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ABSTRACT 

 

     The move by the state of Louisiana to fully implement the Common Core State 

Standards (CCSS) from 2013 -2014 school year on and to align all state mandated tests 

to the CCSS has caused teachers to change the way they teach and how they deliver 

content.   The overall most crucial new part of the CCSS in  Mathematics  is the 

emphasis on the “Standards for Mathematical Practice”.  In order to illustrate the 

meaning of the Mathematical Practice Standards, non routine problems must be used 

that allow students and teachers to “dig deeper” and practice their mathematical habits 

of mind.  Rational numbers provide an almost ideal playground to practice the 

standards.  

     In my thesis I will define rational numbers and discuss their representation as 

decimals both terminating and repeating.  I will look briefly at the history of rational 

numbers, what role the Egyptians played in the history and how they used unit fractions.  

I will also look at two exploratory problems that can be discussed in a middle school 

mathematics class in order to illustrate the “Mathematical Standard Practices”  as 

required by the CCSS.  In the first exploration students will investigate properties of 

Egyptian unit fractions.  The second exploration will focus on investing the periods of 

the decimal representation of rational numbers  and their connection to the distribution 

of the prime numbers.   
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INTRODUCUTION 

  The move by the State of Louisiana to fully implement the Common Core State 

Standards (CCSS) from the 2013-2014 school year on and to align all state mandated 

tests to the CCSS has sent many school districts and educators scrambling to find 

resources to implement the new standards.  School districts are relying heavily on 

publishing companies for supposedly common core aligned materials.  Due to the rush 

to get material into classrooms, many districts fell pressured to purchase materials 

which may not have been adequately researched or reviewed by school personnel.  Still 

other districts have decided not to re-invent the wheel and are using what New York and 

Great Minds Inc. (in collaboration with LSU faculty and staff serving as project leaders) 

are providing through their open access, web-based Engage New York Math Curriculum 

and its commercial twin sister curriculum Eureka Math. 

“Districts Using Eureka Math In Fall 2014”.

| Page 1

EUREKA! IT’S EVERYWHERE.
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This move by the state puts significant demands and stress on teachers.  Many 

teachers across school districts express concerns about high demands being placed on 

them without adequate training. Many school districts have heard their pleas and are 

offering more opportunities for professional development and teacher grade level 

collaboration.  In some systems teachers are getting together to plan lessons and 

assessments that are being used across the districts.  However, the question remains if 

the teachers are receiving high quality professional development that is useful in helping 

them to prepare to teach the new standards and create assessments that are rigorous 

enough for the new standards.    

Although the state of Louisiana has a definite timeline on how to move forward 

with the full implementation of the CCSS, many people and organizations have voiced 

opposition to the proposed changes.  Among all the disagreement, there is at least one 

common ground: everyone seems to be concerned about the lack of training and 

support provided to teachers, parents, and school administration.  According to a 

National Education Association poll (Bidwell, 2013), the majority of its members support 

the standards or support them with some reservation.  Their biggest concern is that 

teachers are not being properly trained to implement the standards.  For example, the 

Louisiana Association of Educators believes that the CCSS can give students the 

opportunity to experience a challenging curriculum which would prepare them to 

compete globally, but they have grave concern over how the state is moving forward 

with its implementation of the standards and the lack of educators’ input in the decision 

on how to implement the standards properly.  
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There is also growing concern that parents have not been informed as to what 

the new curriculum entails.  The breakdown in communication between districts, 

schools, and parents has many parents feeling helpless in being able to assist their 

children in navigating the new mathematics standards and practices.  The new 

standards and their emphasis on “conceptual understanding” in addition to the more 

traditional “computational fluency” requirement have caused many parents to panic and 

to seek the assistance of a tutor for students in first grade through high school.  The 

uncertainty about the new curriculum has left many teachers puzzled about the changes 

that are taking place in education and how they can better serve their students.   

      With the ascent of the CCSS, significant changes are taking place in the teaching 

profession. Teachers for many years have been handed textbook curriculums with very 

little depth and simply told “teach”.  Many have managed to be successful with teaching 

the subject matter on the surface.  The changes that have come about with the new 

standards require teachers to teach fewer topics.  However, more in-depth teaching of 

the content is required, with a much greater emphasis on problem solving skills and 

conceptual understanding.  This has created a great dilemma for most middle school 

teachers.  Many teachers lack the mathematical sophistication and experiences needed 

to explain the how’s and why’s of mathematics.  The argument for quite some time has 

been that universities and educational programs do not adequately prepare teachers to 

teach mathematics.  As a middle school teacher I can attest to the discomfort of having 

to explain the how’s and why’s of mathematics and having to instruct students how to 

solve problems that I cannot solve myself.  In making a commitment to take on writing a 
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thesis on “Rational Numbers”,  I knew that I was stepping into an area which could be 

uncomfortable but would provide me with great joy on completion.   

  As we well know, curriculum changes will come and go.  However, one thing 

remains certain:  rational numbers will always be an integral part of any mathematics 

curriculum and they provide an almost ideal playground to practice the type of 

mathematical activities, processes, and habits of mind that are emphasized in the 

“Standards for Mathematical Practice,” maybe the overall most crucial new part of the 

CCSS in Mathematics. 

 

 

 

 

 

 

 

 

 

 It is widely accepted that in order to illustrate the meaning of the Mathematical 

Practice Standards, non-routine problems must be used that allow students, teachers, 

MATHEMATICAL PRACTICE STANDARDS 

MP  1 .   Make sense of problems and persevere in solving them            

MP  2 .   Reason abstractly and quantitatively 

MP 3.     Construct viable argument and critique the reasoning of others 

 MP 4.     Model with mathematics 

MP 5 .    Use appropriate tools strategically 

MP 6.      Attend to precision 

MP 7.     Look for and make use of structure 

MP 8.     Look for and express regularity in repeated reasoning 
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and parents to “dig deep” and practice their mathematical habits of mind. Unfortunately, 

this is easier said than done. 

For the author, the two explorations presented in Chapter 2 demonstrated vividly 

what the “Standards for Mathematical Practice” mean in practice.  Before writing this 

thesis on “Rational Numbers”, the author had no true image what is meant by MP1: 

“Make sense of problems and preserve in solving them.”  During the work for this thesis 

it became abundantly clear how difficult it is to “make sense of problems,” how difficult it 

is to “persevere”, and how impossible it is to “persevere in solving them.”  At least when 

it comes to “Rational Numbers,” it appears that one is never done in solving any 

problems.  One problem seems to lead to the next, a never ending process with 

innocent beginnings leading to a never ending chain of new problems.      

This thesis consists of two parts.  In Chapter 1, I will look at how various authors 

define rational numbers and try to determine which definition can give a middle school 

student a clear understanding of what a rational number is and what it is not.  The 

geometric construction of rational numbers will be discussed.  This entails giving an 

explanation of how unit lengths can be divided into equal segments.  I will look at how 

and where rational numbers are addressed in the CCSS in an attempt to show how the 

pieces of the puzzle fit together.  Elements of the history of rational numbers will be 

discussed briefly, what role the Egyptians played in the history, and how they used unit 

fractions.  Rational numbers and their representation as decimals both terminating and 

repeating will be addressed.  Irrational numbers will be discussed and we will take a 

peek into the proof by contradiction that the square root of an integer that is not a 
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square number is irrational.  Finally, the countablilty of rational numbers and the 

uncountablility of the irrational numbers will be discussed.   

