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Abstract 

Understanding rational numbers requires reorganizing our initial understanding of 

numbers as whole numbers. Coordinating the relationship between the different symbolic 

formats for expressing rational numbers (i.e., as fractions and as decimals) and their 

underlying non-symbolic magnitudes is an important component of mathematical 

development in children (Fazio, Bailey, Thompson, & Siegler, 2014; Siegler & Pyke, 

2013; Mazzocco et al., 2013). It is also an important component of decision making in 

everyday life (Simon, Fagley, & Halleran, 2004; Peters et al., 2006). The goal of the 

present experiments was to investigate the relationship between rational numbers, 

expressed in various formats, on one hand and general mathematical achievement and 

decision-making on the other. Two experiments demonstrated that the format of rational 

numbers impacts processing: the fraction format hinders magnitude processing compared 

to the decimal format. Experiment 1 additionally demonstrated that the precision of 

rational number magnitudes is related to general mathematical achievement. This is 

evidence that a better understanding of rational numbers is important for more abstract 

mathematics in adults. Experiment 2 showed that individual differences in rational 

number ability are also associated with individual differences in bias in decision-making. 

These findings have practical implications. Educationally, these results suggest that using 

number lines and intermixing decimal and fraction formats might improve rational 

number ability and therefore better prepare children for later, more abstract mathematics. 

Pragmatically, the results of this study suggest numerical ability alone is not a sufficient 

guard against biased decision making when probabilities are involved. Instead it appears 

other, non-numerical task features cause bias and need to be identified to make decision 

making more normative. 
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Chapter 1: Overview 

 

While basic numerical ability with natural numbers is clearly a prerequisite for 

basic math literacy, rational numbers, especially those expressed as fractions, remain a 

novel area of research and difficult concept to master (Schneider & Siegler, 2010). One 

reason for this difficulty is that what is true for natural numbers is often conflated with 

what is true for all numbers. Consider the statement: “When we multiply numbers, the 

numbers get bigger”. This statement is inconsistently true, only applying to a subset of 

real numbers; yet many people are inclined to agree with it (Van Hoof, Vandewalle, 

Verschaffel, & Van Dooren, 2015). Rational numbers challenge such oversimplified 

generalizations based on the integers alone. This difficulty is compounded by the fact that 

rational numbers are formatted in different ways, unlike natural numbers which are in 

only one format.  

Current research on mathematical ability suggests that a robust understanding of 

fractions as magnitudes is a strong predictor of later, more complex mathematical 

problem solving abilities in children and adolescents. Researchers have paired traditional 

magnitude comparison tasks (i.e., comparing which of two fractional numbers is greater 

or lesser) with number line estimation (NLE) tasks (i.e., locating fractional numbers on 

an unmarked number line). Both tasks together are significant predictors of standardized 

measures of mathematical achievement (Fazio, Bailey, Thompson, & Siegler, 2014; 

Siegler & Pyke, 2013). These results highlight the importance of fractions in developing 
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mathematical competency, particularly the importance of understanding them as symbols 

representing magnitudes that are both similar to and distinct from integers.  

Rational numbers are not just important as abstractions in the realm of 

mathematics but also can model the real world in ways important for everyday decision-

making. Probabilities are typically expressed as rational numbers formatted as fractions, 

decimal, and percentages. Thus, assessing the likelihood of outcomes expressed as 

probabilities requires an understanding of the magnitudes of these rational numbers in 

decision-making contexts. These rational numbers and contexts can interact, sometimes 

causing bias. One such bias is framing effect. The framing effect obtains in decision-

making tasks that deal with probabilistic information. Positive valence elicits more 

decisions that avoid risk, while negative valence elicits more decisions that seek risk 

(Tversky & Kahneman, 1981).  

This current study consisted of two experiments. The goal of Experiment 1 was to 

investigate the magnitude representations of rational numbers and the relationship 

between the precision of these representations and mathematical achievement. Magnitude 

representations were measured using two standard tasks, comparison and number line 

estimation. The goal of Experiment 2 was to build on the results of Experiment 1 and 

demonstrate how numerical cognition literature can inform the study of probabilistic 

decision-making when rational numbers become models of different outcomes. It 

investigated whether people with better magnitude representations of rational numbers 
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reason more consistently about probabilities, and in particular were less susceptible to the 

framing effect.  

 The motivation for this research is twofold. First, I aim to extend the current 

research on rational numbers (fractions and decimals) to an adult population with two 

measures of mathematical ability—the Rational Ability test of procedural knowledge of 

rational numbers developed for these experiments, and ACT-math sub-score, a 

standardized test of general mathematical ability. Second, I aim to explore how numerical 

processing of rational numbers drives two measures of the framing effect, a new 

probabilistic number line estimation task and a classic decision-making task.   

The results of these experiments have implications for mathematics education, 

suggesting the use of tasks that mix different rational number formats and the 

employment of number lines. They also have practical applications, suggesting that in 

some situations, rational number ability may not be enough to guard against biases such 

as the framing effect.  
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Chapter 2: Literature Review 

Rational Numbers 

Competency with rational numbers, especially fractions, is difficult for many to 

obtain. For example, on the National Assessment of Education Progress (NAEP), 50% of 

8th graders failed to order three fractions from small to large: 2/7, 5/9, and 1/12 (Martin, 

Strutchens, & Elliot, 2007). This rational number illiteracy continues into adulthood as 

demonstrated by the fact that community college students only attained 70% accuracy in 

a magnitude comparison task involving fractions compared to the 50% rate one can 

achieve by guessing (Schneider & Siegler, 2010).   

Unfortunately, we would be unwise to leave rational number ability to the 

competent few because this ability is a prerequisite for higher mathematical domains 

(Mazzocco, Myers, Lewis, Hanich, & Murphy, 2013). Mazzocco et al. (2013) found 

competency with fractions in children was a predictor of a broader range of mathematical 

abilities including addition, subtraction, multiplication, and division. This study measured 

4th to 8th grade children’s ability to judge which of two fractions is larger (i.e., a 

magnitude comparison task). Some fractions had the same numerator while the rest had 

the same denominator. Fractions also varied in presentation format between Arabic 

numerals vs. a visual block display (rectangles and squares divided into equal squares to 

represent the denominator with shaded squares representing the numerators). They found 

that participants across all grades and ability levels performed worse for symbolic versus 

visual depictions of fractions, showing the format of rational numbers can influence 
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processing. More importantly, difficulties with basic fraction comparisons, even when 

assisted by the same denominator or numerator persist even into 8th grade. These 

difficulties can distinguish between low achieving and math disabled students: children’s 

status as typically achieving, low achieving, or math learning disabled predicted their 

accuracy on a magnitude comparison task (after controlling for full scale IQ). These 

results show that individual difference in rational number processing are related to a 

broader range of mathematical abilities.  

Why might rational numbers, which are typically taught later as formal symbolic 

representations, be related to other mathematical abilities? First, we should consider how 

a ratio sense may develop independently of formal education. Then, we should consider 

the link between abstract, symbolic representations of rational numbers and their 

concrete, non-symbolic magnitudes emphasized by formal education.   

Humans may be predisposed to understanding rational numbers even before 

receiving formal instruction. Employing a preferential looking experimental paradigm, 

Xu and Garcia (2008) found that infants attend to sample and base-rate information, an 

analogous activity. In one experiment, they showed infants a box and drew 5 balls from 

the box (4 red and 1 white), then removed a panel on the front of the box so the infant 

could see inside clearly. In one condition, the balls inside matched the sample initially 

drawn (in this case the balls were mostly red) and in another case, the balls inside did not 

match the sample drawn (mostly white). Infants showed increased looking time in the 

mismatched condition, indicating they were sensitive to proportional (a out of b) 
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information. Therefore, rational number processing may be linked to non-symbolic, 

informal brain systems formal education eventually exploits. 

Some researchers have gone as far as to propose humans have a ratio processing 

system (RPS), an informal brain system that is sensitive to nonsymbolic ratio that 

underlies symbolic rational number processing. This system is analogous to the 

approximate number system (ANS) that has been well supported in underlying symbolic 

systems for natural numbers (Feigenson, Dehaene, & Spelke, 2004). Heretofore, due to 

their difficulty and resistance to education, many researchers and educators have thought 

symbolic fraction representations were too disconnected from natural brain systems to 

have such connections: somewhat like quantum theory in physics is disconnected from 

the everyday physics of our world, and is therefore purely a symbolic system humans 

developed by language, logic, and education. This assumption appears to be wrong. 

Matthews, Lewis, and Hubbard (2016) had participants compare non-symbolic dot arrays 

in which the ratio between dots (or size) varied, deciding which ratio is greater. They also 

had participants represent a single ratio of non-symbolic dots on a number line between 0 

and 1. These two measures created a proxy for the RPS. Next, participants completed the 

same tasks using fractions, the symbolic representations of the same ratios, and 

completed a fraction knowledge assessment. After controlling for both ANS acuity and a 

measure of executive function, RPS performance accounted for 11%, 4%, and 15% in 

variance on the symbolic comparison task, symbolic number line estimation task, and 
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fraction knowledge assessment respectively. These results suggest a non-symbolic 

system, such as the RPS, does underlie symbolic fraction performance.  

 Further evidence for the link between rational numbers and informal brain 

systems also come from employing a classic finding on natural numbers to the study of 

rational numbers: the distance effect. The distance effect (Moyer & Landauer, 1967) is 

the finding that people more quickly judge which of two numbers is greater the farther 

the distance between the two numbers. For example, people judge 9 to be greater than 2 

more quickly than they judge 6 to be greater than 5. This finding is considered to be 

evidence that there must be some correspondence between the symbols for these numbers 

and their underlying non-symbolic magnitudes. Distance effects have been found with 

decimals and fractions (Varma & Karl, 2013; Matthews & Chesney, 2015), suggesting a 

similar correspondence. However, there is evidence this effect may disappear for 

fractions in certain conditions, suggesting fraction representations may be more difficult 

to link to magnitudes (Zhang, Fang, Gabriel, & Szűcs, 2016; DeWolf & Vosniadou, 

2015).  

 Since rational numbers do appear to have some foundations in non-symbolic 

systems, the links between symbolic notations and these non-symbolic magnitudes is 

crucial. This link is built primarily via formal instruction. Mathematics expresses rational 

numbers in various notations and this may have consequences for integrating them into a 

unified number system. Differences in how rational numbers are presented may be 

related to contextual congruencies with the non-symbolic objects or concepts being 
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represented. Rapp, Bassock, DeWolf, and Holyoak (2015) explored how mathematics 

textbooks and college students choose to represent rational numbers in word problems (as 

decimals or fractions) and found strong preferences based on the nature of the quantities 

being represented. When the problem context referred to continuous variables (such as 

mL of a solution), both math educators and college students choose to use decimals to 

express the problem solution. However, when the problem context referred to discrete 

variable (such as colored marbles), both groups chose to use fractions to express the 

problem solution. This representational congruence has also been demonstrated to affect 

performance outcomes on tasks with different applications of rational numbers: while 

decimals, as mentioned above, facilitate magnitude comparisons, fractions appear to be 

advantageous in relational reasoning between discrete concepts (DeWolf, Bassok, & 

Holyoak, 2015).  

These findings represent a logical, but potentially problematic trend in our 

education and comprehension of rational numbers. Decimals are a more natural fit for 

continuous variables as the range of values is unbounded, while fractions naturally fit 

discrete variables as the range of values is bounded (by a part and a whole), thus these 

representational preferences reflect a natural congruency with problem context. However, 

understanding the connection between ¼ and .25 beyond just symbols, but as congruent 

representations of magnitudes, whether of continuous or discrete variables, may be an 

important developmental benchmark, and our educational system may not emphasize this 

connection enough. This connection between symbolic representations of rational 
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numbers and their non-symbolic magnitudes may be an indicator of an integrated number 

theory, a more flexible and complete understanding of numbers (Siegler & Lortie-

Forgues, 2014).  

Siegler and Lortie-Forgues (2014) propose that there are four trends in developing 

an Integrated Theory of Number Development. First, we increase the precision of our 

representations of the magnitudes expressed nonsymbolically. Next, we link nonsymbolic 

to symbolic representations of small numerical magnitudes. Next, we extend the range of 

whole numbers whose magnitudes can be represented accurately. Finally, we accurately 

represent the magnitudes of numbers other than whole numbers, in particular fractions, 

decimals, and negatives. This theory assumes that the link between these symbolic and 

nonsymbolic magnitudes takes place on a mental number line and that understanding 

rational numbers requires reorganizing the structure of this number line. The capacity to 

flexibly connect different representations of rational numbers (decimal and fractions) to 

their nonsymbolic magnitudes may be a particular challenge to this integrated number 

theory and the use of number lines to measure this ability may be a strong indicator of 

more holistic numerical abilities. 

In summary, humans may be predisposed to processing ratios without formal 

education. Different symbolic representations of rational numbers may build on this 

capacity differently. Education with rational numbers then may challenge overly 

simplified connections between abstract mathematical symbols and their connection with 

actual magnitudes. Thus, performance on tasks requiring processing of rational numbers 
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may relate to other mathematical abilities not directly involving rational numbers. As an 

individual connects the abstract symbols of rational numbers, particularly fractions, with 

their non-symbolic magnitudes, they gain a more complete and flexible understanding of 

a broad range of concepts and skills needed for mathematical success. Next, we consider 

more evidence of the connection between rational numbers and broader mathematical 

ability and how two different tasks capture this connection by requiring participants to 

access some magnitude representation of these symbols.  

Magnitude Comparison, Number Line Estimation and Rational Number Processing 

Recently, some researchers have begun using number line estimation tasks in 

parallel with magnitude comparison tasks, and have found both to be strong predictors of 

general mathematics ability (Fazio, Bailey, Thompson, & Siegler, 2014). During 

magnitude comparison, participants are given two rational numbers and are asked to 

indicate which one is larger or smaller. Response times or accuracy rates have both been 

used as a measures of performance on these tasks. During number line estimation tasks, 

participants are given a rational number and are asked to mark that number on a number 

line with polls marked 0 and 1, or sometimes extending between 0 and 5. For the Number 

Line Task, average absolute error (how far off these markings are from the correct 

markings) is the measure of performance. Siegler and Pyke (2013) measured fraction 

comprehension in children (6th and 8th graders) with both a magnitude comparison task 

and number line estimation task involving fractions. They found that the magnitude 

comparison and number line estimation tasks combined accounted for 9-10% of variance 
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in state mathematics achievement exam, using both reading scores on the same state test 

and executive function tasks as controls.  

The same researchers also examined whether participants who based their number 

line markings on actual fraction magnitudes did better on the mathematical achievement 

test. To explore this, they computed gamma correlations between each child’s 0–1 

number line estimates and the order of the fractions if ranked by numerator, denominator, 

or fraction magnitudes. The largest of these three correlations was interpreted as the 

child’s predominant approach, unless all relations were weak (< .25), which resulted in a 

strategy classification of unknown. This strategy essentially places individuals relying on 

non-magnitude based strategies that can lead to accurate markings into a different 

category from those relying more on the actual magnitudes involved, a tendency overall 

performance can mask. For example, performance could be comparable between a 

participant relying mostly on a numerator-focused approach and a participant relying on a 

magnitude based approach since sometimes the larger numerator does indicate a larger 

number. Both 6th and 8th graders who relied on the magnitude strategy as opposed to a 

numerator or denominator strategy had higher state math achievement scores (d = 1.26 

and 1.86 respectively). This finding highlights both the use of number lines and the 

importance of comprehending fractions as magnitudes as an important skill in 

mathematics. It suggests that number lines may be superior in revealing people’s actual 

magnitude understanding of rational numbers, because performance relies more on actual 

magnitudes while magnitude comparisons are more difficult to decouple from other 
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strategies.  

Number lines have also been explored as an instructional tool and found to be 

effective at post instructional performance with rational numbers (Saxe, Diakow, & 

Gearhart, 2013; Maertens, De Smedt, Sasanguie, Elen, & Reynvoet, 2016). Saxe et al. 

(2013) compared instruction using an Everyday Mathematics standard lesson (control) to 

a Learning Mathematics through Representations (LMR) lesson on fractions. The LMR 

lesson emphasized the connection between integers and fractions via number lines with 

the aim of building a more “coherent integration of integers and fractions.” Results 

showed that the LMR lessons increased performance on test items involving a strong 

understanding of the concepts of integers and fraction, regardless of whether they were 

presented with a number line or not, suggesting number lines may also have instructional 

value.  

Further support for this instructional potential comes from a large scale 

intervention on 4th graders at-risk in the domain of mathematics by Fuchs, Schumacher, 

Long, Namkung, Hamlett, Cirino, Jordan, Siegler, Gersten, and Changas (2013). The 

intervention focused on the use of number lines to highlight a measurement 

conceptualization of fractions while the control group focused on the more typical part-

whole concept. The number-line based intervention increased post-test performance on 

both conceptual and procedural measures (d = 0.29 and 2.50) compared to the typical 

instruction, and reduced the gap between at-risk and low-risk students.  

Rational Number Ability and Algebra   
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 Next, I explore what connections there may be between rational numbers and 

basic algebra. This connection is of particular interest as Experiment 1 employed an 

outcome measure of mathematical achievement with many items requiring algebraic 

manipulation. Van Hoof, Vandewalle, Vershaffel, and Van Dooren (2015) posit the 

difficulty with rational numbers stems from four important differences they have as a 

class from natural numbers. The first difference is density. The natural numbers are 

discrete, countable, (you can point to what comes next), while rational numbers are 

infinitely dense. The second difference is representation. Natural numbers have a single 

symbolic notation, while rational numbers have many. The third difference is 

determining size. Size with natural numbers is related to visual cues (e.g. 42 is greater 

than 8) which is not true for rational numbers (e.g. 0.42 is not greater than 0.8, and 11/99 

is not greater than 8/9). The fourth difference is the effect of arithmetic operations. The 

consequence of basic arithmetic operations on natural numbers is straightforward 

(multiplying reliably increases magnitudes), while more complicated for rational numbers 

(sometimes multiplying decreases magnitudes). Van Hoof, et al (2015) refer to cases 

when people err due to these difference in favor of the what work for natural numbers 

natural number bias.  

