
CS3110 Fall 2013 Lecture 10: The
Type of Rational Numbers (in OCaml

and Mathematics) (10/1)

Robert Constable

1 Lecture Plan

• Binding and scope revisited

• Abstract syntax for λ-calculus

• Mathematical type for rational numbers
Z, Q

• OCaml type for rational numbers Q
using int
requires a relation as well

• Algebraic properties of Z and Q
modules and algebraic structure
further properties of Q
equality

• Canonical form and greatest common divisor
GCD definition
GCD theorem
gcd in OCaml

1

3

3 Abstract syntax for the Lambda Calculus

Abstract syntax examples

type id = Id of string ;;

type term = Lambda of (id * term) | Ap of (term * term)

| Var of string ;;

type term = Lambda of (id * term) | Ap of (term * term)

| Var of string

Lambda (Id "x1", Ap (Var "x1", Var "x1"));;

- : term = Lambda (Id "x1", Ap (Var "x1", Var "x1"))

4 Rational Numbers in Mathematical Types

A standard way to define the type of rational numbers, denoted Q, is as
“fractions” p/q where

p ∈ Z = {0,−1,+1,−2,+2, . . .} and
q ∈ Z− {0} = {−1,+1,−2,+2, . . .}.

So Q = { 〈 0, 1〉, 〈 0,−1〉, 〈 0, 2〉, 〈 0,−2〉, · · ·
〈 1, 1〉, 〈 1,−1〉, 〈 1, 2〉, 〈 1,−2〉, · · ·
〈−1, 1〉, 〈−1,−1〉, 〈−1, 2〉, 〈−1,−2〉, · · ·
〈 2, 1〉, 〈 2,−1〉, 〈 2, 2〉, 〈 2,−2〉, · · ·
〈−2, 1〉, 〈−2,−1〉, 〈−2, 2〉, 〈−2,−2〉, · · ·

...
}

We know how to perform arithmetic on rational numbers and compare
them with =, <, >.

Typically we represent rational numbers in reduced form, factoring out
common factors, e.g.

2/4 = 1/2 , 50/100 = 1/2 , 6/8 = 3/4

4

How can we represent this clean mathematical type in OCaml?

5 Rational Numbers in OCaml

We can almost capture the mathematical type with int * int in place of
Z× Z− {0} but we have anomalies such as (0, 0), (1, 0), · · ·
We can create a Boolean check to eliminate these

r: int * int rational(r) = snd(r) <> 0

e.g. (p, q) is rational iff q 6= 0

Arithmetic of rationals

addition a/b + c/d =
a ∗ d+ b ∗ c

b ∗ d

e.g. 1/6 + 3/8 =
26

48
=

13

24

multiplication a/b ∗ c/d =
a ∗ c
b ∗ d

1/6 ∗ 3/8 = 3/48 = 1/16

Both operations have inverses

subtraction a/b − c/d =
a ∗ d− b ∗ c

b ∗ d

division a/b ÷ c/d = a/b ∗ d/c =
a ∗ d
b ∗ c

1/6 ÷ 1/2 = 2/6 = 1/3

5

6 Algebraic Properties of Z and Q

The integers Z have the properties of an integral domain, namely these
11 properties

+ is a binary function Z× Z→ Z

+ is associative
a+ (b+ c) = (a+ b) + c

+ is commutative
a+ b = b+ a

∗ is a binary function Z× Z→ Z

∗ is associative
a ∗ (b ∗ c) = (a ∗ b) ∗ c

∗ is commutative
a ∗ b = b ∗ a

∗ distributes over +
a ∗ (b+ c) = a ∗ b+ a ∗ c

Zero is an additive identity
0 + a = a

Unit is a non-zero multiplicative identity
1 ∗ a = a

Additive inverse
∀a : Z.∃(−a) : Z.

(
a+ (−a) = 0

)
Cancellation

If c 6= 0 and c ∗ a = c ∗ b, then a = b

6

6.1 Algebraic Properties of Q

Q has the properties of a field.

A field is an integral domain such that for every a 6= 0 there is an inverse
element a−1 such that a−1 ∗ a = 1.

We denote a−1 as 1/a.

In our construction of Q from Z× Z− {0} a−1 is 1/a and in general
b ∗ x = a is solved by x = a/b the quotient of a by b.

6.2 Modules and Algebraic Structures

In PS4 we will see how OCaml modules organize types and operations in a
manner similar to algebraic structures such as Integral Domains and Fields.

We will see in Lecture 11 that real numbers, R, also form a field. In a
similar way OCaml modules can have several different instances.

6.3 Further Properties of Q

Mathematical types such as Q and Z define equality relations

x = y in Z x = y in Q

On Z two integers a and b are equal exactly when they have the same
canonical forms, e.g.

0 ∗ 1 = 0 since 0 ∗ 1 ↓ 0

2 ∗ 3 = 6 since 2 ∗ 3 ↓ 6

7

What is equality on Q?

a/b = c/d iff a ∗ d = b ∗ c
50/100 = 1/2 since 2 ∗ 50 = 100

The “fraction” 1/2 is a canonical form of a rational number because it can’t
be further reduced.

To put a/b in canonical form, we want to remove common factors, e.g.

165

462
=

5

14
since

3 ∗ 5 ∗ 11

2 ∗ 3 ∗ 7 ∗ 11
=

5

2 ∗ 7

6.4 Equality on Q

We reduce a/b to a canonical form by removing the common factors in a
and b. We can do this by dividing a and b by their greatest common
divisor, gcd.

For
3 ∗ 5 ∗ 11

2 ∗ 3 ∗ 7 ∗ 11
the gcd is 3 ∗ 11.

There is a simple algorithm to find the gcd of two integers. We can in fact
find it from an inductive proof that the gcd exists.

Definition Integer d is the greatest common divisor of integers a and b iff

d divides a, e.g. a = d ∗ a1
d divides b, e.g. b = d ∗ b1
and for any common divisor c of a and b, e.g. c divides a and c
divides b, we know that c divides d.

We say GCD(a, b, d).

Theorem ∀a, b : Z.∃ d : Z. GCD(a, b, d)

8

7 GCD Theorem

∀n,m : N.∃ g : N. GCD(m,n, g)

Proof by induction on n.

See Anne Trostle’s web page referenced in the web notes.

Qed

From the proof the proof assistant can extract an algorithm to compute
the gcd. It is essentially this

let rec gcd (n : int) (m : int) : int =

if n = 0 then m else gcd (m - (m / n) * n) n

where m/n is the OCaml integer divide, thus m− (m/n) ∗ n computes
m rem n, the remainder of m divided by n, e.g. 5− (5/2) ∗ 2 = 1.

9

	Lecture Plan
	Binding and scope revisited
	Abstract syntax for the Lambda Calculus
	Rational Numbers in Mathematical Types
	Rational Numbers in OCaml
	Algebraic Properties of Z and Q
	Algebraic Properties of Q
	Modules and Algebraic Structures
	Further Properties of Q
	Equality on Q

	GCD Theorem