In Chapter 2 of this thesis I will look at two exploratory problems that can be 

discussed in a middle school mathematics class in order to illustrate the “Mathematical 

Standard Practices” as required by the CCSS.  In Exploration 2.1, students will 

investigate properties of Egyptian unit fractions, including some open conjectures of 

Erdӧs and Straus and of Sierpinski.  In Exploration 2.2, students will investigate the 

periods of the decimal representations of rational numbers and their connection to the 

distribution of the prime numbers.  Both explorations are open-ended and in no way, 

shape, or form complete.  As stated above, one problem seems to lead to the next, a 

never ending process with innocent beginning leading to a never ending chain of new 

problems.  

 

 

 

 

 

 

 

 



7 
 

CHAPTER 1.  RATIONAL NUMBERS 

In this chapter, I survey several definitions of rational numbers, give an example 

concerning their geometric construction, explain their position in the Common Core 

State Standards, and provide some facts about the role of unit fractions in Egyptian 

mathematics. 

1.1 The Definition of Rational Numbers 

In reviewing the literature, one finds several definitions for rational numbers.  One 

of the underlying assumptions in all these definitions seems to be the implicit 

assumption that the student knows already what a real number is,  namely, a point on 

the real number line.  

Strangely enough, no one seems to be worried about the fact that a line is a 

beautiful construction of human imagination that has no equivalent in the real world.  A 

line is an abstract construction of mind that has no width and no height – just length.  

Thus lines are, and always will be, invisible and therefore non-existent in a narrow 

sense of the word.  Continuing down this path, worse than lines are points on lines.  A 

point has mathematical dimension of zero:  no width, no length, no height.  Which 

makes one wonder: what is a point on a line, really?  And, therefore, what is a real 

number, really?    

The Australian artist and architect, Friedensreich Hundertwasser (1928 -2000) 

gives us his thoughts on lines in general, and the number line in particular which shows 

that not everyone is happy with using the number line as the guide for our definition of 

numbers. 
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“In 1953 I realized that the straight line leads to the downfall of mankind. But the straight line has 
become an absolute tyranny. The straight line is something cowardly drawn with a rule, without thought 
or feeling; it is a line which does not exist in nature. And that  line is the rotten foundation of our 
doomed civilization. Even if there are certain places where it is recognized that this line is rapidly leading 
to perdition, its course continues to be plotted. The straight line is godless and immoral. The straight line 
is the only uncreative line, the only line which does not suit man as the image of God. The straight line is 
the forbidden fruit. The straight line is the curse of our civilization. Any design undertaken with the 
straight line will be stillborn. Today we are witnessing the triumph of rationalist know how and yet, at 
the same time, we find ourselves confronted with emptiness. An aesthetic void, desert of uniformity, 
criminal sterility, loss of creative power. Even creativity is prefabricated. We have become impotent. We 
are no longer able to create. That is our real illiteracy.” 

”— From “The Paradise Destroyed by the Straight Line,” Friedensreich Hundertwasser (1985) 

 

But aside of a few skeptics like Hundertwasser (and my advisor), no one else is 

worried about taking the number line as the definition of real numbers.  So, for us, a real 

number is a point on the real number line and rational numbers are real numbers with a 

specific property.  The New South Wales Syllabus for the Australian Curriculum (“ Surds 

and Indices,” n.d, para.2) defines a rational number as “any number written as the ratio 

a/b of two integers a and b, where b ≠ 0”.  In an article written by Ehrhard Behrends 

(2015) Freie Universitat Berlin rational numbers are defined as “the set of all quotients 

of the form m/n, where m is an integer and n is a natural number.”     According to 

Paulos (1991/1992) “a rational number is one that may be expressed as a ratio of two 

whole numbers (as fractions are)”.  

For the sixth grader, trying to understand the definition of rational numbers, this 

definition only gives a clear picture if the student fully understands what a ratio is and 

what is meant by the statement that a number P on the positive real number line (or 

equivalently the length of the line segment, starting at the origin and ending at P) can be 

better expressed as a ratio of two whole numbers.  
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Similar to Paulos, Professors William D. Clark and Sandra Luna McCune (2012) 

define a rational number as ”a number that can be expressed as a quotient of an integer 

divided by an integer other than 0.  That is, the rational numbers are all the numbers 

that can be expressed as  
௣௤ , where p  and q  are integers, q ≠0.  Fractions, decimals, 

and percents are rational numbers”.   

Unfortunately, unlike Paulos’ definition, the one of Clark and McCune is not 

entirely correct. That is, it is not at all clear why fractions, decimals or percents should 

always be rational numbers.  For example, considering a right isosceles triangle  

 

                                 a                    c 

                                               

                                                a 

one can ask the following question.  In percent, how much smaller is the segment a 

compared to the segment c?  We believe the answer to be 
ଵ√ଶ * 100% or 

70.71067812……….%. 

Also, as is well known and as we will prove below, decimal representations of 

rational numbers will be terminating or repeating decimals, any other decimal 

representation would represent an irrational number.  Therefore, despite the definition of 

Clark and McCune, not all decimals are rational numbers.  Moreover, not all fractions 

are rational numbers, for example the fraction 
ଵ√ଶ	  is not a rational number.  Despite 
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these short comings, Clark and McCune’s definition of rational numbers improves the 

one by Paulos by explaining that the value of q cannot be equal to 0. This helps the 

sixth grader to remember that division by 0 is undefined, or at least requires some 

additional thought and the use of “infinity1.”  

Niven (1961) pays particular attention to the wording in his definition of rational 

numbers.  He defines rational numbers as “a number which can be put in the form a/d, 

where a and d are integers, and d is not zero.   He notes that he uses specifically “a 

number which could be put in the form ….”  and not “a number of the form a/d, where a 

and d are integers….” His reasoning is that a number can be expressed in many ways. 

There are many numbers (points on the real number line) that are written (represented, 

expressed) differently but have the same value (place) on the real number line.     

  However, when speaking of rational numbers (since we think of them as points 

on the number line) it is important that we look at what Jensen (2003) says about 

fractions and their relations to rational numbers.  

“The fraction  
୮୯  represents the point on the number line arrived at by dividing the unit 

interval into q equal parts and then going p of these parts to the right from 0. This point 

is called the value of the fraction.  A rational number is the value of some fraction”.   

For our purposes we will define a rational number as follows. 
                                                            
1 When taking limits in calculus, one is confronted with problems like		lim௫→଴ ଵ௫మ	 = 	 ଵା଴ = 	+∞, where  + 0 

means that ( in the sense of limits), the numerator is divided by smaller and smaller positive numbers 
resulting in larger and larger positive numbers.   However, there are also situations where 

ଵ଴ does not exist 

in any sense.   For example, lim௫→଴ ଵ௫	 approaches +∞	 or - ∞ pending if x approaches zero from the right 

or from the left.  Therefore lim௫→଴ ଵ௫  is not a unique quantity. 
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 1.2 The Geometric Construction of Rational Numbers 

When using the definition of rational numbers given above, it is essential that 

students know how a unit (length) can be divided into q equal pieces.  According to 

Jensen (2003) this basic task can be done by “laying the line segment on a grid of ݊ + 1 

equally spaced parallel lines”.  For example using a piece of string, if we wanted to 

divide the string into ݊ equal parts (݊ not too large), we would lay the string on a lined 

sheet of loose leaf paper with equally spaced parallel lines. The student should place 

the string so that one end of the string lies on the 0th-line and the other end lies on the ݊th- line. The student can then divide the unit (that is, the string) into ݊ equal segments 

by marking the parts where the string crosses the lines. Have the student continue the 

process with different values of ݊ and marking the segments with different colors.  The 

student should be able to see that the points where the string intersects with the parallel 

lines divide it into equal segments.  The student should also be able to identify that each 

segment is  of equal length.  A class discussion should be held to reaffirm the students 

understanding of how the segments can be added together. 