 Natural number bias has been shown to impede algebraic learning. Van Hoof, et 

al. (2015) tested 8th, 10th and 12th graders on a verification task in which participants 

decided whether algebraic statements that were either congruent with or incongruent with 

natural number bias could or could not be true. For example, 3 / x < x can be true and is 
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congruent with natural number bias, while 3 / x > 3 can also be true, but is incongruent 

with natural number bias. The difference between the two statements is that the second 

requires comprehending the role rational numbers can play in evaluating algebraic 

statements. The experiment also contained true incongruent statements that required 

considering negative numbers, such as 4 + x < 4. Students showed higher performance on 

congruent items overall across all grades. The difference in performance between 

congruent and incongruent items was almost entirely due to the difference between items 

that involved multiplication and division, the items that require considering rational 

numbers. These results demonstrate a plausible reason rational number ability extends 

into later mathematical concepts, in this case, algebra. Students with a more flexible and 

complete concept of number, particularly including rational numbers, are likely to be able 

to more flexibly manipulate more abstract mathematical concepts.   

Summary   

 Symbolic rational numbers pose a challenge to people when initially taught and 

continue to be challenging into adulthood. The fact that a rational number magnitude can 

be represented in various formats poses a unique challenge to rational number ability and 

crossing representations fluently may be an important benchmark in mathematics 

development. Using both magnitude comparison and number line estimation tasks with 

rational number has been shown to be related to general math achievement. There are 

plausible procedural reasons individuals who are more fluent with rational numbers may 
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be better able to engage in other mathematics, such as manipulations in algebra requiring 

multiplying or dividing with unknown quantities that can or must be rational numbers.  

Probabilities, The Framing Effect, and Loss Aversion 

 Rational numbers are not just important as abstract symbols in the realm of 

mathematics but also can model the real world in ways important for everyday decision-

making. In particular, probabilities also depend on rational number representations of 

fractions, decimal, and percentages. Thus, assessing the likelihood of outcomes expressed 

as probabilities requires both an understanding of the magnitudes of these rational 

numbers and what these magnitudes mean in contexts involving other, sometimes 

irrelevant, information. One such source of irrelevant information is information that is 

framed positively or negatively. For example, whether a person got 80% correct or 20% 

incorrect on an exam. Note the information is exactly the same, but research shows that 

people evaluate information differently based on frame. 

 Probabilities and Rational Numbers 

Probabilities are expressed as rational numbers and those numbers can be mapped 

to their meanings as magnitudes. For example, a 50% chance of rain may come from 

records showing that on 15 out of 30 similar days, it rained. These numbers can be 

reduced to 1 out of 2 and therefore represents the same magnitude as ½ and .5. The 

difference is that this estimate can lead to decisions and may have contextual information 

that can change how one perceive that magnitude. Thus, it makes sense to explore the 
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relationship between people’s rational number processing ability and decision-making 

when probabilities are involved. 

Prior studies suggest that individual differences in numerical ability are related to 

individual differences in probabilistic reasoning. For example, people who are low in 

numeracy express a desire to be less involved in medical decision-making regarding their 

own health compared to those who are high in numeracy (Galesic & Garcia-Retamero, 

2011) and such decisions are almost always related to outcome expectations that can be 

expressed as a probability. In a large-scale survey, Galesic and Garcia-Retamero 

measured participants’ numeracy using the Lipkus (2001) scale, a measure of the ability 

to translate between percent, ratio, and fraction representations of rational numbers. They 

also asked participants to rate the degree to which they (1) felt competent to make and (2) 

wished to be involved in making decisions regarding their healthcare. Those with low 

numeracy scores had lower ratings of their own competence and desire to take part in 

medical decision-making regarding their health. 

A plausible intermediary ability linking numerical processing and decision-

making is the structure of one’s mental number line and the mapping of symbolic 

numbers to it. Probabilities are often presented in decimal or percent formats, which can 

be understood similarly to the numbers 0-100. It is therefore important to consider 

whether probabilities are linearly scaled, as natural numbers are in older children (Booth 

& Siegler, 2004) and adults, and what contexts may affect this mental representation. 

Siegler and Booth (2004) had children mark the position of a subset of the numbers 1-100 



 17 

 

on a number line that was unlabeled except for its endpoints. 6-year-olds made marks 

reflecting a logarithmic number line representation, with relatively far distances between 

those corresponding to smaller numbers and relatively near distances between those 

corresponding to larger numbers. By contrast, 8-year-olds made marks reflecting a 

strikingly linear number line representation. Their data are reproduced in Figure 1. 

 

Figure. 1.  Children’s number line estimates progress from logarithmic to linear 

throughout early elementary school (Siegler & Booth, 2004). 

 

Regarding probabilities expressed as rational numbers, Tverksy and Fox (1995) 

found that people do not treat risk in a linear fashion. In one experiment, they asked 

participants to choose between a 25% chance to win $150 and a sure prize that varied 

from $40 on down. If people behave rationally, they would calculate that 25% of $150 is 

$37.5, the expected value of the bet, reflecting the long run expectation of make similar 

decisions. Then, they would compare this to the sure bet of $40 and conclude the risky 

bet is less attractive. The key prediction of this normative analysis is that the 

attractiveness of the risker option should increase as the sure bet is reduced. In this 
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experiment, that would be seen in the percent of participants choosing the riskier option 

over the sure bet increasing as a linear function of the difference between the sure bet and 

expected value. However, participants displayed a non-linear decision pattern. This 

suggests that incorporating the magnitude of risk (i.e., probability) into a decision is not a 

matter of a linearly mapping between 0-100% as a normative analysis expects.  

It is important to note here that some people are more likely to choose the sure bet 

regardless of the numerical information because they are just more conservative in how 

they approach chance. The design of the experiment described above and others 

(including part of Experiment 2 of this dissertation) allow for the detection of how 

changes in numerical information or context affect people’s decisions above and beyond 

their a priori comfort with risk. In the case above, this control is accomplished by 

looking at the proportion of people choosing each option, thereby eliminating individual 

differences in general risk seeking.  

Now, consider again the example above with a little more context. Some 

proportion of people would choose to take the sure bet of $40 and some portion (a 

smaller proportion if the group is actually considering the expected value) would choose 

the riskier option. If that sure bet reduces to $30, those proportions should change in 

favor of the risker option and those proportions should also further change in favor of the 

risker option if the sure bet is reduced to $20. If people are considering the options 

numerically with some consideration, formally or informally, of the expected value of the 
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risky option, these shifts in the proportions of people preferring the sure bet vs. a risker 

choice should be a linear function of the difference between the expected value and the 

sure bet. They are not, suggesting there is an aspect of risk seeking and risk aversion that 

is not rational and not linear.  

However, people with high numerical ability are more sensitive to the magnitude 

of a probability in decision-making, responding more normatively when risk increases, 

than people with low numeracy (Peters, 2012). For example, Cokely and Kelley (2009) 

presented participants with 40 hypothetical choices between certain and risky options of 

the same nature as the Tverksy and Fox (1995) experiment described above. One trial 

might ask participants to choose the sure bet of winning $200 or a 20% chance to win 

$900, while another might be a choice between a sure bet of $200 or a 30% chance to win 

$900. Participants with higher numeracy scores made more high-expected-value 

choices—meaning, they were more likely to take the $200 in the first case, when the 

expected value was $180 (.2 x $900) and more likely to gamble in the second case, when 

the expected value was $270 (.3 x $900). Thus, rational number competence appears to 

modulate how sensitive they are to the numerical information relevant to that decision. 

This finding suggest rational number ability can improve decision making, or at least 

improve consistency in applying one’s desired level of risk-seeking behavior, when 

probabilities are involved by improving attention to the actual magnitude of probability.  

The Framing Effect  
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The previous example is one in which people must combine numerical processing 

(of rational numbers) with decision making. Researchers have also added non-numerical 

and irrelevant contexts to such decisions to see what affect this has on the outcome of 

such decisions. One example of this comes from Tversky and Kahneman (1981) in which 

they asked participants to choose between two options in a between groups design called 

the “Asian Disease” problem. All participants read the following introduction:   

Imagine that the United States is preparing for an outbreak of an unusual Asian 

disease that is expected to kill 600 people. Two alternative programs to combat 

the disease have been proposed. Scientific estimates of the consequences of the 

programs are as follows:  

Then, half the participants read and choose between the following two options (the 

positive frame): 

If Program A is adopted, exactly 200 people will be saved. 

If Program B is adopted, there is a 1 in 3 probability that all 600 people will be 

saved and a 2 in 3 probability that no people will be saved.  

The other half read and choose between the following two choices (the negative frame):   

If Program C is adopted, exactly 400 people will die. 

If Program D is adopted, there is a 1 in 3 probability that nobody will die and a 2 

in 3 probability that all 600 will die.  

 It is important to note that choices A and C and choices B and D have the same 

expected values. A and C represent the same sure bet of saving 200 people. B and D 



 21 

 

represents the same risky chance of saving or losing everyone based on an expected value 

calculation of (1/3 x 600= 200). Therefore, participants’ decisions should not vary 

between the two framings if they are based on a normative analysis of the numerical 

information presented. However, Tverksy and Kahneman (1981) found participants were 

more likely to make the risk-averse choice A in the positive framing condition than the 

risk-averse choice C in the negative framing condition. More generally, people are more 

risk averse when choices are framed positively and more risk seeking when choices are 

framed negatively. This finding is called the framing effect.  

The framing effect may be the consequence of a more general bias toward 

avoiding losses more than seeking gains, sometimes referred to as loss aversion 

(Kahneman & Tversky, 1979). If we assume a person’s current net state is 0, the idea of 

adding 2 to that state is appealing and the idea of subtracting 2 from that state is 

unappealing. Loss aversion is a bias to avoid the loss of 2 more than to approach the gain 

of 2. If this is a tendency, those who can better process numerical information may make 

more consistent decisions since they are not just relying on a subjective desire to avoid 

loss, but on a more normative assessment of the options. This fuller assessment includes 

evaluations of relevant information such as expected value and information related to the 

actual magnitude of the option or information provided. A central premise of Experiment 

2 is that how a problem is framed may modify people’s perception of a number 

representing a probability. In particular, do people’s representation of the magnitude of a 
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chance framed as a gain or a loss differ, and are people with higher ability with rational 

numbers more consistent in their representation of these magnitudes? 

Numerical Ability Modulates the Framing Effect 

Many studies have explored the framing effect since Tversky and Kahneman’s 

original paper. Numerical ability has been explored as a potential mediating factor, and 

indeed evidence suggest those with higher numeracy are less susceptible to the effect of 

positive or negative valence. For example, Simon, Fagley, and Halleran (2004) found 

individuals who self-reported higher math skills were less influenced by the framing of 

risky choices as those who reported low math skills. More direct evidence of the 

relationship between numeracy and framing effects comes from Peters, Västfjäll, Slovic, 

Mertz, Mazzocco, and Dickert (2006). They measured participants’ numeracy using the 

Lipkus scale (2001). Participants were also presented with exam scores and asked to rate 

them on a 7-point range from -3 (very poor) to + 3 (very good). The frame was 

manipulated by altering whether the scores were presented as percent correct or percent 

incorrect. For example, 74% correct or 26% incorrect represented the same test 

performance but only varied in positive or negative frame. The difference in ratings 

between conditions (correct vs. incorrect) was significantly greater among the people 

with lower numerical ability and more comparable among those with higher numerical 

ability. The same researchers also employed A (sure bet) vs. B (risk) paradigm, mirroring 

the original Tversky and Kahneman (1981) framing condition. In this experiment, they 

also asked participants to rate the attractiveness of each option (on a -3 to 3 scale), thus 



 23 

 

combining preference for a riskier option with a measure of more subjective 

attractiveness. The choices of participants with higher numeracy matched their ratings: 

People with higher numeracy were more likely to pick the option which they rated as 

more attractive, regardless of frame. People with low numeracy, however, exhibited 

framing effects regardless of their attractiveness ratings. In particular, they were drawn to 

the riskier choice in the negatively framed condition. These results imply people with 

higher numerical ability are integrating the numerical information in their decisions, 

while those with lower numerical ability are more susceptible to more superficial cues 

which bias their decisions.  

Garcia-Retamero and Galesic, 2010 replicated these results with consequential 

scenarios and included the use of visual aids to decrease the impact of general cognitive 

ability on decision making. They also used the Lipkus scale as a measure of numeracy. 

All participants were asked to rate the risk of medical procedures on a scale from 1 (not 

risky at all) to 4 (very risky). The frame was manipulated by altering whether outcomes 

were presented as chances of surviving after surgery or chances of dying after surgery. 

Again, people with lower numeracy were more susceptible to framing as they differed 

more in their risk ratings when considering the cases of 20% of dying after surgery vs. 

80% chance of surviving after surgery compared to those with higher numeracy. 

However, the use of visual aids (pie charts and vertical and horizontal bars) eliminated 

the framing effect regardless of numerical ability. These results suggest although 

individuals low in numerical ability may not be predisposed to focus on the numerical 
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information or to fully comprehend the magnitude of risk expressed as numerical 

symbols, they can with the aid of visual aids. This may be because individuals with lower 

numerical ability may not attend to the numerical information provided as much as those 

with higher numerical ability. Also, they may have trouble translating the numerical 

symbols systematically into a magnitude representation of the risk of each decision.  

The Framing Effect and General Cognition  

Research has shown that people who exert more cognitive effort are less likely to 

be influenced by frames. For example, a neuroimaging study found increased amygdala 

activity in the negatively framed condition, a region associated with emotional discomfort 

and displeasure (De Martino, Kumaran, Seymour, & Dolan, 2006), supporting a loss 

aversion explanation. However, this study also found a suggestive individual difference: 

individuals who were least affected by the framing effect (i.e., made more normative 

judgments) had significantly more prefrontal activity, a region associated with more 

effortful, controlled, and cognitive processing. Further, higher SAT scores, a broad 

measure of cognitive ability, are associated with a reduction in the framing effect 

(Stanovich & West, 1998). These findings suggest some people do exert cognitive effort 

to override this loss aversion tendency or may be more prone to attend to and process the 

numerical information available.  

It appears the framing effect can also be reduced by encouraging or giving more 

time for people to exert such effort before making their decisions. Takemura (1994) 

encouraged roughly half the participants to “think about the justification of their decision 
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and ….to write down the content of justification” in a framing task. This manipulation 

removed the framing effect completely within that group. Similarly, Miu and Crisan 

(2011) found a cognitive reappraisal task – asking participants to “think about your 

decision in a way that makes you stay calm” – reduced the framing effect.  

Taken as a whole, these studies suggest that increased cognitive effort, whether 

from internal individual differences or external encouragement, reduces or eliminates the 

framing effect. Given these non-numerical cognitive abilities have been shown to 

influence the framing effect, it makes sense to design stimuli in a way to highlight the 

effect of the framing effect on magnitude representations that does not requires 

manipulations of numbers, like calculating expected value. In this manner, we can see the 

effect of frame more independently of cognitive ability.  

Summary 

Numerical ability appears to modulate the biases in problem solving with 

probabilities. Superior numerical ability is associated with more consistent and normative 

answers. These findings may be related to people’s ability to accurately represent rational 

numbers, for example as analog magnitudes on a mental number line. The framing effect 

also appears to be related to numerical ability. The framing effect appears to be caused by 

some interruption of rational mathematical thinking due to non-numerical factors, such as 

loss aversion, that frame introduces. It may particularly impact individuals with already 

lower numerical ability, i.e., those least likely to attend to the numerical information 

systematically. This relationship is complicated by affective components of the contexts 
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provided during problem solving and the way in which numerical ability is measured. 

Cognitive effort alone seems to reduce the framing effect.  
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Chapter 3: Research Questions 

The goal of Experiment 1 was to investigate the magnitude representations of 

rational numbers and the relationship between the precision of these representations and 

mathematical achievement. Symbolic rational numbers pose a challenge to many children 

and adults. A comprehensive understanding of their magnitudes may be an important 

precursory skill along the way to more general math achievement. One unique challenge 

to understanding rational numbers is the fact they can be represented using different 

symbolic formats. It is unclear how well people reason about rational numbers in various 

formats. In particular, there has been little to no work on which format is easier to reason 

about and whether there are costs to reasoning about both decimal and fractions 

simultaneously.  

Another question concerns the relationship between rational number processing 

and mathematical achievement. Prior research has been limited to work on children and 

middle school aged students. However, the relationship in adults remains unexplored. In 

addition, the question of how processing different formats of rational numbers across 

different tasks relates to mathematical achievement has also not been systematically 

explored. There are two main formats of rational numbers of interest: decimal and 

fractions. These have been studied using two types of laboratory tasks that probe 

magnitude processing of rational numbers: magnitude comparison and number line 

estimation tasks. Parsing out which symbolic representation of rational numbers and 

which type of magnitude processing task is most predictive of mathematical achievement 
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would better inform our understanding of this relationship. In addition to laboratory 

measures of rational number magnitudes, we can also ask whether procedural knowledge 

(i.e., solving paper-and-pencil problems) involving rational numbers and mathematical 

achievement are associated. 

To close these gaps, Experiment 1 addressed two main questions:  

1. Do rational number formats differ in the fluency with which people can access the 

underlying magnitudes?  

a) In addition, is there a cost when performing a magnitude task that includes both 

fractions and decimals?  

2. What is the relationship between rational number magnitude processing and 

mathematical achievement in adults?  

a) Does either representation format (decimal or fraction or both) of rational 

numbers predict mathematical achievement?  

b) Does performance on the magnitude comparison task or the number line 

estimation task (or both) predict mathematical achievement?  

c) Do individual differences in procedural problem solving with rational numbers 

predict general mathematical achievement? 

Experiment 2 applied the methods used in Experiment 1 to bridge between 

mathematical cognition and behavioral economics. More specifically, it explored the 

relationship between people’s magnitude representations of rational numbers and their 

understanding of the framing of probabilistic information as gains vs. losses as revealed 
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by the framing effect. The framing effect occurs in tasks when equivalent numerical 

information is presented either positively or negatively, such as reporting a test result as 

80% correct vs. 20% incorrect. People evaluate these numerical equivalent outcomes 

differently due to frame, interpreting positively framed outcomes more conservatively 

than negatively framed outcomes.  

Despite a rather large literature on the framing effect, there are limits in our 

knowledge of whether this effect is related to numerical processing, and in the broader 

question of whether such biases can be reduced. One limit is that it is unclear at which 

level the framing effect occurs. Heretofore, this effect has been tested at the decision 

level, based on the macroscopic choice between two options for solving a complex 

problem. However, it is possible that the framing effect originates at the lower level of 

probability magnitudes. Specifically, the frame might modulate how a person perceives 

the magnitude of a probability, which in turn biases their decision-making. For this 

reason, Experiment 2 measured the framing effect in two ways. First, it utilized a novel 

variant of the number line estimation where participants estimated the position of a risk 

framed as a gain or a loss on a number line with poles 0 and 1. This task allowed 

evaluation of the frame effect at the lower magnitude level. Second, Experiment 2 

measured the framing effect at the higher decision level by having participants solve the 

original Tversky and Kahneman (1981) Asian Disease problem. The inclusion of this 

standard measure of the framing effect additionally allowed me to evaluate whether 

participants behaved as in previous studies. 



