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Positivity

Last time we introduced the integers. Now we can talk about positivity.

Lemma 1 Let a be an integer. Then exactly one of the following three possibilities
holds: a = 0; there is a natural number n so that a = n − 0; or there is a natural
number n so that a = 0− n.

Proof

We define an integer a to be zero, positive or negative according to which possibility
holds. We write a = 0, a > 0 or a < 0 respectively. We then have the following three
assertions.

z THREE PROPERTIES OF POSITIVITY

For any a, b in Z,

Trichotomy: Exactly one of the following holds: a > 0; a = 0; a < 0.
Closure under +: If a > 0 and b > 0 then a + b > 0.
Closure under ×: If a > 0 and b > 0 then ab > 0.

The rational numbers

Rational numbers fractions p/q where p and q are integers and q 6= 0. Collectively
they are denoted Q (for quotient, which means ratio).

One can add rationals: p/q + r/s = (ps + qr)/(qs). One can multiply them:
(p/q)(r/s) = (pr)/(qs). The eight properties B and † still hold. So does

~ For every non-zero rational number x there is a rational number y so that xy = 1.
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We denote this y (which is unique!) by x−1 or 1/x .

One can define positive rational numbers x as those represented by p/q with p > 0
and q > 0. Then the three properties z hold.

As with the integers, one can ask how we should actually define the rational numbers.
The same trick as we used to define integers also works for rational numbers. We say
that every rational number is represented by an ordered pair (p, q) of integers, with
q 6= 0. We write this pair as p/q. We declare that p/q = p′/q′ if there exists an
integer m such that p = mp′ and q = mq′ ; or such that p′ = mp and q′ = mq. One
then verifies that all the claimed properties really hold.

Inequalities

The absolute value of a rational number x is denoted by |x|, where this symbol is
defined as follows:

|x| =

{
x, x ≥ 0
−x, x < 0.

Notice that | − x| = |x| and that |x − y| > 0 unless x = y. Informally, one can think
of |x− y| as the ‘distance’ from x to y.

Theorem 2 For any rational numbers x and y, we have

|x + y| ≤ |x|+ |y|

and
|x− y| ≤ |x|+ |y|.

Proof

Upper bounds

Suppose that R is a number system satisfying all the axioms we enumerated: ?, †, ~
and z. The only example we know about so far is R = Q, the rational numbers. We
can write inequalities b > a in this number system, and we can also write b ≥ a to
mean that either b > a or b = a.
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Definition 3 If A is a set of numbers in R, an upper bound for A is a number x
such that x ≥ a for all a ∈ A. We say A is bounded above if an upper bound exists.
Similarly, a lower bound for A is a number y such that y ≤ a for all a ∈ A. We say A
is bounded below if a lower bound exists.

Example 4 Let R = Q. An upper bound for the set A = [0, 1] is x = 2; another is
x = 1. If A = {1, 2, 3, . . . } then A is bounded below but not above.

Definition 5 A least upper bound or supremum for A is a number x in R such that (i)
x is an upper bound for A; and (ii) if x′ is another upper bound for A then x′ ≥ x . If a
supremum exists, it is denoted by sup A.

A greatest lower bound or infimum for A is a number y in R such that (ii) y is a lower
bound for A; and (ii) if y′ is another lower bound for A then y′ ≤ y. If an infimum
exists, it is denoted by inf A.

Lemma 6 If x and x′ are both least upper bounds for A then x = x′ . Similarly for
greatest lower bounds.

Proof

This lemma justifies the notation sup A for ‘the’ supremum of A and inf A for ‘the’
infimum of A.

Example 7 Let R = Q. Then

sup [0, 1] = sup (0, 1) = 1;

inf [0, 1] = inf (0, 1) = 0;

sup {−1/2,−1/3,−1/4, . . . } = 0;

inf {−1/2,−1/3,−1/4, . . . } = −1/2.

An ‘obvious’ lemma:

Lemma 8 If a > b and b > 0 then a2 > b2 .

Proof

Proposition 9 Let R = Q. Let A = {a ∈ Q : a2 < 2}. Then A has an upper bound
but no least upper bound.

Proof

Spivak reference: chapters 1–2.