 

Definition 1:  A rational number is a point on the number line that can be written 
(represented, expressed) as a ratio (fraction) of a whole number ݌ and a natural 
number ݍ, where ݍ cannot be 0. That is, a rational number is a point on the number 
line that can be arrived at by dividing the unit interval into ݍ equal parts and then 
going ݌ of these parts to the right from 0 if ݌ is positive and ݌ of these parts to left of 
zero if ݌ is negative.  
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the same point on a number line. In Grades 4 and 5 students build on what they have 

learned in 3rd grade.  In Grade 4, they learn to add and subtract fractions with common 

denominators.  They also learn how to multiply fractions by whole numbers and they 

build equivalent fractions by creating common denominators and comparing 

numerators.  In Grade 5, students learn to add and subtract fractions with unlike 

denominator.  Grade 5 is also where students extend learning multiplying and dividing 

fractions with whole numbers.   

The term rational number appears for the first time in Grade 6 as one of the 

major areas on which instructional time should be focused.  Although, students learn to 

divide fractions by fractions in Grade 6, we see a shift from the term fraction to the term 

rational number.  The focus in Grade 6 is on how to use rational numbers in real-world 

problems and ordering rational numbers on the vertical and horizontal number lines.  

Students are introduced to integers and negative rational numbers.. By the end of 

Grade 6, students are able to successful apply all arithmetic operations to rational 

numbers.   

In Grade 7, students extend their prior knowledge of rational numbers in solving 

more complex problems.  They come to understand that fractions, decimals and some 

percents are different representations of rational numbers.  They also continue to learn 

to perform arithmetic operations on rational numbers.  In Grade 8, the term rational 

numbers is mentioned as a way to approximate irrational numbers.  Therefore, students 

are expected to use what they learned about rational numbers in Grade 6 and Grade 7 

to make approximations of irrational numbers.  Students should also be able to locate 

irrational numbers on a number line. By Grade 8 students should be very confident in 
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what they know about rational numbers and are introduced to the concepts of real, 

imaginary, and complex numbers.   

1.4   Rational Numbers in the Engage NY (Eureka) Mathematics Curriculum 

The New York State Common Core mathematics curriculum defines a rational 

number as “a fraction or the opposite of a fraction on the number line”.  

In the New York curriculum, the term fraction is introduced in Module 5 of Grade 

3.  They discuss fractions as numbers on the number line.  The students learn what it 

means to take a whole and break it into equal parts. They learn what unit fractions are 

and their relationship to the whole.   In Grade 4, they continue to build on what they 

learned in 3rd grade.  They extend fraction comparison and fraction equivalency using 

multiplication and division.    In Grade 5, the students start using fractions in solving 

word problems.  They discuss line plots and interpretation of numerical expressions.  

Just as in the CCSS, rational numbers are mentioned for the first time in Grade 6.   In 

Grade 6, Module 2 – Arithmetic Operations Including Division of Fractions, students 

complete the study of the four operations of positive rational numbers and start to learn 

how to locate and order negative rational number on a number line. In Grade 6, Module 

3 – Rational Numbers, students use positive and negative numbers to describe 

quantities having opposite values, they understand absolute value of rational numbers 

and how to plot rational numbers on the number line.  The coordinate plane is 

introduced in this module and students are able to graph points in all four quadrants.    

The NYS curriculum also has a rational number module in Grade 7.  In this 

module students build on their prior understanding of rational numbers to perform all 
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operations on signed numbers.   In Grade 8, Module 7, students are introduced to 

irrational numbers using geometry.  Students learn to further understand square roots, 

irrational numbers, and the Pythagorean Theorem.  

1.5   Remarks on the Use of Unit Fractions in Egyptian Mathematics 

When we look at rational numbers in middle school, it provides an opportunity to 

talk about the history of fractions (ratios of whole numbers). The Egyptians were one of 

the first civilizations to study fractions.  They were writing fractions as early as 1800 

B.C. The Egyptian number system was a base 10 system somewhat like the system we 

use today with the main difference being that they used pictures (called hieroglyphs) to 

represent their numbers. Egyptians wrote all fractions (except 2/3) as unit fractions or 

the sum of non-repeated unit fractions; that is, fractions with a numerator of one.  

Evidence of their ability to write fractions can be found in the Rhind Papyrus. It was 

purchased by Alexander Henry Rhind in Luxor, Egypt in 1858 and is housed in the 

British Museum in London.  The papyrus was copied by the scribe Ahmes around 1650 

B.C. and historians believe that the original papyrus on which the Rhind papyrus is 

based dates around 1850 B.C.  The papyrus contains 87 mathematical problems of 

which 81 involve operations with fractions.  Apparently, there was no multiplication or 

division in Egyptian mathematics. Egyptians used addition only. Multiplication was 

handled by repeated addition.  Division was handled by doing the reverse of 

multiplication.  The divisor is repeatedly doubled to give the dividend.  
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Due to the Egyptians use of only unrepeated unit fractions, they were limited in 

what they could do with fractions.  Since they used only unit fractions (except   
ଶଷ ), all 

other fractions (except   
ଶଷ ) had to be written as the sum of unit fractions.  Also, since 

they did not allow repeated use of unit fractions, when writing   
଺଻	, the Egyptians would 

represent  
଺଻ as              

 
6 1 1 1 1
7 2 4 14 28
      , and not  

6 1 1 1 1 1 1
7 7 7 7 7 7 7
        

 They believed that once one seventh of anything was used you could not use it again.  

Therefore, to write  
6
7

  as  
1 1 1 1 1 1
7 7 7 7 7 7
         would not be logical. Since the part 

1
7

  

exits only once, it cannot be used again after it is used once.   To explain this in more 

Example:  Divide a number by 7.  This is done by doubling 7 until the number is 
reached. 
 

0                1 

1                7 

2              14 

4              28 

8              56 

16          112 

32          224 

Observe that all multiples of 7 can be written as 
sums of the numbers 7, 14, 28, 56, 112, … 

91 =  56 + 28 + 7 =  7 ( 8 + 4 + 1)   = 7 x 13  or 
ଽଵ଻   = 

13 

110 =   56 + 28 + 14 + 7 with remainder of 2, = 7 ( 8 

+ 4 +2+1 ) with remainder of 5.   Thus 
ଵଵ଴଻   = 15 with 

a remainder of 2 divided by 7,   or 
ଵଵ଴଻     =  15  

ହ଻ . 
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detail it is helpful to look at the following example of a division problem one finds in the 

Rhind Papyrus. 

Example:  Divide 6 loafs of bread among 7 people. 

Egyptian Solution:  If there were six loaves of bread that needed to be divided among 

seven people, each person would first receive  
1
2

 of a loaf of bread.   Once everyone 

received a 
1
2

 of loaf of bread, the remaining 
12
2

 loaves would be divided as follows.  

The 
1
2

 loaf would be divided into 7 pieces giving each person 
1

14
 of a loaf.  The 

remaining 2 loaves would be divided into fourths so that each person would receive 
1
4

  

  of a loaf.  The remaining fourth would be divided into 7 pieces and each person would 

receive 
1
28

 of a loaf. Thus, 
6 1 1 1 1
7 2 14 4 28
                                                                     ■                      

As it turns out Egyptian Fractions is a rich resource of interesting problems for 

middle school students to explore.  This will be done in more detail in Section 2.1. 

 

1.6    Rational Numbers As Decimals 

 In this section we will collect some basic facts concerning the decimal 

representation of rational numbers.  First of all we will explain why rational numbers 

have a terminating or repeating decimal representation.    
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Proof:    To convert a rational number  
௔௕  to a decimal one performs long division.  At 

each step in the division process one is left with a remainder of either 0,1,2, … , ܾ - 1.  