 30 

 

Another limit of prior research on the framing effect has been that studies that 

have also measured the numerical ability of participants have used the Lipkus Scale – a 

general test of the ability to translate between percentages, ratios, and fractions. 

Performance on this scale predicts resilience against framing biases. However, its focus 

on learned arithmetic procedures leaves open the question of the relation between more 

fundamental rational number capacities and biases like the framing effect. For this 

reason, Experiment 2 utilizes the Experiment 1 measures of the precision of rational 

number magnitudes. It investigates whether this more fundamental ability modulates 

susceptibility to the framing effect. Again, the goal is to investigate whether bias when 

making decisions involving probabilities is rooted in more fundamental numerical 

processing abilities than have been previously explored in the literature. 

Experiment 2 addressed two main questions: 

3.  Does the framing of probabilistic information affect people’s magnitude 

representations of rational numbers?   

4. Are individuals with stronger rational number ability less susceptible to exhibiting the 

framing effect?  
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Chapter 4: Experiment 1 

The goal of Experiment 1 was to investigate the magnitude representations of 

rational numbers and the relationship between the precision of these representations and 

mathematical achievement. Magnitude representations were measured using two standard 

tasks, comparison and number line estimation. The first goal of Experiment 1 was to 

explore the effect of format (decimal vs. fraction) on magnitude processing of rational 

numbers. The second goal was to extend the current research on rational numbers 

(fractions and decimals) to an adult population with two measures of mathematical 

ability—the Rational Ability Test, a test of procedural knowledge of rational numbers 

developed for these experiments, and ACT Math sub-scores, a standardized test of 

general mathematical ability.  

Experiment 1 addressed two main questions:  

1. Do rational number formats differ in the fluency with which people can access the 

underlying magnitudes?  

a) In addition, is there a cost when performing a magnitude task that includes both 

fractions and decimals?  

2. What is the relationship between rational number magnitude processing and 

mathematical achievement in adults?  

a) Does either representation format (decimal or fraction or both) of rational 

numbers predict mathematical achievement?  
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b) Does performance on the magnitude comparison task or the number line 

estimation task (or both) predict mathematical achievement?  

c) Do individual differences in procedural problem solving with rational numbers 

predict general mathematical achievement? 

 Although not the central focus of this experiment, the tasks employed enabled 

replication of several classic effects related to natural numbers.  

Participants  

 The participants were 64 undergraduates (48 female, 16 male) from a large, 

Midwest university. The average age of the participants was 20.7 years (SD = 2.5). They 

were recruited via personal appeals at the beginning or end of courses, email messages to 

a list of undergraduates interested in completing mathematical cognition studies, and 

fliers posted around campus. The criteria for inclusion for this experiment were that 

participants had to be university undergraduates and between the ages of 18 and 22. They 

were compensated $12 for approximately one hour of their time. This study was 

approved by the local Institutional Review Board. 

Design  

Experiment 1 was comprised of three tasks. The Magnitude Comparison task had 

one within-subjects factor, Type, with the levels of Decimal, Fraction, and Mixed. 

Response time and accuracy were the dependent variables. A repeated measured 

MANOVA was used to test the effect of Type as the same variables, response time and 
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accuracy, were measured for each participant three times, varying by Type. This test is 

sensitive to differences due to a factor within the same participant measured repeatedly.  

The Number Line Estimation (NLE) task had one within-subjects factor, Type, 

with levels of Decimal and Fraction. Time and absolute error were the dependent 

variables. A repeated measures MANOVA was also employed to analyze this task.  

 Finally, mean response times from the Magnitude Comparison task for each type 

and mean absolute errors from the NLE task for each type were used as independent 

predictors with the Rational Number Ability test and ACT math sub-scores as dependent 

variables in regression analyses. Hierarchical linear regression modeling was used here to 

test how much of the variance in each dependent variable can be predicted by the relevant 

levels of the Magnitude Comparison and NLE tasks, controlling for general academic 

ability.  

Measures 

Magnitude Comparison Task 

The three blocks tested each of the three conditions – Decimals, Fractions, and 

Mixed – defined by the Type factor. Participants were randomly assigned to make either 

greater judgments or lesser judgments across all three blocks. Each block consisted of 48 

trials. On each trial, participants compared two numbers. All numbers were pseudo-

randomly generated to create fractional values between 0-1 with denominators and 

numerators between 1 and 10 (for the fractional versions) and converted to decimals 
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rounded to the nearest tenths or hundredths along with the other restrictions mentioned 

here (see Table 1 for a sample of stimulus used). 

Table 1 

Sample Mixed Magnitude Comparison Stimuli  

Left Column Right Column Left Column Right Column 

0.21 9/10 0.62 1/3 

0.24 7/10 8/9 0.74 

2/5 0.82 0.33 1/6 

0.18 3/7 8/9 0.74 

5/8 0.83 5/6 0.68 

0.13 3/10 0.47 3/10 

1/3 0.48 0.32 1/7 

0.16 3/10 4/7 0.38 

3/7 0.49 0.42 1/10 

5/7 0.74 3/4 0.39 

0.11 1/8 0.67 1/7 

8/9 0.92 9/10 0.16 

Note. Sample stimuli of half of the Mixed Magnitude Comparison Block (24 trials). A 

listing of the full stimulus set is available in Appendix A.   

 

The numbers were counterbalanced in two ways to guard against response bias. 

Within each block, the larger number appeared on the left half of the time and the right 

half of the time. Also, within each block, the numbers appearing in the left were chose so 

that the average of the number used across all trials was close to 0.5; the same was true of 

numbers appearing on the right.  

The stimuli were structured to enable testing classic magnitude comparison 

effects in the mathematical cognition literature. Within each block, half of the stimuli 

were far comparisons (i.e., the difference between the two numbers was greater than .2) 
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and half were near comparisons (i.e., the difference between the two was less than or .2). 

This design allowed me to test the distance effect (Moyer & Landauer, 1967).   

In the Decimal block, the stimuli were additionally structured to enable testing of 

unit-decade compatibility effect. This is the finding that the tens and ones digits can 

interfere when people compare two-digit numbers (Nuerk, Weger, & Willmes, 2001). For 

example, people compare 26 and 37 quickly because both the ones and tens digits lead to 

the same judgment (i.e., 2 < 3 and 6 < 7), whereas they compare 16 and 73 slowly 

because they lead to conflicting judgments (i.e., 1 < 7 but 6 > 3). This effect has been 

extended to decimal comparisons (Varma & Karl, 2013). Of the stimuli, 24 were 

congruent, i.e., the larger number had larger digits in both the tenths and hundredths 

places (e.g., .26 vs. .37). The remaining 24 were incongruent, i.e., the larger number had 

a larger digit in the tenths place but a smaller digit in the hundredths place (e.g., .16 vs. 

.73). In addition, six of the incongruent trials include one number that had a tenths place 

but no hundredths place (e.g., .23 vs. .9). These trials enabled testing of the semantic 

interference effect for the decimal numbers (Varma & Karl, 2013). This is the finding 

that people are slower when the decimal proportion and natural number interpretations 

lead to conflicting judgments (e.g., .23 < .9 but 23 > 9).  

In the Fraction block, six of the stimuli had the same denominator (e.g., 2/5 vs. 

3/5) and six had the same numerator (e.g., 1/3 vs. 1/4). These trials were included to 

ensure the overall task was not too difficult for participants since comparisons with the 

same numerator or same denominator have been shown to be easier for children to 



 36 

 

process when initially learning fractions (Behr, Wachsmuth, Post, & Lesh, 1984). The 

remaining comparisons varied both numerators and denominators (e.g., 2/3 vs. 3/10), 

ensuring that participants could not rely on any single strategy.  

In the Mixed block, participants compared fractions to decimals (e.g. 1/3 vs. .42). 

The numbers for the Mixed condition were randomly selected using the same criteria as 

those for the Decimal and Fraction conditions. The numbers were counterbalanced to 

guard against response bias in two ways. First, the decimal number appeared on the left 

half of the time and the right half of the time. Second, the decimal number was the 

greater number half of the time and the lesser number half of the time.  

The Decimal and Fraction blocks were the first or second blocks as determined by 

the Order factor. The Mixed condition was always last. Thus, there were two orders: 

<Fraction, Decimal, Mixed> and <Decimal, Fraction, Mixed>. This ordering allowed for 

the testing of whether processing one format of rational number facilitates processing of 

the other format as a secondary analysis.  

Each block began with a set of 12 practice trials of the same type as the 48 

experimental trials that followed. The practice trials were representative of the 

experimental trials. 

Number Line Estimation Task 

The four blocks tested each of two conditions-decimals and fractions-defined by 

the Type factor. Participants were randomly assigned to either complete the two decimal 

or the two fraction blocks first. Each block consisted of 38 trials. On each trial, 
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participants placed a number on a number line between 0-1 with no landmarks marked 

(except for the ends at 0 and 1). See Figure 2 below for a screen shot of this task. All 

numbers were between 0 and 1 and none were .5. The numbers selected for this task were 

adapted from Siegler (2014) and are shown in Table 2.    

Table 2 

Number Line Estimation Stimuli 

Fractions Decimals 

1/19 6/11 0.05 0.55 

1/11 5/9 0.09 0.56 

1/10 4/7 0.10 0.57 

2/17 5/8 0.12 0.63 

1/8 9/14 0.13 0.64 

2/13 7/10 0.15 0.70 

1/6 5/7 0.17 0.71 

3/16 11/15 0.19 0.73 

3/14 3/4 0.21 0.75 

2/9 7/9 0.22 0.78 

3/13 5/6 0.23 0.83 

4/15 11/13 0.27 0.85 

2/7 7/8 0.29 0.88 

3/10 8/9 0.30 0.89 

1/3 9/10 0.33 0.90 

6/17 11/12 0.35 0.92 

3/8 13/14 0.38 0.93 

5/12 17/18 0.42 0.94 

7/16 18/19 0.44 0.95 

 

The numbers were counterbalanced such that half were above .5 and half below, 

with a broad range between 0 and 1. Further, the mean of all numbers in each block was 

approximately .5.  
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Each block began with a set of 10 practice trials of that were representative of the 

38 experimental trials that followed but with different numbers. Figure 2 shows a screen 

shot of the NLE task. Participants responded by using the computer mouse to click on the 

number line below within 5 seconds.  

 

Figure 2. Screen shot of the image participants viewed as they completed the Number 

Line Estimation task in Experiments 1 and 2.  

  

Strategy Self-Reports 

 After both the Magnitude Comparison task and the NLE task, participants 

completed a paper-and-pencil questionnaire where they self-reported the strategies they 

believe they used to perform each condition of each task. For the Magnitude Comparison 

task, the questionnaire was a single page, beginning with the instructions, “Please list all 

the strategies you can remember that you employed during this task to determine which 

value was larger or smaller for comparing:” followed by an example of each type of 

comparison (e.g. 1. Decimals to Decimals .15 vs .24). For the NLE task, the 

questionnaire was also a single page, with instructions to “Please list all the strategies you 

can remember that you employed during this task to determine where you placed each 

number for:” followed by an example of each type of marking (e.g. Decimals .24).  
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 Rational Ability Test 

 Participants then completed a paper-and-pencil test of basic skills related to 

rational numbers; see Appendix C. It was developed by considering items and sections 

from a pre-algebra text book (Yang, 2003). The test includes 3 sections. The first section 

includes six items relating to conversions, such as converting 3/5 to a decimal 

representation. The second section includes eight items relating to simple computations, 

such as 3/4 – 2/3 = _____. The third section includes 6 items relating to computations 

similar to the second section, but of a more complex and verbal nature, such as “What 

number is 1/4 of 150?”. The test included 20 items total.  

Mathematical Achievement 

 Generalized math ability was measured by the participants’ ACT-Math (or SAT-

Quant, converted to ACT-Math) scores. This is a standard mathematical achievement 

measure for high school and college-age students. Because this test covers high school 

mathematics (i.e., through Algebra II and pre-calculus), it is unlikely that participants’ 

knowledge of these topics will have changed much because of college mathematics 

experiences. Participants’ standardized test scores were obtained from the Office of 

Student Records. Participants granted written permission to access these scores through 

the consent process.  

Procedure 

 After consenting to the study, participants completed the three tasks on a Dell PC 

running Windows 7 Enterprise in an isolated room. The Magnitude Comparison task was 
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employed via the software program E-prime, version 2.0 and the NLE task was employed 

via Java. 

Participants completed the two tasks in one of 8 orders. Participants either started 

with the Magnitude Comparison or NLE task (2 options). Within the Magnitude 

Comparison task, participants were randomly assigned to complete either greater than or 

less comparisons. Also, within the Magnitude Comparison task, participants either started 

with the Fraction or Decimal condition first (2 options), and completed the other second, 

with the Mixed condition was always last; this was the Order factor. Finally, within the 

NLE task, participants either completed the two Decimal blocks together first and then 

completed the two Fraction blocks, or the opposite (2 options). Thus, these combinations 

produce 2x2x2 = 8 orders, with half the participants completing greater than judgements 

and the other half completing less than judgements in the Magnitude Comparison task. 

These 8 orders were included to counterbalance across any possible order effects.   

The Magnitude Comparison task was implemented via E-Prime 2.0 on a PC with 

an extended keyboard and a display measuring 55.6 cm diagonally. This program allows 

for the recording of response times (RT) at the millisecond (ms) level. Each trial began 

with a blank screen for 1000 ms, followed by ‘‘Ready’’ for 1000 ms, followed by a 

fixation cross (‘‘+’’) for 1000 ms, followed by the stimulus. The numbers appeared 2 

spaces to the left and right of the fixation cross. Participants responded by pressing either 

the ‘‘Z’’ or ‘‘M’’ key, whichever was below the number representing the correct 

judgment (greater or lesser). After a response or a 3000 ms deadline, feedback was 
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presented for 2000 ms (‘‘Correct’’, ‘‘Incorrect’’, or ‘‘No response detected’’). Participant 

performance on this task was measured by mean response time and accuracy (percent 

correct).  

The NLE task was implemented on the same PC via a Java program adapted from 

a previous study of fraction comprehension in children (Siegler, 2014).1  This program 

allows for the recording of response times at the millisecond level. For each trial, the 

number appears on the screen above the number line (approximately 20 cm in length) and 

the participant used the computer mouse to click on his or her estimate on the number 

line. Time was limit to 5000 ms on each trial at which time participants received a “times 

up” message and the next trial began. Participant performance on this task was measured 

by the mean response time and the mean absolute error. The error on each trial is the 

millimeter difference between the actual magnitude placement of the fraction on the 

number line and the location of participant’s mouse click. The absolute values of these 

differences will be averaged across all trials. Thus, the average will always be positive 

with larger averages indicate larger overall error. 

 After completing the Magnitude Comparison and NLE tasks (in whichever order 

they appear), participants completed the Strategy Self-Report for that task by pencil 

untimed.   

                                                 
1 I thank Robert Siegler for providing the source code for the NLE tasks.  
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Finally, they completed the Rational Number Ability test. Participants’ time on 

this test was limited to 10 minutes. Performance was measured by the total number 

correct out of 20, with blanks and incorrect answers scored 0. 

After completing the study tasks, participants were debriefed, compensated, and 

dismissed.  

Results  

61 participants were included in this analysis due to missing data due to program 

failures (2 participants) or overall low accuracy (1 participant whose mean accuracy on 

the binary choice Magnitude Comparison task was 0.34, well below the chance level of 

0.50). Only 51 participants were included in analysis that involved ACT scores due to 

missing scores.  

Data Trimming 

 For the Magnitude Comparison task, the RT data were trimmed using a 

procedure similar to that used in other studies (Ganor-Stern, Karasik-Rivkin, & Tzelgov, 

2011; Nuerk, Weger, & Willmes, 2001; Varma & Karl, 2013). First, trials with incorrect 

responses were excluded. Then, trials that were not within the interval 200-2000 

milliseconds were removed. Finally, any remaining trials more than 3 standard deviations 

from each participant’s mean were removed. This procedure removed 2.6% of correct 

trials from subsequent analyses of the RT data. Analyses of the accuracy were on the full, 

untrimmed data set. For accuracy analysis, all trials were included.  
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For the NLE task, trials that included absolute errors exceeding 3 standard 

deviations from each participant’s mean were excluded. Next, RTs exceeding 3 standard 

deviations from each participant’s mean were excluded from analysis. This procedure 

removed 3.6% of trials respectively from all subsequent analysis with both extreme errors 

and RTs excluded.    

Differences in Representations of Rational Numbers 

 The first research question guiding this analysis was whether different rational 

number formats recruit the same mental representation or different mental 

representations. I addressed this question using both the Magnitude Comparison task and 

the NLE data.  

I analyzed the Magnitude Comparison task data in a repeated measures 

MANOVA with within-subjects factor Type (Decimal, Fraction, and Mixed) and with 

dependent variable RT. The test showed a significant effect for type (F(1, 60) = 207.2, p 

< .001, η2 = .872). Post-hoc testing for contrasts using Pillai’s test revealed significant 

differences between all three types of comparisons: Decimals to Fractions, (F(1, 60) = 

344.6, p < .001, Cohen’s d = 2.40), Decimals to Mixed (F(1, 60) = 259.5, p < .001, 

Cohen’s d = 2.08) and Fractions to Mixed (F(1, 60) = 7.63, p < .001, Cohen’s d = 0.36). 

Mean RTs for Decimal, Fractions, and Mixed comparisons were 716 (SD = 107), 1062 

(SD = 162), and 1011 (SD = 169) ms, respectively; see Figure 3.  
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Figure 3. Mean response times by type for the Magnitude Comparison task. Error bars 

represent standard errors. 

 

 

I conduced a parallel analysis of the accuracy data.  The test showed a significant 

effect for type (F(1, 60) = 65.3, p < .001, η2 = .682). Post-hoc testing for contrasts (using 

Pillai’s test) revealed significant differences between only decimals and fractions (F(1, 

60) = 126, p < .001, Cohen’s d = 1.45) and between decimals and mixed (F(1, 60) = 27.6, 

p < .001, Cohen’s d = .68). Mean accuracy rates for Decimal, Fractions, and Mixed 

comparisons were .97 (SD = .03), .86 (SD = .13), and .88 (SD = .08), respectively; see 

Figure 4. 

Decimal Fraction Mixed

R
e
s
p
o
n

s
e
 T

im
e

 (
m

s
)

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

1
2
0
0



 45 

 

 

Figure 4. Mean accuracy by type for the Magnitude Comparison task. Error bars 

represent standard errors.  

