in the Common Core in Grades 6 and 7 and onward. While many 

teachers will be familiar with the chip model, or a number line model that interprets 

operations with motion, many will benefit from the primer on using vectors given here. 

Teachers are encouraged to continue exploring the relationship between the two models, 

and to use their professional teaching acumen to discover ways to incorporate the number 

line into instruction on rational number operations. 
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