Since we have no more than ܾ remainders, at some point the remainder will start to 

repeat.  Therefore, the quotient will start to repeat defining a period for the rational 

number.                                                                                                                            ■                       

Example:  To find the decimal representation of  
ଷସ , we use long division and obtain                             

	0.75000… 
                                                                 4) 3.000000… 
                                                                   - 28 
                                                                       20 
                                                                      -20                                                        
                                                                   0                   . 

 

Therefore, the decimal expansion of  
ଷସ  is 0.75000…. = 0.75 (terminating decimal).  

Clearly, a terminating decimal can also be written as a repeating decimal by repeating 

zeros at the end of the number or by writing 0.75 = 0.74999… (See Observation 1.3)   ■        

 

Observation 1.1:  Let ܽ, ܾ be positive integers with ܽ <  ܾ.  Then 
 ௔௕	 =	0.ܽଵܽଶ……ܽ௜ܽ௜ାଵ ………ܽ௡  = 0.ܽଵܽଶ….ܽ௜ܽ௜ାଵ ….ܽ௡ܽ௜ାଵ …..ܽ௡ܽ௜ାଵ…….ܽ௡….., ,  

 

where ௝ܽ   are natural numbers (decimals) with 0 ≤ ௝ܽ  ≤ 9 and  0 ≤ ݅	 ≤ 	݊	 < 	ܾ.   In 

particular, the period of the repeating decimal representation of  
௔௕  is less than   ܾ. 
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Example: To find the decimal representation of   
ଷ଻ , we divide 3 by 7 using long division 

and obtain  

                                                                      					0 . 4 2 8 5 7 1 4 2  . . . . . 																																																																		7	)3	. 0	0	0	0	0		0	0	0	
                                                          2	8 
                                                             2 0 
                                                         −	1	4 
                                                                6 0 
                                                              −5	6 
                                                                     4 0 
                                                                 −	3	5 
                                                                        5 0 
                                                                   −			4	9 
                                                                           1 0 
                                                                           −7 
                                                                              3 0 
               																																																																											−	2	8 
                                                                                  2 0 
                                                                                −14 
                                                                                     6         . 
 
 

Thus, the decimal representation of  
ଷ଻	 is 0.428571 = 0.428571428571428571…. where 

428571 represent the repetend (repeating portion) of the decimal expansion.                ■                          

      

     The decimal representation of rational numbers will be studied further in Section 2.2.  

Here are a few amazing properties of the decimal representation.  In the decimal 

representation of   
ଷ଻ = 	0. 428571, observe that the first three numbers (428) and the last 

three numbers (571) add up to 999.  Also observe that the first (4) and the fourth 

numbers (5), the second (2) and the fifth (7), and the third (8) and the sixth (1) all add 
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up to 9.  This is not an accident as 
ଵଵଷ = 0.076923തതതതതതതതതത  shows. We return to this topic in 

Section 2.2. 

Once students have been given to opportunity to perform long division and are 

familiar with what happens at each step in the process, it is counterproductive to 

continue to work manually on a process that can easily be handled by technology.  

When we speak of technology we are not talking about simply calculators.  Most 

calculators do not have the capacity to handle more than 10-15 digits.  Therefore, the 

decimal representation of fractions like  

                           
ଵଶଷ = 0.0434782608695652173913     (period of 22) 

 is beyond the scope of a simple scientific calculator.  This makes it necessary to 

introduce students to more powerful computational tools that are readily available on the 

internet (e.g., Wolfram  Alpha at www.wolframalpha.com/).   These programs allow 

students to explore/compute decimal representations of rational numbers without having 

to do long division – an almost impossible task for a fraction like 1/113, where the period 

of the repeating decimal is 112 digits long – that is, the long division process repeats 

itself only after 112 divisions.  As mentioned above, in Section 2.2, we will further 

discuss the periods of rational numbers and explore some of their remarkable 

properties. 

 

 

Observation 1.2:     A fraction  
௔௕  (in lowest terms) has a terminating decimal 

representation if and only if ܾ = 2௡5ࣾ 

for some integers ݊,݉ ≥ 0. 
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Proof:   We can assume without loss of generality that ܽ < ܾ.  If  
௔௕ = 0.ܽଵܽଶ …ܽ௞	 has a 

terminating decimal representation, then  

                     	௔௕	 = 0. ܽଵܽଶ … . . ܽ௞ = 	ܽଵ 	• 	10ିଵ +	ܽଶ 	• 	10ିଶ +	…ܽ௞ 	• 	10ି௞ 

                                   =	 ௔భ	.		ଵ଴ೖషభା	௔మ	.		ଵ଴ೖషమ…ା	௔ೖଵ଴ೖ 	= 			 ௔෤ଵ଴ೖ = ௔෤ଶೖ•	ହೖ		 , 
where ᾶ = 	ܽଵ 	 • 	10௞ିଵ +	ܽଶ 	• 	10௞ିଶ +	…+ ܽ௞ .  Since  

௔	௕ = ௔෤ଶೖ	•	ହೖ and since 
௔௕ is in 

lowest terms, it follows that there exists an integer ܿ such that  ෤ܽ = ܽ	 • ܿ and 		2௞ 	 •		5௞ = ܾ	 • 		ܿ.  This shows that ܾ = 2௡ 	• 	5௠ for some 0 ≤ ݊,݉  ≤ ݇. 

Reversely, if  
2 5n m

a a
b


g
 , then  

 
2 5 2 5

2 5 10

j r j r

k k k

a a a
b
 

g
g

  

is a terminating decimal, where ݆ = max (݊,݉) – ݊, ݎ = max(݊,݉) – ݉, and ݇ = max 

(݊,݉).                                                                                                                                ■      

Example:  To decide whether or not 
21
60

   has a terminating decimal representation one 

observes first that 
21
60

   is not yet in lowest terms.  Dividing numerator and  denominator 

by 3 yields  
21 7
60 20

 .  Since 220 2 5 g  it follows from Observation 2 that  
21 7
60 20

   

 has a terminating decimal representation, namely 
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                      2

21 7 7 7 5 35 0.35
60 20 2 2 5 2 2 5 5 10

    
g

g g g g g
.                                              ■                      

Example:       
4

4 4 4 4

7 7 7 2 7 16 112 0.0112
625 5 2 5 10 10000

    
g g
g

                                           ■                      

Example:      The fraction 
6

735
   cannot have a terminating decimal representation since

2735 3 5 7 g g  has prime factors other than 2’s and 5’s.                                                      ■ 

We end this section with two important remarks.  The first one is about the fact 

that, the decimal representation of a rational number with a terminating decimal 

representation is not unique.  This follows from the following observation.                                             

     

 

 Proof 1:  Using long division one sees that  
1 0.999.... 1.999....

2 2


  = 0.999….. Therefore, 

1 0.9999.... 0.9999....
2


   or 1 + 0.9999… = 2 • 0.9999….. This shows that 1=0.999…     ■                      

Proof 2:  Let 0.9999 = ݔ….  Then 109.9999 = ݔ…  , and therefore  

 This shows that  .1 = ݔ or 9 = ݔThis implies 9  .9 =   ...0.9999 ‐ ...9.9999 = ݔ ‐ ݔ10

 1 = 0.9999…….   .                                                                                                           ■    

 

 

 Observation 1.3:                             1 = 0.9999……. 
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Proof 3:  If 1 would be different from 0.9999….then there would be a number between 

Them.  However, there is no number such that 0.999…. 1.00000a                                       ■   

                                                                            

Example:     Since  
ଵଶ = 0.5 = 0.49 + 0.01  = 0.49 + 0.00999…..       = 0.499999…… 

 it follows that the decimal representation of fractions is not unique.                               ■                       

The last observation in this section is useful when transforming repeating decimals into 

fractions. 