 

I also analyzed the NLE task data in a repeated measures MANOVA with within-

subjects factor Type (Decimal and Fraction) and dependent variable response time. The 

test showed a significant effect for type (F(1, 64) = 63.53, p < .001, η2 = .494). Cohen’s d 

was .98 for the effect of type on response times. Mean RTs for Decimal and Fractions 

markings were 2284 (SD = 402), and 2510 (SD = 439), respectively; see Figure 5. 
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Figure 5. Mean response times by type for the NLE task. Error bars represent standard 

errors. 

 

 

I conducted a parallel analysis of the absolute error data. Each participant’s 

absolute error is the average across trials of the absolute difference between the actual 

magnitude placement of the fraction on the number line and the location of participant’s 

mouse click in millimeters. The test showed a significant effect for type (F(1, 64) = 

10.12, p < .01, η2 = .135). Cohen’s d was .39. Mean absolute error for Decimal and 

Fractions markings were 4.68 (SD = 1.53) and 5.05 (SD = 1.62) mm, respectively; see 

Figure 6. 
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Figure 6. Mean absolute errors by type for the NLE task. Error bars represent standard 

errors. 

 

 

Order Effect. There was one ordering effect of interest in Experiment 1: the 

potential difference between completing the Decimals or Fraction comparison first, 

before the Mixed comparisons. This ordering was intended to assess whether one 

facilitated the other. If Decimals facilitate Fractions or Fractions facilitate Decimals, then 

this is evidence for a common underlying mental representation of rational numbers, 

whereas if they appear to be independent, this suggest different representation depending 
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on representational type. To test this Order effect, an independent-samples t-test was 

conducted to compare response times for those who completed Decimal comparisons 1st 

and those who completed them second. There was a not a significant difference in 

response times for those completing their decimal comparisons first (M=716 ms, SD=107 

ms) and those completing them second (M=716 ms, SD= 110 ms); t(59) = -.009, p = .993. 

The same test was repeated for Fraction response times. There was a trending, but not a 

significant, difference in response times for those completing their Fraction comparisons 

first (M = 1019 ms, SD = 180 ms) and those completing them second (M = 1102 ms, SD 

= 150 ms); t(59) = -1.963, p = .054. Participants who completed Fraction comparisons 

first were slightly quicker than those completing them second. These results do not 

suggest a facilitation effect: warming up on decimals or fractions does not appear to make 

either subsequent comparisons quicker. In fact, it appears there may be a small cost to 

shifting from decimal to fraction comparisons for fraction processing that does not 

happen in reverse. This trend suggests some representational or strategy shift in mental 

representations of rational numbers when fractions are initially introduced that is more 

pronounced after getting into a routine on decimals.  

Rational Ability Test  

Performance on the Rational Ability test is summarized in Table 3 below and 

Table 4 shows correlations among overall performance, sub-sections, and items left 

blank.  
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Table 3  

Summary of Performance on the Rational Number Ability Test  

 Mean SD Max  

Overall 16.04 4.18 20 

Conversion  4.99 1.30 6 

Computations 6.35 1.85 8 

Computations (w) 4.69 1.81 6 

Note. The Computations (w) refer to computational word problems.  

 

 

Table 4 

Correlations between Total Performance, Number Blank, and Three Sub-sections of the 

Rational Ability Test   

 Overall Conversions Computations Computations (w) 

Overall     

Conversions .864**    

Computations .830** .611**   

Computations (w) .835** .649** .451**  

Blank -.532** -.365** -.331** -.626** 

Note. ** p < .001; Items left blank were scored as incorrect. The Computations (w) refer 

to computational word problems.  

 

 These results suggest performance was relatively consistent within all sections of 

this test as all three correlated similarly with the overall score. Since the overall score is 

composed of the sub-scores, the correlations between each subsection and overall score 

may be masking important difference between sub-sections. To explore this possibility 

and to further support the use of the overall score as a single performance score for this 

range of questions, a principle components analysis was conducted with the three sub-

scores entered as variables. A single factor was extracted with an eigenvalue above 1 

explaining 71% of variance, with the three sub-scores loading on this single factor at 

.900, .806, and .827 respectively.   

Individual Difference Measure Correlations  
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 I initially computed the correlations between all of the following individual 

difference measures: average RT and accuracy for the three conditions (Decimal, 

Fraction, and Mixed) of the Magnitude Comparison task (6 variables), average RT and 

average absolute error for both conditions (Decimal and Fraction) of the NLE task (4 

variables), slopes (distance/RT betas) for the three conditions of the Magnitude 

Comparison task (3 variables), and overall score on the Rational Ability test. I also 

included scores on the ACT-Math. 

Slope (distance/RT betas) refers to a measure of how much the distance between 

the two numbers being compared affects reaction times. For each participant, for each 

comparison Type (Decimal, Fraction, and Mixed), a linear model was fitted predicting 

response times from the absolute distance between the two numbers being compared. 

These slopes were largely negative, as expected, indicated a distance effect. The distance 

effect (Moyer & Landauer, 1967) is the finding that people more quickly judge which 

number is greater (or lesser) the larger the distance between the two numbers being 

compared (e.g., comparing 2 vs. 9 is quicker than comparing 5 vs. 6). In this case, a 

distance effect is evidenced by a negative slope as this indicates as the distance between 

the two numbers increases, the time it takes to compare them decreases. This effect will 

be discussed later in different manner. But, here it was considered as a potential predictor 

of generalized math performance with the reasoning that individuals least affected by 

distance have superior mental representations of rational numbers. Informally speaking, 

they are slowed less by the more difficult, near-distance comparisons.     
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The final correlation matrix focused on the variables that prior studies that have 

used the Magnitude Comparison and NLE tasks have found most informative: RT (both 

raw and distance betas) for the former and accuracy for the latter (see Table 5). 

Correlational analysis revealed that the Rational Ability test, RTs for both the Fraction 

and Mixed conditions of the Magnitude Comparison Task, and Absolute Error on both 

Decimal and Fraction conditions of the NLE task correlated significantly with ACT Math 

scores. Of particular note is how strongly overall performance on the Rational Ability test 

correlated at .706 with ACT Math scores. A positive correlation is not surprising, but a 

correlation this high is surprising given the ACT covers a broader range of mathematics, 

including geometry and trigonometry, elementary and intermediate algebra, and a handful 

of miscellaneous concepts such as logarithms and matrices. Finally, the NLE task, for 

both the Decimal and Fraction condition, appears to be the most related to the two 

outcome measures of Experiment 1. In both cases, less error on this task predicted better 

overall performance than did the Magnitude Comparison task.  

Table 5 

Correlations between the Rational Number Ability Test, ACT Math Scores, and 

Individual Difference Measures 
 1 2 3 4 5 6 7 8 9 

1 ACT Math          

2 Rational Test .706**         

3 MC RT Dec -.269 -.155        

4 MC RT Fract -.299* -.261* .519**       

5 MC RT 

Mixed 

-.380** -.202 .497** .616**      

6 MC RT Beta 

Dec 

.108 .089 .021 .054 .015     

7 MC RT Beta 

Fract 

-.077 .066 .180 .051 -.144 -.054    
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8 MC RT Beta 

Mix 

.016 -.078 .084 -.066 -.339* .136 .238   

9 NLE Error 

Dec 

-.548** -.412** .324* .203 .056 .014 .213 .095  

10 NLE Error 

Fract  

-.500** -.427** .327* .141 -.020 -.036 .258* .229 .822** 

Note. * p < .05, ** p < .001, MC = Magnitude Comparison task, NLE = Number Line 

Estimation task, RT = response times, Beta = slope of RT modeled by distance. 

Significant correlations with outcome measures are in bold.  
 
 

Predicting Generalized Math Ability 

To assess how well the individual difference measures collected in this 

experiment predicted more generalized rational number ability, a three stage hierarchical 

linear regression was conducted with scores on the Rational Number Ability test as the 

dependent variable. ACT English was entered at stage one to control for general 

academic ability. Then, in stage two, the Magnitude Comparison RT scores (for Fraction 

and Mixed comparisons only) were entered. Finally, in stage three, the Number Line 

absolute errors were entered. The results can be seen in Table 6.   
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Table 6  

Hierarchical Linear Regression Results for Rational Ability Test as Dependent Variable  

Model  Beta t p Model R2 ∆ R2 

1 
(Constant)  1.196 .237 

.179 .179* 
ACT English .423 3.299 .002 

2 

(Constant)  1.808 .077 

.219 .040 
ACT English .383 2.908 .005 

MC RT Fract -.190 -1.102 .276 

MC RT Mixed -.022 -.126 .900 

3 

(Constant)  3.525 .001 

.393 .174* 

ACT English .182 1.377 .175 

MC RT Fract -.138 -.885 .381 

MC RT Mixed -.047 -.298 .767 

NLE Error Dec -.059 -.283 .778 

NLE Error Fract -.417 -2.041 .047 

Note. * Change in F statistic significant at p < .05. All models were significant at p < 

.001.  

 

 As shown in Table 6, the addition of the Magnitude Comparison response times 

explains an additional 4% of variance in Rational Ability test scores, while the NLE 

absolute errors explain an additional 17% of variance. Also, it is worth noting errors on 

NLE fraction task are the only individually significant predictor of overall Rational 

Number Ability test scores in the final model. It is also important to note the correlation 

between the absolute errors on the two conditions of NLE task was .822, so collinearity is 

likely a factor in this model (and the next) that should temper over-interpretation of this 

finding.  

Next, to assess how well the individual difference measures collected in this 

experiment predicted more generalized math abilities, a three-stage hierarchical linear 

regression was conducted with ACT Math as the dependent variable. The distribution of 
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ACT Math scores is shown in Figure 7 below. As can be seen the distribution has a slight 

negative skew, but is largely normal. ACT English was entered at stage one to control for 

general academic ability. Then, in stage two, the Magnitude Comparison RT scores (for 

Fraction and Mixed comparisons only) were entered. Finally, in stage three, the Number 

Line absolute errors were entered. The results can be seen in Table 7.   

 

Figure 7. Distribution of ACT Math Scores used in regression analysis. 
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Table 7  

Hierarchical Linear Regression Results for ACT Math as Dependent Variable  

Model  Beta t p Model R2 ∆ R2 

1 
(Constant)  4.021 .000 

.306 .306** 
ACT English .553 4.691 .000 

2 

(Constant)  4.202 .000 

.370 .064 
ACT English .487 4.116 .000 

MC RT Fract -.072 -.467 .642 

MC RT Mixed -.208 -1.326 .191 

3 

(Constant)  5.369 .000 

.476 .106* 

ACT English .325 2.643 .011 

MC RT Fract -.018 -.127 .899 

MC RT Mixed -.232 -1.584 .120 

NLE Error Dec -.312 -1.624 .111 

NLE Error Fract -.066 -.347 .730 

Note. ** Change in F statistic significant at p < .001. * Change in F statistic significant at 

p < .05. All models were significant at p < .001. 

 

 As shown in Table 7, the addition of the Magnitude Comparison response times 

explains an additional 6% of variance in ACT Math scores, while the NLE errors 

explains an additional 11% of variance.  

 In both cases, we see the rational number tasks explaining variance in two general 

measures of math ability. And in both the rational number based measure and the much 

more generalized measure of mathematical achievement, errors on the NLE task are the 

more robust predictor of success.  

Classic Magnitude Comparison Effects 

After considering the primary research questions, this section turns to secondary 

analysis of classic effects found in previous studies on magnitude comparisons and 
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rational numbers. These findings add to the continuing study of how rational number 

processing is similar to or differs from the processing of positive integers and serve as 

evidence that the current participants performed similarly to those of prior studies 

First, I consider effects related to the distance between the two numbers being 

compared. These results are informative for the debate over whether people process 

fractions as they do integers, via an analog number line, which is considered holistic 

processing, or whether they process the numerator and denominator separately, which is 

considered componential processing. Note that the distance effect is considered an 

indicator of holistic (i.e., magnitude) processing.  

Distance Effect. The distance effect (Moyer & Landauer, 1967) is the finding that 

people more quickly judge which number is greater (or lesser) the larger the distance 

between the two numbers being compared (e.g., comparing 2 vs. 9 is quicker than 

comparing 5 vs. 6). It is considered an indicator of holistic processing via an analog 

number line of numbers. I tested for this effect by first calculating average response times 

for each participant for near comparisons where the distance between the numbers was 

less than 0.2 (roughly half the trials) and for the remaining far comparisons. I did this 

separately for each of three comparison types (decimal, fraction, mixed). There was a 

distance effect for decimal comparisons (t(60) = 12.191, p < .001, d = 1.561), fraction 

comparisons (t(60) = 7.906, p < .001, d = 1.012), and mixed comparisons (t(59) = 11.817, 

p < .001, d = 1.526). These results replicate prior findings of distance effects for decimal 
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comparisons (Varma & Karl, 2013) and fraction comparisons (Jacob & Nieder, 2009; 

Schneider & Siegler, 2010).   

 Distance Effect Slopes. I also tested for the distance effect in a more continuous 

fashion. For each participant, for each comparison Type, a linear model was fitted 

predicting response times from the absolute distance between the two numbers being 

compared. These slopes are largely negative, as expected. A distance effect is evidenced 

by a negative slope as this indicates as the distance between the two numbers increases, 

the time it takes to compare them decreases. The question is whether the slopes are 

comparable across the three types of rational number comparison, consistent with the use 

of common magnitude representations, or whether they differ. A repeated measures 

MANOVA was conducted with within-subjects factor Type (Decimal, Fraction, and 

Mixed) and dependent measure average RT/distance slope. There was a significant main 

effect of Type (F(1, 61) = 4.90, p < .05, η2 = .138). Post-hoc contrasts using Pillai’s test 

revealed significant differences between Fraction and Decimal comparisons (F(1, 60) = 

6.06, p < .05, Cohen’s d = .32) and between Fraction and Mixed comparisons (F(1, 60) = 

8.41, p < .01, Cohen’s d = .37); see Figure 8.  
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Figure 8. Mean distance effect slope by type for the Magnitude Comparison task. Error 

bars represent standard errors. 

 

Next, I explored these distance effect slopes on a subset of near comparisons. 

Again, near comparisons were defined as trials in which the difference between the two 

numbers was less than .2, and amount to roughly half of the total trials participants 

completed. I focused on this subset because they require the most refined magnitude 

processing of rational numbers. The goal was to replicate and expand upon (by including 

the Mixed condition) the prior finding that the distance effect disappears for comparisons 

of near-distance fractions (Zhang, Fang, Gabriel, & Szűcs, 2016; DeWolf & Vosniadou, 
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2015). A repeated measures MANOVA was conducted with within-subjects factor Type 

(Decimal, Fraction, and Mixed) and dependent measure average RT/distance slope on 

near trials. There was a significant main effect for type (F(1, 59) = 7.509, p < .01, η2 = 

.206). Post-hoc contrasts using Pillai’s test revealed significant differences between 

Fraction and Decimal comparisons (F(1, 59) = 12.36, p < .001, d = 2.377) and between 

Fraction and Mixed comparisons (F(1, 59) = 11.36, p < .01, d = 2.062). Thus, the effect 

of representational difference is stronger when this more difficult set of trials is 

considered. More importantly, participants’ average distance slopes are near 0 for the 

Fraction conditions on these near trials, while the Decimal and Fraction conditions retain 

negative distance slopes replicating previous findings; see Figure 9.   

Thus, there is evidence that fractions are less likely to be processed like the 

natural numbers for particularly near comparisons, while decimal appear to still be 

processed similarly to natural numbers, replicating previous findings (Zhang, Fang, 

Gabriel, & Szűcs, 2016; DeWolf & Vosniadou, 2015). Also, by including the Mixed 

condition, both experiments suggest that while the inclusion of the fraction in those 

comparisons makes processing more difficult than the Decimal condition, the inclusion of 

the decimal provides an anchor that facilitates magnitude processing. In this case, it 

appears that anchor grounds near comparisons in a way that produces a distance effect 

that does not occur when only fractions are involved. 
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Figure 9. Mean distance effect slope by type for the Magnitude Comparison task for near 

comparisons only. Error bars represent standard errors. 

 

The results of the distance effect overall in this experiment inform the debate over 

holistic versus componential processing of fractions, and thus whether rational numbers 

as a class are processed at the magnitude level. Largely, they suggest all three types of 

rational numbers are processed in a way that shares similarities with processing natural 

numbers, which supports holistic processing. However, there is evidence fractions may 

be the least amenable representational type to common magnitude processing based on 

the analysis of near comparisons where the distance effect disappeared, which suggest 
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they require more componential processing. Further, by including the Mixed conditions, 

these results largely suggest that including decimals alongside fractions can encourage 

more holistic processing of rational numbers than do fractions by themselves. 

The Size Effect. The size effect (Parkman, 1971) is the finding that people more 

quickly judge the greater (or lesser) of two numbers the smaller their average size, when 

the distance between them is held constant (e.g., comparing 3 and 4 is quicker than 

comparing 8 and 9). I tested for this effect by first calculating average response times for 

each participant for “large” comparisons, where the sum of the two numbers compared 

was above .5 (roughly half the trials), and also for the remaining “small” comparisons. I 

did this separately for each of three comparison types (decimal, fraction, mixed).  None 

of these tests indicated a size effect for these rational number comparisons: t(60) = -.561, 

p =.577), t(60) = -1.412, p =.163), t(59) = -.183, p = .855), respectively. Given the 

numbers in these comparisons were bounded between 0 and 1, it may be this effect is 

unlikely to be found unless a broader range of numbers are used or a larger number of 

participants are analyzed to find what may be a small effect. 

Unit-Decade Compatibility Effect. The unit-decade compatibility effect is the 

finding that the tens and ones digits can interfere when people compare two-digit 

numbers (Nuerk, Weger, & Willmes, 2001). For example, people compare 21 and 87 

quickly because both the ones and tens digits lead to the same judgment, whereas they 

compare 24 and 82 slowly because they lead to conflicting judgments. This effect has 
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been extended to decimal comparisons (Varma & Karl, 2013). This effect was tested by 

sorting the decimal trials into congruent and incongruent trials and comparing 

participants’ average response times using a paired t-test. This experiment failed to 

replicate this effect (t(60) = .405, p = .687).  

This null finding was likely due to a low number of truly difficult interference 

trials. Previous research (Nuerk, & Willmes, 2005) has found that the unit-decade 

compatibility effect is very small overall. Moreover, it is larger in extreme cases, when 

the difference in the conflicting place is large (e.g. 0.41 vs. 0.29), and absent when this 

difference is small (e.g. 0.41 vs 0.23); it is likely the trials used here did not include 

enough of these larger difference trials (in terms of the interfering hundredths digit) to 

replicate this effect.  

Speed-Accuracy Trade-Off. To determine whether there was a speed accuracy 

trade-off for the magnitude comparison task, for each comparison Type (Decimal, 

Fraction, and Mixed), bivariate correlations were computed between each participants’ 

average RT and accuracy. There was evidence of a speed-accuracy trade-off for Decimal 

comparisons (r(59) = .335, p < .01) indicating participants who took longer on average 

had higher accuracy rates. However, for Fraction and Mixed comparisons, there was no 

evidence of a speed accuracy trade-off (r(59) = .196, p = 131; r(59) = -.121, p = .355). 

The fact there was no speed-accuracy trade-off for Fraction and Mixed comparisons 

supports only using response times in the regression models predicting rational number 
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ability and mathematical achievement. (Recall Decimal comparisons were also dropped 

in the final models because they demonstrated a ceiling effect.)  

Strategy Self Report Questionnaires  

 After completing each of the Magnitude Comparison and NLE tasks, participants 

self-reported which strategies they believe they employed during the task. For the 

Magnitude Comparison task, participants reported an average of 3.03 strategies (roughly 

1 per type of comparison). Table 8 lists the top 10 most reported strategies.  

 

Table 8 

Top Ten Strategies Reported on the Magnitude Comparison Task 

Strategy Percent Reporting 

Fractions to decimals (f and m)  63 

Consider tenths number first (d) 50 

Holistic/treat as integer (d) 42 

Consider relationship between numerator and denominator (f) 31 

Noticed if .5 was in the middle of two numbers (f and m) 20 

Took advantage of same denominator/numerator (f) 14 

Convert to commonly known (e.g. close to 2/5 or .4) (f and m) 14 

Denominator-based approach/consider base (f) 9 

Visualize circle representation (f) 8 

Base 10 strategy (f and m) 3 

Note. Lower case d, f, and m refer to under which comparison type these strategies were 

reported. d = decimals, f = fractions, and m = mixed.  

 

The most commonly reported strategy was converting fractions to decimals 

during the Fraction and Mixed comparisons with 63% of participants reporting this 

strategy. This finding supports many of the results found in this analysis in which the 

Mixed condition is more similar to the consistently quicker and more integer-like 
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Decimal condition: in the Mixed condition there appears to be a cost to translating one 

fraction to a decimal that is more complicated and difficult in the Fraction condition 

when there are two fractions to convert (or deal with componentially).  

 For the NLE task, participants reported an average of 2.86 strategies, nearly 1.5 

per condition.  Table 9 lists the top 10 most reported strategies.  
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Table 9  

Top Ten Strategies Reported on the Number Line Estimation Task 

Strategy Percent Reporting 

Visualize .5, consider if number is more or less than .5 (d and f) 83 

Visualize break line by denominator (f)  31 

Break line into quarters/thirds to visualized placement (d and f)   23 

Holistic/treat as integer (d) 22 

Convert to decimals or percentages (f) 16 

Decimals to Fractions (d) 13 

Look for nearest common (d and f) 13 

Consider distance from 0 and 1 (d and f) 8 

Break by .1 (d) 8 

Consider tenth 1st/primarily (d) 6 

 

In contrast to the Magnitude Comparisons, the most commonly reported strategy 

for both types of markings was to use .5 as an anchor as a strong starting point in 

deciding where to mark the numbers. 83% participants reported using this strategy on 

Fraction and Decimal comparisons or both. From there, participants seem to be breaking 

the number line by the denominator or into third or quarters, thirds, or the denominator (if 

a fraction) to place the values to the left or right of .5. 

Discussion 

Processing Different Representations of Rational Numbers 

Research question (1) was which representation of rational numbers make it more 

difficult for people to access their underlying magnitudes. The results of this experiment 

largely support the idea that processing of rational numbers comes at a cost when at least 

one of the numbers involved is formatted as a fraction. This conclusion was supported 



 66 

 

across two tasks with measures of speed, accuracy, and error. Results from the Magnitude 

Comparison task showed Decimal comparisons were completed more quickly and more 

accurately than either the Fraction or Mixed comparisons. The same pattern of results 

was found for the NLE task with the Decimal estimations being done more quickly and 

with less error. These results support an advantage for rational numbers formatted as 

decimals.  

Next, I consider more specifically the cost of crossing representations when 

magnitude processing of rational numbers is required. The Mixed condition of the 

Magnitude Comparison task in which participants had to compare a fraction to a decimal 

allowed me to test if such a cost exists. While the Mixed comparisons did take longer and 

were less accurate than the Decimal comparisons, the Mixed comparison were completed 

more quickly and accurately than the Fraction comparisons – though only the difference 

in response times was significant. The fact the Mixed comparisons were generally no 

more difficult to complete and slightly easier than the Fraction comparisons suggest 

crossing formats is not particularly costly for adults. It appears then that instead of a cost, 

there is a slight advantage when one number is a decimal as opposed to processing two 

fractions. Based on participant self-reports, converting fraction to decimals was the most 

common strategy during the Magnitude Comparison task. Therefore, it appears the 

inclusion of a decimal in the Mixed condition provide an anchor for participants that the 

Fraction condition did not have that slightly speeded processing at no cost to accuracy.  

Rational Number Processing and Mathematical Achievement 
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Research question (2) explored the relationship between rational number 

magnitude processing and mathematical achievement in adults. The results of Experiment 

1 demonstrated for the first time that magnitude tasks involving rational numbers can 

indeed predict mathematical achievement in adults, as was previously demonstrated with 

middle school students (Siegler & Pyke, 2013). This experiment used the Magnitude 

Comparison and the NLE tasks. These tasks which require magnitude processing of 

rational numbers combined accounted for 21% and 17% of variance in the two measures 

of mathematical achievement used in this experiment. The Rational Ability test measures 

procedural knowledge, including conversion and computations with rational numbers. 

The second measure of mathematical achievement was ACT math, a standardized test 

covering a broad range of topics including Algebra II and some pre-calculus. It is perhaps 

not surprising that magnitude tasks predicted the Rational Ability test given that both use 

symbolic representations of rational numbers. However, it is striking that ACT math 

scores were predicted by these rational number magnitudes tasks (after controlling for 

general academic/verbal ability). The ACT math section does include fractions and 

decimals throughout. However, few questions, if any, rely solely on conceptual or 

procedural knowledge of rational numbers, and even fewer, if any, require direct access 

of magnitude representations of rational numbers as a primary task feature. (That 

calculators are allowed is another reason such processing is not required.)  

Next, I considered more specifically whether either or both representational 

format (decimal or fraction) of rational numbers predicts mathematical achievement. 
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While the answer to the other questions in this experiment were relatively clear, the 

answer to this question was not. First, the decimal condition of the Magnitude 

Comparison task does not appear related to either outcome measure in this experiment. 

Since there was a ceiling effect present with this condition (accuracy on decimal 

comparisons was 97%), it is reasonable to assume there was not enough variability in 

performance to predict other, related abilities. By contrast, based on correlational and 

regression analysis, performance on both fraction and mixed conditions of the Magnitude 

Comparison task was related to both mathematical achievement measures. Further, errors 

on the fraction condition of the NLE task was the single significant predictor of 

performance on the Rational Ability test in the final full model (see Table 6).  

However, in the final model predicting ACT Math scores, errors on the decimal 

condition of the NLE task were closer to approaching significance and had a beta weight 

much larger in magnitude than did the errors on the fraction condition (see Table 7). 

Since the two conditions of the NLE task correlated at .822, collinearity was an issue. 

Thus, it remains unclear if the findings regarding the decimal versus fraction conditions 

of the NLE task can be interpreted absolutely in either model. Overall, these findings 

suggest that either representation (or both) may be related to mathematical achievement. 

Next, I considered whether either or both type of magnitude task (Magnitude 

Comparisons or Number Line Estimation) predicts mathematical achievement. The NLE 

task, for both the decimal and fraction conditions, appears to be the most related to the 

two outcome measures. In both cases, less error on this task predicted better overall 
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performance than did the Magnitude Comparison task. This is true based on correlational 

analysis and the regression models, particularly the significant contribution in variance 

explained in the final models. For the Rational Number Ability test and ACT Math 

scores, the two best predictors from the Magnitude Comparison task added an additional 

4% and 6% of variance explained, while absolute errors the NLE task added 17% and 

11% respectively. 

Finally, I briefly consider whether individual differences in procedural problem 

solving specifically with rational numbers predict mathematical achievement, as 

measured by the ACT. Procedural problem solving was one of the outcome measures 

used in the primary analysis of this experiment: the Rational Ability test. While the focus 

of this experiment was on the tasks that require comparing or representing on a number 

line the actual magnitude of rational numbers on two different outcome measures, the 

relationship between the two outcomes measures themselves is of interest. The 

correlation between the Rational Ability test and ACT math scores was .706. This 

relationship is rather large. On the one hand, performance on the Rational Ability test, 

distinct from the lower level magnitude processing of the other tasks, requires more 

knowledge of formulas and concepts. Therefore, a significant correlation between the two 

outcome measures is not surprising. On the other hand, just as was mentioned previously 

regarding the relationship between the magnitude tasks and ACT Math, good 

performance on ACT math cannot be attributed directly to knowledge, procedural or 

otherwise, of rational numbers. Therefore, the magnitude of the relationship between the 



 70 

 

two outcome measures is surprising. This correlation provides additional evidence there 

is something transferable about rational number ability to other skills.  

Rational Numbers and Classic Effects 

Finally, Magnitude Comparison task employed in this experiment was designed to 

allow for detecting classic effects found in previous studies on magnitude comparisons 

and rational numbers. Thus, they serve as evidence that the current participants 

performed similarly to those of prior studies. More importantly, these effects were 

originally found with natural numbers. Thus, these findings add to the continuing study 

of how rational number processing is similar to or differs from the processing of positive 

integers and would serve as evidence of an integrated number theory proposed by Siegler 

and Lortie-Forgues (2014).  

For the purposes of this discussion and study overall, I focus on the finding 

regarding the distance effect. The distance effect (Moyer & Landauer, 1967) is the 

finding that people more quickly judge which number is greater (or lesser) the larger the 

distance between the two numbers being compared (e.g., comparing 2 vs. 9 is quicker 

than comparing 5 vs. 6). This experiment found a distance effect for all three types of 

comparisons. These results suggest all three types of rational numbers are processed in a 

way that shares similarities with processing natural numbers.  

However, there is evidence fractions may be the least amenable representational 

type to common magnitude processing. First, while the distance effect was present for 

fraction to fraction comparisons, in comparative analysis it was significantly weaker than 
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the distance effect for decimal to decimal and mixed comparisons. Further, when 

analyzing particularly near comparisons, a subset that took longer for all participants 

regardless of representational type, the distance effect disappeared for fraction 

comparisons (was near 0), but remained for the other two types. Finally, since the 

distance effect for the Mixed condition was similar to that for the Decimal condition, and 

remained in the analysis of near comparisons, these results suggest that including 

decimals alongside fractions may encourage more holistic processing of rational numbers 

than do fractions by themselves.     
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Chapter 5: Experiment 2 

Experiment 2 applied the methods used in Experiment 1 to bridge between 

mathematical cognition and behavioral economics. Assessing the likelihood of outcomes 

expressed as probabilities requires both an understanding of the magnitudes of these 

rational numbers and what these magnitudes mean in contexts involving other, sometimes 

irrelevant, information. One such source of irrelevant information is information that is 

framed positively or negatively. For example, whether a person got 80% correct or 20% 

incorrect on an exam. Note the information is exactly the same, but research shows that 

people evaluate information differently based on frame. Experiment 2 explored the 

relationship between people’s magnitude representations of rational numbers and their 

understanding of the framing of probabilistic information as gains vs. losses as revealed 

by the framing effect.  

The key difference between Experiment 1 and 2 was modifying the Number Line 

Estimation task to test the framing effect, by referring to probabilities as gain or losses 

and asking participants to mark their estimates on the number line. This modification 

allowed testing of the effect of frame on the precision and direction of people’s 

magnitude estimates. I also include the standard framing effect task designed by Tversky 

and Kahneman (1981), the “Asian disease” problem, to confirm participants were 

behaving as in previous studies and to compare and contrast this task to the new 

Probability Number Line task. Experiment 2 addressed two main questions: 
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3. Does the framing of probabilistic information affect people’s magnitude 

representations of rational numbers?   

4. Are individuals with stronger rational number ability less susceptible to exhibiting the 

framing effect?  

Thus, in Experiment 2 the framing effect was explored at two levels. First, it was 

explored at the magnitude level, based on how people mark their estimates of 

probabilities framed as either Gains or Losses on a number line. Next, it was explored at 

the decision level, based on their answers to the Asian Disease problem. Finally, by 

creating a composite rational number ability score using the same tasks employed in 

Experiment 1, Experiment 2 explored how the framing effect interacts with rational 

number ability.  

Participants  

 The participants were 68 undergraduates (48 females, 20 males) from a large 

Midwestern university. The average age of participants was 20.6 years (SD = 2.4). They 

were recruited via personal appeals at the beginning or end of courses, email messages to 

a list of undergraduates interested in completing mathematical cognition studies, and 

fliers posted around campus. The criteria for inclusion for this experiment were that 

participants had to be university undergraduates and between the ages of 18 and 22. They 

were compensated $12 for approximately one hour of their time. This study was 

approved by the local Institutional Review Board. 

Design  
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Experiment 2 was comprised of four tasks. The first was the Magnitude 

Comparison task used in Experiment 1, with the within-subjects factor Type again having 

three levels, Decimal, Fraction, and Mixed. Response time and accuracy were again the 

dependent variables. A repeated measured MANOVA was used to test the effect of Type 

as the same variables, response time and accuracy, were measured for each participant 

three times, varying by Type. This test is sensitive to differences due to a factor or factors 

within the same participant measured repeatedly.   

The second task was the Number Line Estimation task also used in Experiment 1. 

Once again, Type (Fraction and Decimal) was varied as a within-subjects factor with time 

and absolute error as dependent variables. The same repeated measured MANOVA was 

used to analyze this task as well.  

The third task was new. The Probability Number Line Estimation task had one 

within-subjects factor, Frame, with levels of Gain and Loss. Gain was designed to elicit 

positive framing effects while Loss was designed to elicit negative framing effects. The 

dependent variables were the summed absolute error and the summed raw (i.e., 

directional) error of participant’s markings on the number line. These measures are 

defined in more detail below in the Measures subsection. The same repeated measured 

MANOVA was used to analyze this task as well. 

The fourth task was also new. Participants solved the Asian Disease problem 

(Tversky & Kahneman, 1981). This problem had one between-subjects factor, Frame, 

with levels of positive and negative valence. The dependent variable was the proportion 
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of participants within each group who choose the sure bet option or risky-choice option. 

A z-test of proportions was used to analyze the difference in proportions between two 

groups as this test compares proportions, considering the size of each group in computing 

significance.  

Measures 

Magnitude Comparison Task 

Experiment 2 used the same Magnitude Comparison task as described in 

Experiment 1. 

Number Line Estimation Task 

Experiment 2 used the same NLE task as described in Experiment 1. 

The Probability Number Line Estimation Task 

This task was implemented via the same NLE Java program used in Experiment 

1. This program allowed for the recording of response times at the millisecond level. 

Participants completed 4 blocks of 38 trials each. Each trial consisted of placing a 

number (expressed as a percent) on a number line with poles 0 and 1 marked. No internal 

landmarks (e.g., the midpoint) were marked. All numbers were between 0% and 100%, 

and excluded 50%. All of the numbers used in this task are listed in Appendix B.  

The numbers selected for this task were adapted from Siegler (2014) to ensure 

that no numbers were repeated when fractions were converted and rounded to decimals 

and ultimately percentages. These were the same numbers used in Experiment 1 for the 
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Number Line Task, but with each number converted to a percent. In addition, each 

percent was subtracted from 100 to form its complement.  

Two conditions were tested in order to assess the framing effect. Two blocks 

referred to these probabilities positively, as gains, and two blocks referred to these 

probabilities negatively, as losses. Each number was tested both as a gain and a loss. 

Further, these numbers were classified as small (0-30%; 14 numbers), medium (30-70%; 

10 numbers), and large (70-100%; 14 numbers) to support analyses of whether the effects 

of Frame vary depending on the size of the probability.  

Rational Ability Test 

Experiment 2 used the same Rational Ability test as Experiment 1. 

The Asian Disease Problem 

 Participants also completed a single-item questionnaire as in Tversky and 

Kahneman’s (1981) original framing effect study. For this task, all participants read the 

following introduction:   

Imagine that the United States is preparing for an outbreak of an unusual Asian 

disease that is expected to kill 600 people. Two alternative programs to combat 

the disease have been proposed. Scientific estimates of the consequences of the 

programs are as follows:  

Then, half the participants were randomly assigned to read and choose between 

the following two options (the positive frame): 

If Program A is adopted, exactly 200 people will be saved. 
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If Program B is adopted, there is a 1 in 3 probability that all 600 people will be 

saved and a 2 in 3 probability that no people will be saved.  

The other half read and choose between the following two choices (the negative frame):   

If Program C is adopted, exactly 400 people will die. 

If Program D is adopted, there is a 1 in 3 probability that nobody will die and a 2 

in 3 probability that all 600 will die. 

It is important to note that choices A and C and choices B and D are numerical 

equivalents. A and C represent the same sure bet of saving 200 people. B and D represent 

the same risky chance of saving or losing everyone, with an expected value calculation of 

saving (1/3 x 600 =) 200 people. Therefore, participants’ decisions should not vary 

between the two framings if they are based on a rational judgment of the numerical 

information presented.  

Procedure 

After consenting to the study, participants completed the four tasks on a Dell PC 

running Windows 7 Enterprise in an isolated room. The Magnitude Comparison task was 

employed via the software program E-prime version 2.0 and the NLE tasks were 

employed via Java.  

They completed the five tasks in one of 16 possible orders. Participants either 

started with the NLE task or the Probability NLE task (2 options). Within the NLE task, 

participants either completed the two Decimal blocks together first and then the two 

Fraction blocks, or vice versa (2 options). Within the Probability NLE task, participants 
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either completed the two Gain blocks together first and then completed the two Loss 

blocks, or vice versa (2 options). Between the two number line tasks, participants 

completed the Magnitude Comparison task. Within this task, participants were randomly 

assigned to complete either greater than or less comparisons. Also, they either started 

with the Fraction or Decimal Condition first (2 options), and completed the other second; 

the Mixed condition always came last. Next, all participants completed the Rational 

Ability test. Finally, all participants completed the Asian Disease problem last. These 

combinations produced 2 x 2x 2 x 2 = 16 orders, with half completing greater than 

comparisons in the Magnitude Comparison task while the other half completed less than 

comparisons. Participants were randomly assigned to one of these 16 orders to 

counterbalance across order effects.  