   

                                                                                                                                                                  

 

 

Proof:     If 0 = ݔ.ܽଵܽଶܽଷ …ܽ௡ܽଵܽଶ…….,ܽ௡ …,  then 10௡ݔ =  ܽଵܽଶ ……ܽࣿ. ܽଵܽଶ … . ܽ௡                     

and therefore, 10௡ݔ – ݔ =  ܽଵܽଶ ……ܽࣿ. ܽଵܽଶ … . ܽ௡ - 0.ܽଵܽଶ … . ܽ௡   =  ܽଵܽଶ … . . ܽ௡ = ܽଵ	10௡ିଵ +	ܽଶ10௡ିଵ +	ܽଶ10௡ିଶ +	……ܽ௡.			       Therefore,  ݔ = 
௔ଵ଴೙ି	ଵ .                             ■                      

Example:     0.34  = 0.343434…………..      =  
ଷସଵ଴మ	ିଵ   =  

ଷସଽଽ                                             ■ 

Example:     0.1234 = 
ଵଶଵ଴଴ + 0.0034 = 	 ଵଶଵ଴଴ +	 ଵଵ଴଴ • 	0. 34 = 	 ଵଶଵ଴଴ +	 ଵଵ଴଴ • ଷସଽଽ 	= 		 ଵଶ	•	ଽଽ	ା	ଷସଵ଴଴•	ଽଽ  = 

ଵଶଶଶଽଽ଴଴	= ଺ଵଵସଽହ଴.                                                                                                                         ■                       

Observation 1.4:     Let 0 = ݔ.ܽଵܽଶ …ܽ௡  be a repeating decimal.  Then ݔ = 
௔ଵ଴೙ିଵ , 

where         ܽ = ܽଵܽଶܽଷ … . . ܽ௡ = ܽଵ 10௡ିଵ + ܽଶ 10௡ିଶ	 + ⋯ܽ௡. 



24 
 

 

1.7   Irrational Numbers/Countable/Uncountable 

When defining an irrational number, we follow what many authors do by simply 

saying it is a number that is not rational, that is, a point on the number line whose 

distance to the origin cannot be expressed by a rational number.  Havil (2012) makes it 

a point to say ”It is a number which cannot be expressed as  the ratio of two integers.  It 

is a number the decimal expansion of which is neither finite nor recurring”.  His 

statement clarifies what we already know about rational numbers.  Namely, that they 

can be written as the ratio of two integers (ܽ over ܾ) where ܾ is not 0 and that the 

decimal expansion of a rational number will be terminating or repeating as previously 

mentioned in  Section 1.6.   With that said, an irrational number has a decimal 

expansion that is infinite and non periodic (not recurring).    

 

   

Proof:     We show that √݊  is rational if and only if ݊ is a perfect square of a positive 

integer.   If ݊ = ݇2 for some positive integer ݇, then the √݊ = ݇ is a rational number.  

Conversely, if √݊ is a rational number, then √݊ = 	 ௣௤  (in lowest terms).  But then 

݊ = √݊ 	• 	√݊ =  
௣௤ 	• 	√݊ or √݊ = 	௡	•	௤௣   or  

௣௤ = 
௡	•	௤௣ . 

Since 
௣௤ is in lowest terms, there must be a positive integer ܿ such that  ݍ • ܿ = ݌ and 

  so that  ܿ • ݌ =ݍ݊
௣	•	௖	௤	•	௖   = 

௡௤௣ .  But then  ܿ = 
௣௤ = √݊ is an integer and therefore ݊ = ܿଶ is a 

Observation 1.5:     Let ݊ be a positive integer.  Then √݊ is irrational if and only if ݊ 
is not a perfect square. 
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perfect square.  This shows that √݊ is rational if and only if ݊ is a perfect square.                     

■                                                                                              

 

 

 

Proof:     If  √݊య = 	 ௣௤ , then       

                   ݊ = √݊య 	• 	 √݊య  • √݊య   = (√݊య )2  • √݊య   =  
௣మ௤మ	 	 • 	 √݊య  . 

 Thus, 
௣௤  =  √݊య 	  =  

௡	•	௤మ௣మ  .  Since 
௣௤ is in lowest terms, there exists an integer ࣷ such that  

  = ܿ ଶ.  Since݌  =  ࣷ • ݍ and  2ݍ݊  = ࣷ • ݌ 
௣௤ 	•   can only be an integer if  ݌

௣௤  is an integer, 

it follows that ݊ =  (	௣௤ )3  is a perfect cube.                                                                       ■                        

In addition to roots, numbers like 

Π = 3.141592653589793238462643383279502884197169399373….   

and 

ℯ = limࣿ→ஶ ቀ1 + ଵ௡ቁ௡  = 2.71828182845904523536028747135266249775724709…. 

are known to be irrational.  However, the proofs of these statements are too difficult to 

be included here.  Although roots are often irrational, they have the nice property that 

they are solutions of algebraic equations.  For example, √3 is the positive solution of the 

Observation 1.6:     Let ݊ be an integer.  Then √݊య  is irrational if and only if ݊ is not 
a perfect cube. 
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equation  3 = 2ݔ.  This allows one to compute the irrational number  √3 to any degree of 

precision using the following method (intermediate value theorem of calculus).  

Example:      First of all, we know that 3√ = ݔ	  must be between 1 and 2 since  

 and then 1.73 ,3.24 =  2(1.8) ≥  2ݔ ≥ since (1.7)2  = 2.89 1.8 ≥ ݔ ≥ Now 1.7  .22 ≥ 2ݔ ≥   12

 Continuing in this fashion we  .3.0276 =  2(1.74) ≥ 2ݔ ≥ since (1.73)2  = 2.9429 1.74 ≥ ݔ ≥

find that x = √3 satisfies 1.73205  ≤  1.732051 ≥  ݔ  or  1.73205 ≈ ݔ since (1.732050)2 = 

   ■                                                .3.000000666601  = 2(1.732051) ≥ 2ݔ ≥ 2.999997202500

One of the astonishing facts about rational numbers is the following. 

 

 

Proof: The rational numbers are countable since we can count them all.  That is, there 

is a one to one function between all positive rational numbers and all positive integers.   

Here is how: 

Observation 1.7:     The rational numbers are countable; that is, there are as many 
rational numbers as there are positive integers.  
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                                4 l→  0.ܽସ,ଵܽସ,ଶܽସ,ଷܽସ,ସܽସ,ହ… and so on. 

Now we show that that it is impossible that this list contains all the real numbers 

between 0 and 1.  We do this by constructing a number ܾ = 	0. ܾଵܾଶܾଷ	…… that is 

definitely not in the list.  We take ܾࣿ to be 1 if ܽ௡௡ is not 1 and 2 otherwise.  The ܾ differs 

from the ݊ݐℎ	number in the list in the ݊ݐℎdigit.                                                                  ■ 

 

 

Proof:   Since the real numbers ℝ are not countable and since ℝ is the disjoint union of 

the rationals and the irrationals, the irrationals cannot be countable since the union of 

two countable sets is again countable.                                                                             ■ 

 

 

 

 

 

 

 

 

 

 

Observation 1.9:  The irrational numbers are uncountable.   
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CHAPTER 2.  EXPLORATIONS 

In this chapter, I will look at two exploratory problems that can be discussed in a 

middle school mathematics class.  In these problems the students should be able to 

demonstrate the “Mathematical Standard Practices” as required by the CCSS.   