The Magnitude Comparison task was implemented as in Experiment 1.  

The NLE task was implemented as in Experiment 1.   

The Probability NLE task was implemented using the same program as the 

Number Line Estimation task.  On each trial, the number and framing appeared on the 

screen above the number line, which was 20 cm long. The participant used the computer 

mouse to estimate its position on the number line; they had up to 5 second to respond. In 

the Gain condition, the number X was framed as “the chance of a X% gain”. The phrase 

“the chance of” was chosen to prime participants to interpret the number as a probability, 

and not merely as a percent. In the Loss condition, the number was framed as “the chance 

of a X% loss”. Figure 10 shows a screen shot of this task.  
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Figure 10. Screen shot of the image participants viewed as they completed the 

Probability NLE task.  

 

Before beginning this task, participants read a brief statement about probabilities 

and gains and losses: 

 In this task, you are going to represent the chance of something 

happening. Chances can be expressed in different ways and represent different 

outcomes, like a coin flip—the chance is ½ or 50% and you can gain (win) or 

lose. Another name for these kinds of chances is probability—how likely is 

something to happen.  

 In this task, you are going to see chances expressed as percents, like 50% 

in the example above. You will do a set in which you are going to consider what 

these percents mean about the chance of gaining something and a set in which 

you consider what these percents mean about the chance of losing something. You 

will not know exactly what it is that can be gained or lost, but that is okay because 

we want you to think generally about it.  
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 You will mark these percents on a number line between 0 and 1 to 

represent these chances. You will do some practice trials first to have an 

opportunity to get an idea of what we are asking you to do.  

Participants then proceeded to the task. At the beginning of the first Gain block 

and the first Loss block, participants completed a brief practice round of 10 trials to 

familiarize themselves with the interface and to ensure they did not misinterpret the 

“loss” wording and mistakenly invert the probabilities (e.g., place a 62% chance of a loss 

on the left side of the number line, suggesting an interpretation of a 38% chance of a 

positive outcome).   

The dependent variables for this task were mean absolute error and mean raw 

error, computed separately for the Gain and Loss conditions. The mean absolute error 

was computed as in the NLE task. The error on each trial is the millimeter difference 

between the actual magnitude placement of the fraction on the number line and the 

location of participant’s mouse click. The absolute values of these differences were 

averaged across all trials. Thus, the average was always positive, with larger averages 

indicating larger overall error. It was used for analyses where the precision of people’s 

markings was important. The mean raw error was computed similarly, with the 

differences that the raw errors (i.e., the differences between the actual positions of the 

numbers and a participant’s estimates) were averaged, not their absolute values. As a 

result, this measure can be positive, negative, or zero. It was used for analyses where the 

direction of errors was potentially important.  
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Two additional dependent measures were created for analysis based on summed 

and raw absolute errors. An Absolute Framing Effect Score was calculated for each 

participant by taking the difference between their average absolute errors on Gain trials 

and their average absolute errors on Loss trials. Thus, positive Absolute Framing Effort 

Scores indicate more error in Gain condition, scores of 0 indicate no difference between 

the conditions, and negative scores indicate more error in Loss condition.  

Similarly, a Directional Framing Effect Score was calculated for each participant 

by taking the difference between their average raw errors on Gain trials and their average 

raw errors on Loss trials. Thus, a positive Directional Framing Effort score indicates 

probabilities framed as Gains were on average marked further to the right (indicating 

more positive error) compared to probabilities framed as Losses. A score of 0 indicates 

no difference between the conditions in terms of directional bias. A negative score 

indicates probabilities framed as Losses were on average marked further to the right 

(indicating more positive error) compared to probabilities framed as Gains.  

To better understand what this score means, consider two hypothetical 

participants: Participant 1 and Participant 2. Participant 1 has raw errors on the Gain trials 

that average -1.2 and raw errors on Loss trials that average 3.1 (note these values 

represent average mm differences from the correct markings with overall direction 

captured). Figure 11 below shows these averages in reference to 0.5. For Gain trials, note 

the participant is biased to the left or negatively of .5. For Loss trials, note the participant 

is biased to the right or positively of .5.   
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Figure 11. Depiction of Participant 1’s raw average errors by condition for the 

Probability NLE task. Figure not drawn to scale. G = average raw errors for Gain 

markings. L = average raw errors for Loss markings. 

 

To calculate Participant 1’s Directional Framing Effect Score, we take the 

difference between -1.2 and 3.1, which is -4.3. Since this score is negative, this means 

there was a directional difference across trials between Gain and Loss markings for this 

participant, with Losses on average being further to the right compared to Gains. Note 

that if we shifted Participant 1’s average markings for both Gain and Losses to the right 

by 2 mm, he or she would still have a Directional Framing Effect Score of -4.3 because 

this participant would still have a pattern of markings that demonstrate a bias to mark 

losses further to the right compared to gains.  

Now, consider Participant 2. Participant 2 has raw errors on the Gain trials that 

average 2.15 and raw errors on Loss trials that average -2.15. Figure 12 below shows 

these averages in reference to .5. For Gain trials, note the participant is biased to the right 

or positively of .5. For Loss trials, note the participant is biased to the left or negatively of 

.5.  
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Figure 12. Depiction of Participant 2’s raw average errors by condition for the 

Probability NLE task. Figure not drawn to scale. G = average raw errors for Gain 

markings. L = average raw errors for Loss markings. 

 

To calculate Participant 2’s Directional Framing Effect Score, we take the 

difference between 2.15 and -2.15, which is 4.3.  Since this score is positive, this means 

there was a difference across trials between Gain and Loss markings for this participant 

with Gains on average being further to the right compared to Losses. Note that if we 

shifted Participant 2's average markings for both Gain and Losses to the left by 3 mm, he 

or she would still have a Directional Framing Effect Score of 3.4 because this participant 

would still have a pattern of marking that demonstrates a bias to mark Gains further to the 

right compared to Losses. 

The key idea here is that a negative, 0, or positive Directional Framing Effect 

score is an indication of a participant’s bias in the Gain condition compared to their bias 

in the Loss condition, not his or her overall tendency left or right. Also note this score is 

independent of overall precision. Since this score begins with averaging errors for each 

condition, large positive errors can be canceled out by large negative errors. Therefore, 

this score is an indication of how frame affects each participant’s directional tendency 

independent of both his or her overall directional tendency and precision on marking 

probabilities.  
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Next, participants completed the Rational Number Ability Test. Participants’ time 

on this test was limited to 10 minutes. The dependent variable was the total number 

correct out of 20, with blanks and incorrect answers scored 0. 

Finally, participants completed the Asian Disease problem. There was no time 

limit. Performance was measured by dummy coding 0 for all sure bet—choosing an exact 

value to be saved or lost—responses and 1 for all risky choice options—choosing the 

option to save or lose all based on odds. The dependent variable for this task was the 

difference between the proportion of participants choosing the sure bet option versus the 

risky-choice option, computed separately for the two framing groups. Thus, this was the 

only measure analyzed as a between-subjects factor.  

After completing the study tasks, participants were debriefed, compensated, and 

dismissed.  

Results 

For the Magnitude Comparison task, the RT data were trimmed using a procedure 

similar to that used in other studies (Ganor-Stern, Karasik-Rivkin, & Tzelgov, 2011; 

Nuerk, Weger, & Willmes, 2001; Varma & Karl, 2013). First, trials with incorrect 

responses were excluded. Then, trials that were faster than 200 ms or slower than 2000 

ms were removed. Finally, any remaining trials more than 3 standard deviations from 

each participant’s mean were removed. This procedure removed 9.74% of the RT data. 

Analyses of the accuracy were on the full, untrimmed data set.  
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For the NLE task, trials where the absolute error was more than 3 standard 

deviations from each participant’s mean were excluded. Next, RTs that were farther than 

3 standard deviations from each participant’s mean were excluded. This procedure 

removed 4.82% of trials from all subsequent analyses of both the RT and accuracy 

measures.   

For the Probability NLE task, the same trimming procedures were used as for the 

NLE task. This procedure removed 3.8% of trials from all subsequent analyses of both 

the RT and accuracy measures.    

 As a reminder, the framing effect was measured in two ways. First, it was 

measured at the magnitude level, based on number line estimates of probabilities framed 

as either Gains or Losses. Second, it was measured at the decision level, based on a 

participants’ answers to the Asian Disease problem. 

 The Framing Effect and the Probability Number Line 

 The first research question was whether the framing (as gains vs. losses) affects 

people’s magnitude representations of probabilities. To address this question, I first 

analyzed the Probability NLE task in a repeated measures MANOVA with within-

subjects factor Frame (Gain and Loss) and dependent variable absolute error. There was 

no effect of Frame (F(1, 65) = 1.16, p =.286, η2 = .017). Mean absolute errors for the 

Gain and Loss markings were 3.612 (SD = .866) and 3.528 (SD = .843) mm, respectively; 

see Figure 13. 
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Figure 13. Mean absolute errors by condition for the Probability NLE task. Error bars 

represent standard errors. 

 

Next, I conducted an analogous analysis in a repeated measures MANOVA with 

within-subjects factor Frame (Gain and Loss), but where the dependent variable was raw 

error, not absolute error. Again, there was no effect of Frame (F(1, 65) = 0.029, p =.886, 

η2 = .000). Mean raw errors for Gain and Loss markings were -1.73 (SD =1.113) and -

1.747 (SD = 1.062) mm, respectively; see Figure 14. 
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Figure 14. Mean raw errors by condition for the Probability NLE task. Error bars 

represent standard errors. 

 

 To refine these analyses, I investigated whether the framing effect differs based 

on the size of probabilities. I computed an Absolute Framing Effect Score for each 

participant by taking the difference between their average absolute errors on Gain versus 

Loss trials. Thus, a positive score indicates more error in the Gain condition, a score of 0 

indicates no difference between the conditions, and a negative score indicates more error 

in Loss condition. I conducted a repeated measures MANOVA with within-subjects 

factor Size (Small, Medium, and Large) and dependent variable Absolute Framing Effect 
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Score. There was no effect of Size (F(1, 64) = 0.573, p =.573, η2 = .02). Mean Absolute 

Framing effect for Small, Medium, and Large markings were 0.120 (SD = 0.858), 0.056 

(SD = 1.012), and -0.034 (SD = 0.937) mm, respectively.  

 I also investigated whether the framing effect differs by the size of probabilities 

for raw errors. I computed a Directional Framing Effect Score for each participant by 

taking the difference between their average raw errors on Gain versus Loss trials. Thus, a 

positive Directional Framing Effort score indicates probabilities framed as Gains were on 

average marked further to the right (indicating more positive error) compared to 

probabilities framed as Losses. A score of 0 indicates no difference between the 

conditions in terms of directional bias. A negative score indicates probabilities framed as 

Losses were on average marked further to the right (indicating more positive error) 

compared to probabilities framed as Gains. I conducted a repeated measures MANOVA 

with within-subjects factor Size (Small, Medium, and Large) and dependent variable 

Directional Framing Effect Score. There was no effect of Size (F(1, 64) = 0.055, p =.946, 

η2 = .001). Mean Directional Framing effect for Small, Medium, and Large markings 

were 0.084 (SD = 1.422), 0.030 (SD = 1.272), and -0.009 (SD = 1.395) mm, respectively.  

 Individual Differences in the Framing Effect and Rational Number Ability  

 The second research question was whether individuals with stronger rational 

number ability are less susceptible to the framing effect. To address this question, I first 

computed an overall Rational Number Ability Score for each participant. This score was 

based on z-scores for their performance on the three tasks associated with rational 
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numbers. First, a z-score was calculated for each participant’s average response time for 

the Decimal, Fraction, and Mixed conditions of the Magnitude Comparison task, and 

these z-scores were averaged together. Next, a z-score was calculated for each 

participant’s average absolute error for the Decimal and Fraction conditions on the NLE 

task, and these scores were averaged. Next, a z-score was calculated for the Rational 

Ability Test. Note that the directionality of these three measures differs: for the 

Magnitude Comparison and Number Line Estimation tasks, positive z-scores represent 

worse performance, whereas for the Rational Ability Test, they represent better 

performance. Thus, the overall Rational Number Ability Score was computed by 

subtracting the z-scores from the Magnitude Comparison task and the Number Line 

Estimation task from that of the Rational Ability test:  

Rational Number Ability = zrational ability test – zmagnitude comparison – znumber line estimation 

Thus higher scores indicate better rational number performance.   

 I first assessed whether individual differences in rational number ability are 

associated with the size of the framing effect. Rational Number Ability scores were 

entered in a linear regression model as predictor of Absolute Framing Effect scores. 

Rational Number Ability did not predict the size of the framing effect, b = -.041, t(63) = -

.995, p = .324.  

  Next, I conducted an analogous analysis using the Directional Framing Effect 

variable. I estimated a regression model with Rational Number Ability as the independent 

variable and Directional Framing Effect as the dependent variable. There was a marginal 



 90 

 

effect, b = .088, t(63) = 1.77, p = .080, η2= .048. The mean directional framing effect for 

the low ability group was -.119 (SD = .772) mm and for the high group was .186 (SD = 

.774) mm. This means individuals with lower rational number ability tended to mark 

probabilities framed as Losses further to the right compared to those marked as Gains. 

Conversely, individuals with higher rational ability tended to mark probabilities framed 

as Gains further to the right compared to those framed as Losses; see Figure 15.   
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Figure 15. Association between the directional framing effect and rational number 

ability. The regression line represents the best-fitting linear model.  

 

Individual Differences in the Asian Disease Problem and Rational Number 

Ability   

 Recall that each participant was randomly assigned to receive either the positively 

or negatively framed version of the Asian Disease problem. For this analysis, each 

participant either received a score of 0 if they chose the sure bet and a score of 1 if they 

chose the riskier option. The dependent variable was the proportion of participants in 

each group who chose the riskier option. Recall that Tversky and Kahneman (1981) 

found that participants in the negative framing condition were more likely to choose the 

riskier option.  

 A z-test of proportions revealed a difference between the groups, z = 2.074, p < 

.05. In the negative framing group (n = 35), 0.629 of participants choose the risk seeking 

option, whereas in the positive framing group (n = 32), 0.375 made this choice; see 

Figure 16. This replicated the classic Tversky and Kahneman (1981) finding.  
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Figure 16. Overall framing effect shown by proportion choosing the risk-seeking option 

within the positive and negative framing groups.  

 

 

To examine individual differences, I dichotomized the Rational Number Ability 

variable defined above by performing a median split to form a high group (n = 34) and a 

low group (n = 33). I then considered the framing effect separately for each group. For 

the low group, there was no framing effect, z = .354, p = .726. The proportion of 

participants choosing the risk-seeking option was comparable in the negative framing 

(0.53, n = 15) and positive framing (0.47, n = 17) conditions.  By contrast, for the high 

group, there was a framing effect, z = 2.382, p = .05. The proportion of participants 

choosing the risk-seeking option was greater in the negative framing (0.70, n = 20) than 
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the positive framing (0.286, n = 14) condition. Thus, the overall framing effect is driven 

by the high rational number ability group; see Figure 17.  

 

Figure 17. Effect of frame for each rational number ability group shown by proportion 

choosing the risk-seeking option within the positive and negative framing groups.  

 

Replicating Experiment 1: Representation of Rational Numbers 

To replicate some of the findings of Experiment 1, I analyzed the Magnitude 

Comparison task and the NLE task data. Again, the goal of these analyses was to assess 

whether different rational number formats (decimals vs. fractions) recruit the same 

mental representation or different mental representations.  
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Magnitude Comparison Task. I analyzed the Magnitude Comparison task data 

in a repeated measures MANOVA with within-subjects factor Type (Decimal, Fraction, 

and Mixed) and dependent variable RT. The test showed a significant effect for Type 

(F(1, 65) = 122.85, p < .001, η2 = .791). Post-hoc testing using Pillai’s test revealed 

significant differences between Decimals and Fractions (F(1, 66) = 170.69, p < .001, 

Cohen’s d = 1.596) and Decimal and Mixed comparisons (F(1, 66) = 231.04, p < .001, 

Cohen’s d = 1.857). Mean RTs for Decimal, Fractions, and Mixed comparisons were 722 

(SD = 121), 1136 (SD = 292), and 1106 (SD = 245) ms, respectively; see Figure 18. 

These results largely replicate the pattern found in Experiment 1, with the exception that 

the significant difference between the Fraction and Mixed conditions in Experiment 1 

was only marginally significant in Experiment 2, with Mixed being slightly quicker.  
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Figure 18. Mean response times by type for the Magnitude Comparison task. Error bars 

represent standard errors. 

 

I conducted a parallel analysis of the accuracy data.  The test showed a significant 

effect for Type (F(1, 65) = 61.2, p < .001, η2 = .653). Post-hoc testing using Pillai’s test 

revealed significant differences between all three comparison types: Decimals to 

Fractions (F(1, 66) = 120.8, p < .001, Cohen’s d = 1.34), Decimals to Mixed (F(1, 66) = 

60.2, p < .001, Cohen’s d = .948), and Fractions to Mixed (F(1, 66) = 11.8, p < .01, 

Cohen’s d = 0.419). Mean accuracy rates for Decimal, Fractions, and Mixed comparisons 

were .960 (SD = .047), .856 (SD = .080), and .887 (SD = .070), respectively; see Figure 

19. These results largely replicate those found in Experiment 1, with the exception that 
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the significant difference between the Fraction and Mixed comparisons in Experiment 2 

was only a trend in Experiment 1 (p = .19).  

 

Figure 19. Mean accuracy by type for the Magnitude Comparison task. Error bars 

represent standard errors.  

 

Number Line Estimation Task. I analyzed the NLE task data in a repeated 

measures MANOVA with within-subjects factor Type (Decimal and Fraction) and 

dependent variable RT. The test showed a significant effect for Type (F(1, 65) = 

49.94.53, p < .001, η2 = .434). Mean RTs for Decimal and Fractions markings were 2215 

(SD = 460), and 2512 (SD = 432) ms, respectively; see Figure 20. These results are 

identical to what was found in Experiment 1. 
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Figure 20. Mean response times by type for the NLE task. Error bars represent standard 

errors. 

 

I conducted a parallel analysis of the absolute error data.  The test did not show a 

significant effect for Type (F(1, 65) = 2.98, p =.089, η2 = .044). Mean absolute error for 

Decimal estimates was 3.882 (SD = 0.983) mm and for Fractions estimates was 4.046 

(SD = 0.767) mm; see Figure 21. This represents a failure to replicate the Experiment 1 of 

greater absolute error for Fraction estimates, although the trend was in the same direction. 
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Figure 21. Mean absolute errors by type for the NLE task. Error bars represent standard 

errors. 

 

Replicating Experiment 1 – Classic Effects  

Next, I attempted to replicate the analyses of Experiment 1 intended to check for 

the same classic effects that are indicators that rational numbers are processed in a similar 

manner to natural numbers. These findings add to the continuing study of how rational 

number processing is similar to or differs from the processing of positive integers and 

serve as evidence that the current participants performed similarly to those of prior 

studies 
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First, I consider effects related to the distance between the two numbers being 

compared. These results are informative for the debate over whether people process 

fractions as they do integers, via an analog number line, which is considered holistic 

processing, or whether they process the numerator and denominator separately, which is 

considered componential processing. Note that the distance effect is considered an 

indicator of holistic (i.e., magnitude) processing.  

Distance Effect. The distance effect (Moyer & Landauer, 1967) is the finding that 

people more quickly judge the greater (or lesser) of two numbers the larger the distance 

between them (e.g., comparing 2 vs. 9 is quicker than comparing 5 vs. 6). It is considered 

an indicator of holistic processing via an analog number line. I tested for this effect by 

first calculating average response times for each participant for “near” comparisons 

where the distance between the numbers was less than 0.2 (roughly half the trials) and 

also for the remaining “far” comparisons. I did this separately for each of three 

comparison types (decimal, fraction, mixed). There was a distance effect for decimal 

comparisons (t(67) = 13.929, p < .001, d = 1.689), fraction comparisons (t(67) = 6.612, p 

< .001, d = .802), and mixed comparisons (t(67) = 10.365, p < .001, d = 1.257). These 

results replicate the findings of Experiment 1 and prior findings of distance effects for 

decimal comparisons (Varma & Karl, 2013) and fraction comparisons (Jacob & Nieder, 

2009; Schneider & Siegler, 2010).  

Distance Effect Slopes. I also tested for the distance effect in a more continuous 

fashion. For each participant, for each comparison Type, a linear model was fit predicting 
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response times from the absolute distance between the two numbers being compared. A 

distance effect is evidenced by a negative slope as this indicates as the distance between 

the two numbers increases, the time it takes to compare them decreases. The question is 

whether the slopes are comparable across the three types of rational number comparison, 

consistent with the use of common magnitude representations, or whether they differ. A 

repeated measures MANOVA was conducted with within-subjects factor Type (Decimal, 

Fraction, and Mixed) and dependent measure average RT/distance slope. Unlike 

Experiment 1, there was no effect of Type (F(1, 65) = .76, p = .471, η2 = .023). The mean 

distance effect slopes for decimal, fractions, and mixed comparisons were -.301 (SD = 

.123), -.284 (SD = .158), and -.315 (SD = .175), respectively; see Figure 22. 
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Figure 22. Mean distance effect slope by type for the Magnitude Comparison task. Error 

bars represent standard errors. 

 

 

Next, I explored these distance effect slopes on a subset of near comparisons. 

Again, near comparisons were defined as trials in which the difference between the two 

numbers was less than .2, and amount to roughly half of the total trials participants 

completed. I focused on this subset because they require the most refined magnitude 

processing of rational numbers. The goal was to replicate and expand upon (by including 

the Mixed condition) the prior finding that the distance effect disappears for comparisons 

of near-distance fractions (Zhang, Fang, Gabriel, & Szűcs, 2016; DeWolf & Vosniadou, 

Decimal Fraction Mixed

R
e
s
p

o
n

s
e
 T

im
e

/D
is

ta
n
c
e
 S

lo
p
e

s

0
.0

-0
.1

-0
.2

-0
.3

-0
.4



 102 

 

2015). A repeated measures MANOVA was conducted with within-subjects factor Type 

(Decimal, Fraction, and Mixed) and dependent measure average RT/distance slope on 

near trials. There was a significant main effect for type (F(1, 67) = 7.649, p < .01, η2 = 

.188). Post-hoc contrasts using Pillai’s test revealed significant differences between 

Fraction and Decimal comparisons (F(1, 67) = 172.46, p < .001, d = 1.596) only. Mean 

distance slopes for near comparisons for Decimal, Fractions, and Mixed comparisons 

were -.223 (SD = .162), -.013 (SD = .225), and -.180 (SD = .241), respectively; see Figure 

23. These results differ from those of Experiment 1 in that the significant difference 

between Fraction and Mixed comparison failed to replicate; it was only marginal (p = 

.059). More importantly, these results are similar to those of Experiment 1 in that 

Fraction comparisons on these near trials have average distance slopes near 0, while the 

Decimal and Mixed conditions retain negative distance slopes.   

Thus, in both experiments, there is evidence that fractions are less likely to be 

processed like the natural numbers for particularly near comparisons, while decimal 

appear to still be processed similarly to natural numbers, replicating previous findings 

(Zhang, Fang, Gabriel, & Szűcs, 2016; DeWolf & Vosniadou, 2015). Also, by including 

the Mixed condition, both experiments suggest that while the inclusion of a fraction in 

the comparison makes processing more difficult than in the Decimal condition, the  

decimal provides an anchor that facilitates magnitude processing. In this case, it appears 

that anchor grounds near comparisons in a way that produces a distance effect that does 

not occur when only fractions are involved.  
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Figure 23. Mean distance effect slope by type for the Magnitude Comparison task for 

near comparisons only. Error bars represent standard errors. 

 

The results of the distance effect overall across both experiments inform the 

debate over holistic versus componential processing of fractions, and thus whether 

rational numbers as a class are processed at the magnitude level. They suggest that all 

three types of rational numbers are processed in a way that shares similarities with 

processing natural numbers, i.e., using holistic processing. However, there is evidence 

fractions may be the format least amenable for magnitude processing. Specifically, the 

distance effect for difficult near-distance comparisons disappears, suggesting that they 
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require more componential processing. Further, by including the Mixed conditions, these 

results largely suggest that including decimals alongside fractions can encourage more 

holistic processing of rational numbers than fractions alone. 

The Size Effect. The size effect (Parkman, 1971) is the finding that people more 

quickly judge the greater (or lesser) of two numbers the smaller their average size, when 

the distance between them is held constant (e.g., comparing 3 and 4 is quicker than 

comparing 8 and 9). I tested for this effect by first calculating average response times for 

each participant for “large” comparisons, where the sum of the two numbers compared 

was above .5 (roughly half the trials), and also for the remaining “small” comparisons. I 

did this separately for each of the three comparison types (decimal, fraction, mixed). For 

decimal comparisons, there was a marginal effect of size (t(67) = -1.937, p =.057, d = 

.235). For fraction comparisons, there was a size effect (t(67) = -3.174, p < .01, d = .385). 

Finally, there was no effect of size for mixed comparisons (t(67) = .250, p = .803). These 

results differ from Experiment 1 where no size effect was found for any of the 

comparison types. Overall, the size effect may not appear with decimals or fractions 

limited to numbers between 0 and 1 due to range restriction.  

Unit-Decade Compatibility Effect. The unit-decade compatibility effect is the 

finding that the tens and ones digits can interfere when people compare two-digit 

numbers (Nuerk, Weger, & Willmes, 2001). For example, people compare 21 and 87 

quickly because both the ones and tens digits lead to the same judgment, whereas they 

compare 24 and 82 slowly because they lead to conflicting judgments. This effect has 
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been extended to decimal comparisons (Varma & Karl, 2013). This effect was tested by 

sorting the decimal trials into congruent and incongruent trials and comparing 

participants’ average response times using a paired t-test. Experiment 2 replicated the 

compatibility effect (t(67) = 2.503, p <.05, d = .304), with congruent trials (M = 714 ms, 

SD = 118) compared faster than incongruent trials (M = 725 ms, SD = 122). This effect 

was not found in Experiment 1, perhaps because it included 7 fewer participants.  

Speed Accuracy Trade-off. To determine whether there was a speed accuracy 

trade-off, I computed bivariate correlations between each participants’ average RT and 

accuracy separately for each comparison Type (Decimal, Fraction, and Mixed). A speed-

accuracy trade-off would be indicated by a positive correlation, with slower (i.e., larger) 

response times associated with higher (i.e., larger) accuracies. There was no evidence of a 

speed-accuracy trade-off for Fraction comparisons (r(65) = .076, p = .541) or Mixed 

comparisons (r(65) = -.113, p = .364). However, there was such a trade-off for Decimal 

comparisons (r(66) = .419, p < .001). These findings replicate those of Experiment 1.  

Discussion 

Experiment 2 explored the relationship between people’s magnitude 

representations of rational numbers and the framing of probabilistic information (gain vs. 

loss). The framing effect refers to the impact of positive and negative valences in 

decision-making tasks that deal with probabilistic information. Experiment 2 addressed 

the framing effect at two levels using three measures, as summarized in Table 10.  

Table 10 
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Framing Effect Measures Analyzed in Experiment 2 

 Magnitude Level Decision Level 

Task: Probability Number Line Task Asian Disease Problem 

Outcome(s): 
1) Precision of marking probabilities 

2) Direction of marking probabilities 

3) Choice between two options 

 

The Effect of Frame on Magnitude Representations  

First, I considered the effect of frame at the magnitude level, with the frame (as a 

gain vs. a loss) modulating the magnitude representations of the probability, using the 

Probability NLE task. The first question is whether the frame affects overall precision on 

the probability number line task. Precision is how far away on average participants were 

from the correct number; it was computed by averaging the absolute differences between 

each participant’s markings from the actual probabilities separately for gains and losses. 

Experiment 2 found no effect of frame, with comparable mean absolute errors for gain vs. 

loss framings. I also investigated whether the effect of framing is different based on the 

size of probability magnitudes. This was not the case as there was no interaction between 

frame (gain vs. loss) and the size of the probability (small vs. medium vs. large). Overall, 

these results do not support the hypothesis that framing a probability as a gain vs. a loss 

affects the precision of people's representations of that probability as a magnitude. 

Next, I considered that whether or not framing effect the precision of people’s 

magnitude representations of probabilities, it may affect the direction of such 

representations. Direction was defined as the tendency to mark estimates to the right or to 
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the left of the correct number. The general hypothesis is that framing probabilities as 

gains vs. losses may cause people to “shift” their estimates in a particular direction, for 

example to the left vs. right of the actual probability. Specifically, loss aversion may 

show up in people’s magnitude representations. This refers to an affective bias toward 

avoiding losses more than seeking gains (Kahneman & Tversky, 1979). If we assume a 

person’s current net state is 0, the idea of adding 2 to that state is appealing and the idea 

of subtracting 2 from that state is unappealing. Loss aversion is a bias to avoid the loss of 

2 more than to approach the gain of 2. If this tendency does affect magnitude 

representations of probabilities, people may shift probabilities framed as losses more to 

the right, overestimating their magnitude in comparison to gains. The results of 

Experiment 2 did not support the hypothesis that frame would affect direction, with 

comparable mean raw errors for gain vs. loss framings. I also tested whether depending 

on the size of the probability magnitudes (small, medium, large), the framing effect may 

affect direction differently. This hypothesis was also not supported as there was no 

interaction between frame (gain vs. loss) and size (small vs. medium vs. large). Overall, 

these results do not support the hypothesis that framing a probability as gains or losses 

affects the direction of people’s representation of probability magnitudes.  

The absence of evidence that framing has its effect at the level of magnitude 

representations of probabilities suggests the framing effect may be due to other factors. It 

is also possible that the frame here, implemented by the phrasing “the ____% chance of a 

gain/loss” on each trial, was not strong enough to elicit the effect. Another possibility is 
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that labeling the right pole as “1” may have caused problems. In particular, numbers were 

presented as percentages and the 1 was intended to represent 100% – a correspondence 

that some participants might have missed. However, during practice trials, when 

beginning the Loss condition, many participants asked whether should invert the 

probabilities, i.e., whether they should, for example, interpret a 20% loss as an 80% gain 

and mark it on the right side of the number line. In addition, some participants made that 

mistake spontaneously. These mistakes, which were corrected before the experimental 

blocks began, suggest that participants were cognizant of the difference between the 

conditions, at least when initially confronted with the loss framing, and also were able to 

map the right pole, labeled “1”, to 100%.  

The Effect of Frame on Decisions: The Classic Framing Effect 

This experiment also included a commonly used framing effect task that operates 

at the decision level. Participants solved the Asian Disease problem from the original 

experiment on the framing effect (Tversky & Kahneman, 1981). This problem, a 

decision-based measure of the framing effect, was included to contrast with the 

Probability NLE task, a magnitude-based measure of the framing effect. Also, this task 

allows me to replicate previous findings of a framing effect. In this experiment, more 

participants chose the riskier option when the choices were negatively framed, replicating 

the classic Tversky and Kahneman (1981) finding. This finding supports the hypothesis 

that the framing effect largely manifests at the decision-making level. Further, since this 

has been a well-established finding in the literature, this can be taken as evidence that the 
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participants involved in Experiment 2 were behaving similarly to those in past 

experiments. 

The Interaction between the Framing Effect and Individual Numerical Ability   

The second research question was whether individual differences in the framing 

effect interact with individual differences in rational number ability. If so, this would 

provide evidence of a relationship between numerical ability and bias in decision making 

when probabilities are involved. To test this hypothesis, each participant’s overall 

rational number ability was estimated by the sum of the z-scores of their performance on 

the Magnitude Comparison and NLE tasks and the Rational Number Ability Test. These 

overall scores were then tested as predictors of the framing effect in the various ways it 

was measured in this experiment.  

 First, I considered whether rational number ability could predict the effect of 

frame in terms of how precisely participants marked their probabilities as measured by 

the difference in average absolute errors between the gain and loss conditions. The results 

of this analysis did not support this hypothesis, as there was no relationship between 

participants’ overall rational number ability and their absolute framing effect.  

 Next, I considered whether rational number ability could predict the effect of 

frame in terms of directionality (i.e., the left or right bias) as measured by difference in 

average raw errors between the gain and loss conditions. There was a marginal 

relationship of rational number ability and the directional framing effect. Individuals with 

lower rational number ability tended to mark probabilities framed as Losses further to the 
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right (indicating more positive error) compared to probabilities framed as Gains. 

Conversely, individuals with higher rational ability tended to mark probabilities framed 

as Gains (indicating more positive error) further to the right compared to those framed as 

Losses. See Figures 24 and 25 below for visual representations of this difference for each 

group. This marginal finding suggests that individuals with lower rational number ability 

may be more likely to exhibit loss aversion responses to negatively framed probabilities. 

Recall that loss aversion refers to an affective bias for avoiding losses more than seeking 

gains. The marginal results of this experiment suggest loss aversion may be partially due 

to people with lower rational number ability representing numbers framed negatively as 

higher magnitudes compared to the same numbers framed positively. Therefore, it may 

be that the loss aversion tendency has particularly influenced those with lower rational 

number ability in interpreting numerical information. As will be discussed below in more 

detail, there is reason to believe the current sample was particularly high performing 

when it comes to mathematical skill. Therefore, it is possible that with a more diverse 

group of participants, this relationship may be driven more by those with lower numerical 

ability exhibiting more bias to mark probabilities marked as losses to the right of their 

correct positions.  
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Figure 24. Depiction of Low Rational Ability Group’s raw average errors by condition 

for the Probability NLE task. Figure not drawn to scale. G = participants’ average raw 

errors for Gain markings. L = participants’ average raw errors for Loss markings. 

 

 

Figure 25. Depiction of High Rational Ability Group’s raw average errors by condition 

for the Probability NLE task. Figure not drawn to scale. G = participants’ average raw 

errors for Gain markings. L = participants’ average raw errors for Loss markings. 

 

Finally, there was an interaction between rational number ability and the framing 

effect at the decision level, as measured by the Asian Disease problem. The framing 

effect on this task was measured based on participants’ choices between two options. 

Low and high ability groups were defined by a median split based on the same overall 

rational number ability score guiding the discussion in this section. The low ability group 

exhibited no framing effect, whereas the high ability group did. Thus, the overall framing 

effect at the decision level was driven by the high rational number ability participants.  

This result was unexpected and runs counter to previous findings that the framing 

effect is driven by individuals with lower numerical ability (Simon, Fagley, & Halleran, 

2004; Peters, et al., 2006). One explanation for this discrepancy is methodological 

differences between the experiments. First, in Simon et al. (2004), participants self-

reported their mathematical ability on a scale of 1-7. In Peters et al. (2006), participants’ 

scores were based on the 11-item Lipkus (2001) scale, a measure of the ability to 

translate between percent, ratio, and fraction representations of rational numbers. These 
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are different measures of numerical ability than the ones used here. Furthermore, in the 

Simon et al. (2004) analysis, self-reported math ability was only related to the framing 

effect when included in interaction with another general cognitive measure, the Need for 

Cognition Scale.  

Another explanation is that the “low ability” participants in Experiment 2 might 

not have been very low at all. Experiments 1 and 2 used similar methods of recruitment 

for this experiment, drawing from the same population of undergraduates. In Experiment 

1, the mean ACT math score was 28, which approximately corresponds to the 90th 

percentile nationally. It is likely that Experiment 2 included participants of similarly high 

mathematical achievement. Thus, the two groups might be better labeled “high” and 

“very high”. (However, it is important to note that two groups did differ on five out of the 

six measures used to compute high and low groups used in this analysis, based on t-tests. 

Only reaction times for decimal comparisons on the magnitude comparison task were 

comparable between groups, likely due to a ceiling effect since performance was highest 

on that particular task.)  

 These results suggest that there are situations in which superior numerical ability 

can unexpectedly lead to less normative evaluations of situations involving probabilities 

with superficial differences, such as frame.  
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Chapter 6: General Discussion 

Understanding rational numbers requires reorganizing of our initial understanding 

of numbers as whole numbers. Coordinating the relationship between the different 

symbolic names of rational numbers and their underlying non-symbolic magnitudes 

appears to be an important component of mathematical development in children, relating 

to more complex mathematical skills (Fazio, Bailey, Thompson, & Siegler, 2014; Siegler 

& Pyke, 2013; Mazzocco et al., 2013). It is also an important component of adult 

decision making in everyday life (Simon, Fagley, & Halleran, 2004; Peters, et al., 2006).    

The mental representation and processing of rational numbers was explored 

across two experiment. The goal was to investigate whether these numbers, in various 

formats, underlie general mathematical achievement and decision making. Both 

experiments demonstrated that the format of rational numbers affects the ease of 

processing. In particular, the fraction format hinders magnitude processing compared to 

the decimal format. A related and novel finding is that the mixed format—where a 

fraction is compared to a decimal—facilitates magnitude processing compared to the 

fraction-only format. Experiment 1 additionally demonstrated that the precision of 

rational number magnitudes is related to general mathematical achievement. This is 

evidence that a better understanding of rational numbers is important for more abstract 

mathematics in adults. Experiment 2 showed that individual differences in rational 

number ability are associated with individual differences in bias in decision making. 