2.1   Writing Fractions the Egyptian Way 

As was already mentioned in the history section of rational numbers, the 

Egyptian used to represent all rational numbers (except 2/3) as sums of non-repeating 

unit fractions.   This was a reasonable way to divide property (or loaves of bread) 

among people.  For example when dividing 8 loaves of bread among 11 people, using 

Egyptian fractions one would start by first giving everyone 
ଵଶ	 loaf of bread, leaving 

behind 2 
ଵଶ		loaves of bread.  Then the 

ଵଶ loaf of bread, would be divided among 11 

people, giving each person 
ଵଶଶ		loaf of bread. Now the two loaves would be divided in 

sixth, so that everyone would get 
ଵ଺			of a loaf of bread, leaving  

ଵ଺  of a loaf of bread.  

Finally, the remaining			ଵ଺	 loaf would be divided among the 11 people, giving each one  

ଵ଺଺	 of a loaf of bread.  Therefore,  

ଵ଼ଵ  =  
ଵଶ + 

ଵଶଶ + 
ଵ଺ + 

ଵ଺଺ , 
or 8 loaves  =  

ଵଶ  loaf  • 11 +  
ଵଶଶ	loaf  • 11 +  

ଵ଺	 loaf • 11 + 
ଵ଺଺	 loaf  • 11.   

The teacher can then ask the students to use the Egyptian Method to write  
଻ଵଶ  

and 	ଵଵଵଶ			as a sum of unit fractions.  Using the same method, the students would find that 
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 7 1 1
12 2 12

    and 11 1 1 1
12 2 3 12

    . 

	    The Egyptian “bread-dividing” method of representing fractions  a
b

   as the sum of 

non-repeating unit fractions is similar to the following method where they write a  as the 

sum of factors of b.  For example when writing  7
12
		as the sum of units factors, we know 

that the factors of 12 are 1, 2, 3, 4, 6, 12 and  that the following is also true  7 = 1 + 6, or 

7 = 3 + 4, notice that the numbers used to get a sum of 7 are indeed factors of 12.  

Thus, 

 7 1 6 1 1
12 12 12 2


     and  11 1 4 6 1 1 1

12 12 12 3 2
 

    . 

However, this method does not always work.  In some cases one needs a trick to make 

it work.  For example, when finding the unit fraction decomposition of  8
11

 , since the 

only factors of 11 are 1 and 11 then 8 cannot be written as the sum of the factors of 11. 

Similarly, the representations 

   

 8 16 16
11 22 1 2 11

 
g g

  and  8 24 24
11 33 1 3 11

 
g g

  

do not work, but the representation 8 48
11 66

  works since the factors of 66 are 1, 2, 3, 11, 

22, 33, 66.  Therefore, 48 = 33 + 11 + 3 + 1.  Thus,  

 48 33 11 3 1 1 1 1 1
66 66 2 6 12 66

  
      ,  
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which is the Egyptian Method of dividing 8 loafs of bread among 11 people.   The 

Egyptian way of dividing ܽ loaves of bread among ܾ people works if at each step the 

remaining loaves of bread are of the form  1k
n

 .   However, this is not always the case.  

For example, what if we have to divide 7 loaves among 131 people?  Then by the 

above, we divide each loaf into 19 parts and divide them equally among the 131 people, 

leaving us with 131 27
19 19

  	loaf of bread.  But, how can we divide 2
19

 loaf of bread 

among 131 people using only unit fractions?  Similarly, if we divide 8 loaves among 131 

people, we divide each loaf into 17 parts, leaving us with 131 58
7 17

  	 loaf of bread.  

But how can we divide 5
17

  loaf of bread among 131 people?  This takes us to the 

problem of how to write numbers of the form 

 2 3 4 1, , , ............. n
n n n n

   

 

as the sum of unit fractions.  This is a good activity for students because they do not 

perform a standard algorithm, but they have to truly explore and learn how to dig deeper 

into a mathematical problem.  As we will see, they tryly have to take first steps towards 

what is called in the Common Core State Standards the “Mathematical Practices” that 

should be mastered by every student to be ready for college and careers.  

 



32 
 

Step 1:  Students explore how to write 2
n

 as the sum of unit fractions.  The students 

should observe that if n is even (݊	= 2݇), then  2 2 1
2n k k

    is already a unit fraction. 

If ݊ is odd, (݊ = 2݇ - 1) then 2 2
2 1n k




 and the students should do a few examples as 

follows.                                          

 

                                                       Table 2.1 

݇ 22݇ − 1 

         2 23 = 12 + 16 = 12 + 12 • 3 

         3 25 = 13 + 115 = 13 + 13 • 5 

        4 27 = 14 + 128 = 14 + 14 • 7 

        5 29 = 15 + 145 = 15 + 15 • 9 

        6 211 = 16 + 166 = 16 + 16 • 11 

 

Now, after some in class discussion, the students should be able to first observe that 

 
2 1 1

2 1 (2 1)k k k k
 

 
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and then prove this observation using basic algebra.  Namely, 

 
1 1 2 1 1 2 2

(2 1) (2 1) (2 1) 2 1
k k

k k k k k k k k
 

   
   

. 

 

                                                                     ■ 

This leads to the following observation.   

 

 

Step 2:  Next have students explore fractions of the form 3
n

.   If ݊ is a multiple of 3 then 

3
n

  is already a unit fraction.  Now have the students observe the following. 

                                                             Table 2.2 

݊ 3݊
 

4 3 1 1
4 2 4
    

5 35 = 12 + 110
6 1

2

7 3 1 2 1 1 1
7 7 7 7 4 28
      or 3 1 2 1 1 1

7 3 21 3 11 11 21
    

g
  

Observation 2.1:   All rational number of the form 
ଶ௡  can be written as the sum of at 

most 2 unit fractions. 
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(by Observaton2.1) 

       8 																																																		 3 1 1
8 4 8
 

       9 
                                        

3 1
9 3
   

      10 
                             

3 1 1
10 5 10

    

 

In summary, the student should be able to formulate the following observation. 

 

 

Proof:  This proof is divided into the three cases				݊  = 3݇, 3 1, 3 2n k n k      

for some integer ݇ ≥ 1. 

Case 1:  If 3 ,n k then 3 3 1
3n n k

    is a unit fraction when written in simplified form. 

Case 2:  If ݊ = 3݇ – 1 then  
3 3 3 1 1 1 1

3 1 (3 1) (3 1)
k

n k k k k k k
 

   
  

 n	 is a sum of two distinct 

unit fraction.       

                                                                                                              

Observation 2.2:   All numbers of the form 
ଷ௡  can be written as the sum of at 

most 3 unit fractions.  
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Case 3:  If ݊ = 3݇ – 2 then  
3 3 3 2 2 1 2

3 2 (3 2) (3 2)
k

n k k k k k k
 

   
  

.  However, by 

Observation 2.1, we know that  
2

(3 2)k k 
 , can be written as the sum of at most two unit 

fractions.  Thus,  3
3 2k 

  can be written as the sum of at most 3 unit fractions.  

Step 3:  Now let the students explore rational numbers of the form 	ସ௡	.  
Table 2.3 

݊ 4݊
 

5 4 1 1 1
5 2 4 20
     

6 46 = 23 = 12 + 16
7 4 1 1

7 2 14
 

8 4 1
8 2
   

9 4 1 1
9 3 9
 

10 4 1 1
10 3 15

    

11 4 1 1
11 3 33

    

12 4 1 4 1 1 1,
12 3 12 4 20 52

   

13 	 4 1 3 3 2 1 1 1,
13 4 52 52 52 52 26 52

      		
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This leads to the following conjecture.   