Individuals with lower rational number ability were marginally more likely to exhibit loss 
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aversion in their representations of probabilities framed as losses, with the opposite 

pattern occurring in individuals with higher rational number ability. Also, individuals 

with higher rational number ability were more like to exhibit the framing effect in a 

classic decision-based problem. 

These findings are important for theoretical, educational, and pragmatic reasons. 

Theoretically, they extend previous findings that fractions and decimal formats for 

rational numbers share common magnitude representations with natural numbers (Varma 

& Karl, 2013; Jacob & Nieder, 2009; Schneider & Siegler, 2010). However, these 

findings also confirm that in particularly difficult contexts, fraction processing is more 

detached from these common magnitude representations, and therefore slower (Zhang, 

Fang, Gabriel, & Szűcs, 2015; DeWolf & Vosniadou, 2015). Educationally, the observed 

relationship between individual differences in rational number magnitudes and individual 

differences in general mathematical achievement was extended from children (Fazio, 

Bailey, Thompson, & Siegler, 2014; Siegler & Pyke, 2013) to adults for the first time. 

This is an important continuity, one that maintains even after years of development and 

learning with a wide variety of mathematics instruction. To the best of my knowledge, 

this is the first known case of predicting performance on a college entrance exam using 

numerical magnitude tasks. Pragmatically, there was a marginal relationship between 

rational number ability and people’s tendency towards loss aversion. Interestingly, one 

relationship found in Experiment 2 ran counter to previous findings and intuition: people 
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with superior rational number ability were more likely to demonstrate a common 

decision-making bias. 

Rational Number Formats 

The first research question was whether the format of rational numbers – as 

decimals versus fractions – affects the ease of accessing and processing the underlying 

magnitude representations. Processing was measured using two standard tasks in the 

literature. In the magnitude comparison task, participants compare two rational numbers 

– both expressed as decimals, both expressed as fractions, or a mixture of one decimal 

and one fraction – and judge which one is greater or lesser. In the number line estimation 

task, participants estimate where a rational number – expressed as a decimal or fraction – 

should be placed on a number line with poles labeled 0 and 1. Both experiments used 

these tasks, and their results support the hypothesis that decimals are accessed more 

quickly and accurately than fractions. This suggests that decimals are more efficiently 

linked to their underlying magnitude representations. A secondary question was whether 

there is a cost (i.e., in response time or accuracy) of mixing the two rational number 

formats. This was not the case: Across the two experiments, the mixed comparisons were 

completed at least as quickly and accurately as the fraction comparisons. 

Further support for an advantage for the decimal format comes from the observed 

pattern of distance effects (Moyer & Landauer, 1967). Distance effects were found for all 

three comparison types (decimal, fraction, and mixed). However, the subset of difficult 

near-distance trials, the distance effect for fraction comparisons disappeared, whereas it 
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persisted for decimal and mixed comparisons. This suggests that fractions are less likely 

than other rational number formats (i.e., decimals) using magnitude representations 

(Zhang, Fang, Gabriel, & Szűcs, 2015; DeWolf & Vosniadou, 2015).  

Rational Number Processing and Mathematical Achievement  

 The second research question of Experiment 1 was whether there is a relationship 

between rational number magnitude processing and mathematical achievement in an 

adult population. Both the magnitude comparison and number line estimations tasks 

predicted general mathematical achievement as measured by the ACT. This extends – for 

the first time – the previous finding of a predictive relationship in middle school students 

(Siegler & Pyke, 2013). Of the two magnitude tasks used in these experiments, number 

line estimation appears to be the most related to mathematical achievement. These 

findings suggest the consequences of rational number ability and instruction continue into 

adulthood. Further, representing rational numbers on a number line may be a better a way 

to assess this ability after initial instruction occurs.  

Rational Number Ability and the Framing Effect 

The third research question concerned the relationship between people’s 

magnitude representations of rational numbers and their understanding of the framing of 

probabilities as gains vs. losses. Experiment 2 modified the number lines estimation task 

to require participants to mark the positions of probabilities (percentages) framed as gain 

and losses. The results demonstrated that the framing of probabilities in this way does not 

affect their processing as rational number magnitudes. Although there is reason to believe 



 117 

 

that this task was properly understood by participants, it is possible that the effect of 

frame was lost in the routine of making many quick markings without the time to 

consider the probabilistic gain/loss context. Thus, it remains unclear if the frame was 

properly primed.  

The fourth research question was whether there is a relation between individual 

differences in rational number ability and individual differences in susceptibility to 

framing effects (Simon, Fagley, & Halleran, 2004; Peters, et al., 2006). This question was 

addressed in Experiment 2 in two ways. First, there was a marginally significant 

relationship between rational number ability and the direction of errors in the probability 

number line estimation task (i.e., a bias for people to mark a probability to the right or the 

left of the correct placement as a function of whether it is framed as a Gain or a Loss). 

People with lower rational number ability marked probabilities framed as Losses further 

to the right (i.e., made positively biased errors) compared to probabilities framed as 

Gains. This suggests loss aversion may impact individuals with lower rational number 

ability. Specifically, they may be more likely to interpret rational numbers expressed 

negatively as having larger magnitudes. However, given the potentially weak effect of 

frame on the probability number line task (mentioned above), and without a more diverse 

sample of participants in terms of mathematical ability, this claim merits further 

investigation.  

Second, at the decision level, there was an interaction between rational number 

ability and the framing effect. The decision level refers to performance on participants’ 
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choices on the classic Asian Disease problem (Tversky and Kahneman, 1981). 

Surprisingly, the overall framing effect at the decision level was driven by the high 

rational number ability participants. They exhibited a framing effect, whereas the low 

rational ability group did not. This result stands in contrasts to the overall trends of prior 

studies finding that higher numerical ability was associated with less susceptibility to the 

framing effect (Simon, Fagley, & Halleran, 2004; Peters, et al., 2006). Most previous 

findings were interpreted as evidence that people with higher numerical ability are better 

able to attend to and process the problem-relevant numerical information. There are 

several plausible reasons for my different findings. First, numerical ability was measured 

with more tasks in this study than previous ones and those tasks were specifically related 

to broad abilities related to processing rational numbers. Second, the Asian Disease 

problem was always last for all participants. Therefore, those who did the best on the 

other tasks may have been the most exhausted (after 45 plus minutes of cognitive effort) 

and thereby behaved more like a lower performing group.  

Limitations 

 There were a number of limitations of the current study that should be addressed 

in future research. One limitation of both experiments may have been power. Although 

many of the findings were clear in terms of statistical significance, a few were only 

marginal. It is unclear whether the marginal results are “real” or not. A replication with a 

larger sample would help answer this question.  
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 Another limitation of the current experiments was the representativeness of the 

sample. These experiments would benefit from a more diverse sample in terms of 

mathematical ability. As a reminder, the group analyzed in Experiment 1 appears to be 

near the 90th percentile nationwide on one measure of mathematical achievement, and it 

is likely the group in Experiment 2 also contained a large proportion of high performers. 

The restricted range on the mathematical achievement dependent measure limited our 

ability to find significant predictors of individual differences.  

 Still another limitation is that the effect of the frame in the probability NLE task 

utilized in Experiment 2 may have worn off over time. In this task, participants marked 

decontextualized probabilities labeled either as a “gain” or a “loss”. The effect of this 

wording may have grown weaker across multiple trials as participants became habituated 

to the activity of marking the numbers.  

 A final limitation of the current experiments was the use of only one problem to 

test the framing effect at the decision level, the Asian disease problem. This limitation 

was due to time constraints and the primary interest in measuring the framing effect at 

using the probability number line task. However, it would be beneficial to measure this 

affect across multiple problems with different numbers and contexts.  

Future Directions  

The current study suggests a number of promising directions for future research 

and instructional design.  

Strategy Selection 
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 This study suggests that processing fractions is more difficult than processing 

decimals and may require selection from among a broader range of strategies. This 

suggests that differences in strategy selection between decimals and fractions should be 

explored. Fazio, DeWolf, and Siegler (2016) studied fraction comparisons only and found 

that better accuracy and speed were both associated with better strategy use, choice, and 

execution. Based on the results of this and previous studies, it is likely that this 

relationship is not as strong for decimal comparisons, which are easier than fraction 

comparisons. Strategy generation, selection, and execution should be more systematically 

compared between these two rational number formats to confirm this hypothesis. 

Moreover, if fractions rely more on strategic processing, then they are more likely to be 

related to general mathematical achievement. 

Mathematical Achievement 

The relationship between rational number ability and mathematical achievement 

should be investigated at a finer grain. In particular, research should better differentiate 

the component relationships to different domains of mathematics: algebra, geometry, and 

so on. In a study reviewed earlier Van Hoof et al. (2015) tested 8th, 10th, and 12th graders 

on a task where participants verified whether algebraic statements could or could not be 

true. A majority of their mistakes were due to failures to consider how rational numbers 

could change their interpretation of these algebraic statements. These findings suggest 

that rational number processing may be more related to problems requiring basic 
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algebraic manipulations than those requiring knowledge of geometry rules, for example. 

This hypothesis should be tested more formally.  

Triangulating Framing Effects 

Everyday decision making, especially in the realm of financial decisions, is full of 

cost/benefit analyses in which probabilities—rational numbers—play a critical role. In 

future studies though, the probabilistic number line estimation task could be combined 

with decision-level tasks like the Asian disease problem to better understand how Loss 

vs. Gain frames affect magnitude representations. For example, a future study could have 

participants complete multiple decision-level problems, choosing between two options 

that are either framed positively or negatively. Then, they could revisit each problem and 

estimate the position of each risky choice (e.g., 1/3 chance of saving all 600 people vs. a 

2/3 of all dying) on a number line between 0-1. This would enable us to get both a fuller 

priming of the framing effect and to analyze difference between who exhibit the strongest 

and weakest framing effects.  

Rational Number Training 

The current findings suggest that training study interventions that intermix 

decimals and fractions tasks might be a fruitful way to improve rational number 

processing. Both experiments found that mixed comparisons of one fraction and one 

decimal are easier and more likely to elicit magnitude processing than comparisons of 

two fractions. In particular, mixed comparisons show distance effects on the most 

difficult (near) comparisons whereas fraction comparisons did not. Therefore, including 
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decimals alongside fractions in comparison, number line estimation, or ranking tasks 

might encourage more magnitude processing of rational numbers than including fractions 

alone, which might encourage more symbolic processing. Intermixing different rational 

number representations might have the effect of improving the link between the symbolic 

names of fractions and their magnitudes representations. Further evidence for this 

suggestion comes from the Mazzocco and Devlin (2008) finding that the ability of 

middle-school students to rank-order intermixed fractions and decimals is related to their 

math disability status. In particular, students who were identified as having a math 

learning disability were least likely to intermix fractions with decimals. Instead, they 

were more likely to separate them into two homogeneous groups and rank-order each one 

separately. This finding supports the proposal that understanding rational numbers across 

formats, and mapping them all formats to a common magnitude representation, is 

important for mathematical achievement.   

Conclusion 

Across two experiments, the important role of rational number processing was 

considered in relation to mathematical achievement and everyday decision making. An 

important point reinforced by Experiment 1 was that rational number ability should not 

be ignored and efforts to understand this ability and improve it are worthwhile as they 

underlie more diverse mathematical ability. Considering the role of format with this key 

finding in mind strongly supports instructional designs that make connections between 

different rational number representations. Particularly, I advise using number lines and 
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intermixing decimals and fractions to improve the connection between these numerical 

symbols and their non-symbolic magnitudes.  

Decision making in everyday life was also explored. Research reports, news 

stories, political speeches, and many other information formats intended to both inform 

and persuade contain probabilistic information that can influence our perception of the 

world and the decisions we make (Jones and Thorton, 2005). Such probabilistic reasoning 

requires both numerical comprehension (use of fractions, decimals, percentages, and/or 

proportions) and decision-making to consider future outcomes that are unclear. The 

results of this study suggest numerical ability alone is not a sufficient guard against 

biased decision making when probabilities are involved, instead suggesting other task 

features that cause the bias may need to be more explicitly realized before numerical 

ability can make such decisions more normative. However, there were individual 

differences that could suggest bias can affect people differently depending on their 

facility with rational numbers. Given this side of rational number processing extends 

beyond academic pursuits, it is worthwhile to continue studying the relationship 

systematically and consider interventions that uncover relevant and irrelevant problem 

features. Maximizing people’s ability to apply what they have learned about rational 

numbers in a real-world decision making requires considering the role problem context 

has on such decisions.  
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Appendix A 

 

Magnitude Comparison task stimuli. 

              Decimals              Fractions             Mixed  

0.23 0.9   9/10   1/9  0.21   9/10 

0.2 0.82   7/8    1/4    2/7  0.87 

0.24 0.85   7/10   1/10 0.24   7/10 

0.16 0.73   8/9    3/10 0.12   5/9  

0.18 0.67   6/7    2/5  0.45   7/8  

0.26 0.67   2/3    3/10   2/5  0.82 

0.41 0.77   5/7    3/8  0.23   3/5  

0.15 0.5   5/9    2/9    1/2  0.86 

0.56 0.89   4/7    1/4  0.2   5/9  

0.28 0.53   5/6    5/9    1/3  0.63 

0.34 0.58   6/7    5/8  0.18   3/7  

0.18 0.41   3/7    1/5    1/2  0.72 

0.41 0.59   3/10   1/8  0.69  6/7 

0.11 0.28   1/2    1/3  0.13   3/10 

0.4 0.53   5/9    2/5    1/3  0.49 

0.2 0.33   3/7    2/7    1/3  0.48 

0.53 0.64   1/2    3/8  0.16   3/10 

0.43 0.52   9/10   7/9    5/7  0.83 

0.12 0.21   1/3    2/9  0.34   3/7  

0.44 0.5   2/3    5/9    3/7  0.49 

0.62 0.67   1/3    1/4    6/7  0.89 

0.77 0.81   3/10   1/4    5/7  0.74 

0.28 0.32   1/7    1/10 0.11   1/8  

0.89 0.92   2/7    1/4    8/9  0.9 

0.9 0.86   1/5    1/4  0.41   2/5  

0.74 0.67   7/9    5/6    1/5  0.18 

0.24 0.16   4/9    1/2    3/7  0.36 

0.74 0.65   4/5    6/7    7/9  0.66 

0.42 0.31   5/9    5/8    5/6  0.71 

0.71 0.6   1/6    1/4  0.3   1/6  

0.54 0.42   2/7    3/8    8/9  0.74 

0.37 0.23   3/4    8/9    5/6  0.68 

0.86 0.72   1/6    1/3  0.47   3/10 
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0.47 0.3   3/7    3/5  0.32   1/7  

0.72 0.53   5/7    8/9  0.28   1/10 

0.48 0.29   3/5    7/9    4/7  0.38 

0.4 0.12   1/5    4/9  0.62   1/3  

0.87 0.59   1/2    3/4  0.4   1/10 

0.7 0.39   1/8    3/8  0.77   4/9  

0.68 0.25   2/5    4/5    3/4  0.4 

0.65 0.24   1/3    3/4  0.65   3/10 

0.63 0.2   3/7    7/8   2/3 0.29 

0.81 0.37   1/10   5/9    6/7  0.44 

0.61 0.13   2/5    8/9    2/3  0.24 

0.76 0.21   3/10   4/5  0.71   1/6  

0.82 0.24   1/7    7/10 0.7   1/7  

0.83 0.22   3/10   7/8  0.81   1/5  

0.85 0.23   1/10   5/6    9/10 0.16 

Mean 0.50 0.49 0.49 0.49 0.50 0.49 
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Appendix B  

Number Line Estimation task stimuli.  

Fractions Decimals Percentages Complements 

1/19 0.05 5% 95% 

1/11 0.09 9% 91% 

1/10 0.10 10% 90% 

2/17 0.12 12% 88% 

1/8 0.13 13% 87% 

2/13 0.15 15% 85% 

1/6 0.17 17% 83% 

3/16 0.19 19% 81% 

3/14 0.21 21% 79% 

2/9 0.22 22% 78% 

3/13 0.23 23% 77% 

4/15 0.27 27% 73% 

2/7 0.29 29% 71% 

3/10 0.30 30% 70% 

1/3 0.33 33% 67% 

6/17 0.35 35% 65% 

3/8 0.38 38% 62% 

5/12 0.42 42% 58% 

7/16 0.44 44% 56% 

6/11 0.55 55% 45% 

5/9 0.56 56% 44% 

4/7 0.57 57% 43% 

5/8 0.63 63% 37% 

9/14 0.64 64% 36% 

7/10 0.70 70% 30% 

5/7 0.71 71% 29% 

11/15 0.73 73% 27% 

3/4 0.75 75% 25% 

7/9 0.78 78% 22% 

5/6 0.83 83% 17% 

11/13 0.85 85% 15% 

7/8 0.88 88% 12% 

8/9 0.89 89% 11% 

9/10 0.90 90% 10% 

11/12 0.92 92% 8% 
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13/14 0.93 93% 7% 

17/18 0.94 94% 6% 

18/19 0.95 95% 5% 

Mean  1/2 0.50 50.37 49.63 
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Appendix C 

Rational Number Fluency Test 

Part I Complete the following chart by filling in equivalent numbers.  

Please remember to reduce all fractions to their simplest form.  

 

Decimal  Fraction Percent  

 

            a 
 3/5  

 

b 
0.2   

 

c 
  16% 

 

d 
 5/8  

 

e 
  85% 

 

f 
0.15   

 

Part II Compute the following solutions. Please show your work. 
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a. 0.16 + 0.05        ______________ 
 
 

 

 

b. 0.01 x 0.2         ______________ 
 

 

 

c. 0.5 ÷ 0.1         ______________ 
 

 

 

d. 0.8 – 0.12         ______________ 
 

 

 

e. 2/3 + 3/4 =        ______________ 
 

 

 

f. 3/4 – 2/3 =        ______________ 
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g. 2/3 x 3/4 =        ______________ 
 

 

 

h. 2/3 ÷ 3/4 =        ______________ 
 

 

 

Part III Please answer the following 6 questions. Please show your work.  

 

a. What is 2% of 60 ?       ______________ 
 
 
 
 

 
b. What number is 1/4 of 150?       ______________ 
 

 

 

c. 10 out of 25 is what percent?       ______________% 
 
 
 
 
 

d. What is 30% of 40?       ______________ 
 
 

 



 138 

 

 

e. What is 120% of 15?       ______________ 
 

 

 

f. A ratio is 4:3 is the same as a ratio of 16:  ?   ______________ 
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