 

This is a famous conjecture of Paul Erdӧs and Ernst G. Straus given around 

1948 (Knott, 2015).  It is believed that this statement is true for every rational number of 

the form 
ସ௡ where ݊  ≥ 2.  As of today computer searches have verified the truth of the 

conjecture for ݊ up to 1014.  However, it is still unknown if the conjecture holds for all 

values of 	݊.  In contrast to Conjecture 1, the following statement can be proved easily.   

 

Proof: We distinguish between the four cases ݊ = 4݇,   4݇-1, 4݇-2 and 4݇-3. 

Case 1:  If ݊ = 4݇, then 4 1
n k
 .  

Case 2:  If ݊ = 4݇- 1, then		 4 4 4 1 1 1 1
4 1 (4 1) (4 1)

k
n k k k k k k

 
   

  
. 

Conjecture 1:  Numbers of the form  
ସ௡, can be written as the sum of at most 3 unit 

fractions.  

Observation 2.3:  Rational numbers of the form 
ସ௡ can be written as the sum of at 

most 4 unit fractions.  
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Case 3:  If	݊  = 4݇-2, then  
4 4 4 2 2 1 2

4 2 (4 2) (4 2)
k

n k k k k k k
 

   
  

   and, by Observation 

2.1, 
2

(4 2)k k 
 can be written as the sum of at most 2 unit fractions. 

Case 4:  If 4 3n k  ,  then 
4 4 4 3 3 1 3

4 3 (4 3) (4 3)
k

n k k k k k k
 

   
  

  and, by Observation 

2.2, 
3

(4 3)k k 
  can be written as the sum of at most 3 unit fractions.                     

■ 

        By now it should be rather obvious how this proof can be extended to 5 6 7 8, , ,
n n n n

 ,  

and so forth. 

,  and so forth.                                                                                                                                

 

Waclaw Sierpinski conjectured that numbers of the form 
ହࣿ		 can be written as the 

sum of at most 3 unit fractions (Knott, 2015).  Like the conjecture of Erdӧs and Straus 

no one knows for certain if this is true for all rational numbers ࣿ.	
So far, we have seen that all fractions of the form 

௔௡  can be written in the form 

ܽ݊ = 	 1݊ଵ +	 1݊ଶ	 + 	……+	 1݊௞	, 
where ݊௜	≠	 ௝݊   for ݅ ≠ ݆ and 1	≤ ݇	 ≤ ܽ. 

Observation 2.4:  Numbers of the form  
௔௡, can be written as the sum of at most ܽ 

unit fractions.   
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However, the method used is not easily represented as an “algorithm”.  In the 

12th century, Leonardo of Pisa (also known as Fibonacci) popularized what is known 

today as the “Greedy Algorithm”.   

 

 

 

Example:  Let us see how the Greedy Algorithm works for  7
17

.  The largest unit fraction 

less than 7
17

  is  1
3

.    This yields   

                                                                          7 1
17 3

c
d

    

where   7 1 21 17 4
17 3 3 17 51

c
d


   

g
.  .  Thus, 

																																																																			 7 1 4
17 3 51

  . 

The largest unit fraction less than 4
51

 	 is 1
13

 .   This yields 

                                                              4 1
51 13

c
d

   , 

where  4 1 52 51 1 1
51 13 13 51 13 51 663

c
d


    

g g
. 

Therefore,    

Greedy Algorithm:  Assume that 0< ௔௕ < 1 and that 
௔௕ is in simplest form. 

Step 1:  Find the largest unit fraction less than  
௔௕. 

Step 2:  Subtract this unit fraction from 
௔௕  and obtain

௖ௗ , 
Now repeat Step 1 and Step 2 until it results in a unit fraction. 
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                               7 1 4 1 1 1
17 3 51 3 13 663

     .                                                       ■                        

It was shown by J.J. Sylvester (1814 – 1897) that the greedy algorithm always 

works in at most ܽ steps.  He argued as follows. 

Proof of the Greedy Algorithm: 

Assume that  0 1a
b

   and that  a
b

  is in simplest form.  By the division algorithm, 

ܾ = ܽ	 • ݍ + ,ݎ 	ܽ	ݎ݋ • ݍ = ܾ −  ݎ
where ݍ	 ≥ 1	and 1 ≤ 	ݎ < ܽ.  Then 

 
( 1) 1 1
( 1) ( 1) ( 1) 1 ( 1) 1

a a q aq a b r a a r c
b b q b q b q q b q q d

    
      

     
  

where ࣷ < ܽ	 and 
1

1q 
	 is the largest unit fraction less than a

b
.  Since ࣷ	 < ܽ,  this 

process will terminate in an Egyptian representation in at most a steps. most ܽ steps.                     

■ 

Clearly, as already explored above in many cases the Greedy Algorithm will 

terminate in less than ܽ steps.  A more through investigation of the actual number of 

steps the Greedy Algorithm takes would be well worth a follow-up project that could be 

done by interested students.  For example, as we have seen above, the number 7
12

 can 

be written as the sum of the three unit fractions 1 1, ,
3 13

 and 1
663

.  It would be interesting 
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to see how many of the numbers 7
n

 (8	 ≤ ݊ ≤ ܰ)	 can be written as the sum of 1, 2, 3, 

4, 5, 6, or 7 unit fractions.  

                                                     Table 2.4 

78= 	12 + 13 + 124 

79 = 12 + 14 + 136 
710 = 12 + 15 

711 = 12 + 18 + 188 

712 = 	12 +	 112 
713 = 		 12 +	 126 

714 = 12 
715 = 13 + 18 + 1120 716= 13 + 110+ 1240 

717 = 13 + 113 + 1663 
718 = 13 + 118 

719 = 13 + 129 + 11653 

720 = 13 + 160 
721 = 	13 

722= 14 + 115 + 1660 

723 = 14 + 119 + 1583+ 11019084 724 = 14 + 124 
725 = 14 + 134 + 11700 

726 = 14 + 152 
727 = 14 + 1108 728 = 	14 

729 = 15 + 125 + 1725 
730 = 15 + 130 

731 = 15 +	 139 +	 16045 
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732= 	15 +	 154+	 14320 

733= 	15 + 183 +	 113695 

734 = 15 + 1170 
735 = 15 

736 = 16 + 136 
737= 		 16 +	 145 +	 13330 

738 = 16 + 157 
739 = 16	+	 178 

740 = 	16 +	 1120 
741 = 	16	+	 1246 

742 = 16 
743= 	17 +	 151 +	 13071+	 111785731 

+ 1185204595153417 744= 	17 +	 162+	 19548 

745= 	17 +	 179 +	 124885 

746= 	17 +	 1108+ 117388 

747 = 17 +	 1165 +	 154285  

748 = 	17 +	 1336 
749 = 	17 

750= 	 18		 + 	 167+ 113400 

751 = 18 +	 182 +	 116728 
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752 = 	18 +	 1104 
753= 	18 +	 1142 +	 130101 

754 = 18 + 1216 
755 = 18 +	 1440 

756 = 	18 
757= 	19 +	 186 +	 114706 

758= 	19 +	 1105+ 118270  

759 = 19 +	 1133 +	 170623 

760 = 	19 +	 1180 
761= 	19 +	 1275+	 1150975 

762 = 19 + 1558 
763 = 19 

764= 	 110 +	 1107+	 134240 

765 = 	 110 +	 1130 
766 = 110 + 1165 

767 = 110 +	 1224 +	 175040 

768= 	 110 +	 1340 

769 = 	 110 +	 1690 
770 = 110 

771= 	 111 +	 1131 +	 120463+	 1523397499+ 1365259922089209169
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772= 	 111 +	 1159+	 141976 

773	 	= 	 111 +	 1201+	 1161403	 

774= 	 111 +	 1272+ 1110704 

775 = 111 +	 1413+	 1340725 

776= 	 111 +	 1836 

777 = 	 111 
778 = 112 + 1156 

779 = 112 +	 1190 +	 190060 

780= 	 112 +	 1240 

781 = 	 112 +	 1324 
782 = 112 + 1492 

783 = 112 +	 1996 

784 = 	 112 
785= 	 113 +	 1185+	 140885 

 

786= 	 113 +	 1224+	 1125216 

787 = 113 +	 1283+	 1320073 

788= 	 113 +	 1382+	 1218504 

789= 113 +	 1579+	 1669903 

790 = 113 + 11170 
791 = 113 
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792= 	 114 +	 1215+	 1138460 

793= 	 114 +	 1261+	 1113274 

794 = 114 + 1329 
795 = 114 +	 1444+	 1295260 

796= 	 114 +	 1672 

797 = 	 114 +	 11358 
798 = 114 

799 = 115 +	 1248+ 1122760 

 

The following graph shows the number of unit fractions used to write the fractions	଻଼ 
through 

଻ଽଽ  using only non repeating unit fractions.  In reviewing the data it is clear that 

most of the fractions could be written using 3 unit fractions.  A small percentage of the 

numbers were written using 5 unit fractions.  This leads an open ended discussion for 

students as to what they think would happen if we extended the fractions to 	 ଻ଶ଴଴ , ଻ଶ଴଴଴,  
etc. 
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Open Problem:    Let R7 (݊, ݆) be the percentage of fractions  
଻௞ (8 ≤ ݇ ≤ ݊) that can be 

written as the sum of ݆ unit fractions, where 1 ≤ ݆	≤ 7.  Find a formula for R7(݊, ݆), or 

more general for Rp (݊, ݆).   
At this point the questions remains what to do with a fraction 

௔௕ where 
௔௕ 	> 1. 

As a first step let students investigate whether or not every positive integer can 

be written as the sum of unit fractions.  Since every integer is the sum of 1’s, students 

should see that one way to approach this problem is to show how the number 1 can be 

written in different ways as the sum of non-repeating unit fractions. A key to 

understanding how this can be done is the formula 

 
1 1 1

1 ( 1)n n n n
 

 
   .        (F) 

0.0%

5.0%

10.0%
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Number of Unit Fractions Used to Write 
Fractions (7/8 to 7/99)
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According to Hoffman (1998) “Fibonacci knew, a sum of unit fractions could be 

continuously expanded” .This expansion would be accomplished by using the identity 

1ܽ = 1ሺܽ + 1) +	 1ܽሺܽ + 1). 
Starting with the fact that 

 1 1 11
2 3 6

     

and using formula (F) for each of the terms one obtains 

 1 1 1 1 1 11
3 6 4 12 7 42

        

Repeating this process once more gives us 

 1 1 1 1 1 1 1 1 1 1 1 11
4 12 7 42 5 20 13 156 8 56 43 1806

              

.   

Therefore, 

      

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 12
2 3 6 4 12 7 42 5 20 13 156 8 56 43 1806
                       

 . 

If one uses the above formula a sufficient number of times, every fraction 1
n

, 

can be replaced by a sum of unit fractions of sufficiently large denominators. Therefore, 

the number 1 can be written in infinitely many different ways with non-repeating unit 
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fractions. Therefore, since every integer can be written as a sum of non-repeating unit 

fractions it is clear that 

 1 1 1 ..............
2 3 4
      

a well known fact that can be shown in many other ways.  This leads to the following 

observation. 

 

 

 

 

 

 

Proof:  
௔௕ = ݌ +	௔෤௕,	 where ݌ is an integer and 0 ≤ 

௔෤௕ < 1.  By the Greedy Algorithm, 

௔෤௕ = 	 ଵ௡భ +	 ଵ௡మ +	……… . . ଵ௡ೖ  where ݊௜ < 	݊i+1 and ݇ ≤ 	 ෤ܽ.  Obviously, by Observation 1.7,  

݌ = 	 ଵ௠భ	 + 	… . . . . ଵ௠ೕ where ݉ଵ < ݉ଶ <………. ௝݉ and ௝݉  and ݉ଵ > ݊௞ .                                              ■ 

There are many follow up questions students can investigate.  For example the integer 

1 can be written as the sum of these unit fractions, 

   

1 = 
ଵଶ + ଵଷ + ଵ଺   = 

ଵଶ + ଵସ + ଵହ + ଵଶ଴ = 
ଵସ + ଵହ + ଵ଻ + ଵ଼ + ଵଽ + ଵଵ଴ + ଵଵହ + ଵଶଷ଴ + ଵହ଻ଽ଺଴. 

Whereas 2 can also be written as, 

2 = 
ଵଶ + ଵଷ + ଵସ + ଵହ + ଵ଺ + ଵ଻ + ଵ଼ + ଵଽ + ଵଵ଴ + ଵଵହ + ଵଶଷ଴ + ଵହ଻ଽ଺଴. 

Observation 2.5:  Every integer a can be written in infinite ways in the form ܽ = ଵ௡భ +	 ଵ௡మ	 +	…………
ଵ௡ೖ	 , ݊௜ 	≠ ݊௞ ݎ݋݂ ݅ ≠ ݇. 

Observation 2.6:  Every fraction  
௔௕  >1, can be written as a sum of non-repeating 

unit fractions.   
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Since the sum  1 1 1 ......
2 3 4
     , one way the write every integer ܰ as the sum of unit 

fractions is to find a number ݊ such that  

 1 1 1 1 1... ...
2 2 1

N
n n n

    


  

. 

Then N  will be a positive fraction less than 1
1n 

 and we can use the Greedy Algorithm 

to write the difference between N 	 and   1
1n 

  as the sum of unit fractions  
1

1 1......
kn n

  , 

where  ݊ + 1 ≤ ݊ଵ < ⋯݊௞ .  Here is an example. 

 

3 = 
ଵଶ + ଵଷ + ଵସ + ଵହ + ଵ଺ + ଵ଻ + ଵ଼ + ଵଽ + ଵଵ଴ + ଵଵଵ + ଵଵଶ + ଵଵଷ + ଵଵସ + ଵଵହ + ଵଵ଺ + ଵଵ଻ + ଵଵ଼ + ଵଵଽ + ଵଶ଴ + ଵଶଵ +ଵଶଶ + ଵଶଷ + ଵଶସ + ଵଶହ + ଵଶ଺ + ଵଶ଻ + ଵଶ଼ + ଵଶଽ + ଵଷ଴ + ଵଽ଴ + ଵଶ଴଴ + ଵଵ଴଴଴ . 

 

This proposes a question. What is the best way to write integers as the sum of non-
repeating unit fractions? 
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2.2    Decimal Periods of Rational Numbers and the Distribution of Unit Fractions 
with a Finite Decimal Representation   
 

In this section we will explore the periods of unit fractions, their properties and how the 

ones with finite decimal reprsentation are distributed.   Due to the varying lengths of the 

decimal expansion of some rational numbers, it would be very time consuming and 

tedious to perform the calculations by hand.  Therefore, we can calculate the decimal 

expansions by using programs like Mathematica (for teachers), and Wolfram Alpha (for 

students). The following table of unit fractions 1/q was created using the Wolfram Alpha 

website at www.wolframalpha.com. 

PERIODS OF DECIMALS 

    p/q DECIMALS  PERIODS  p/q DECIMALS PERIODS 

1/2 0.5 T  1/3 0.3……… 1 
1/4 0.25 T  1/5 0.2 T 
1/6 0.16……… 1  1/7 0.142857……… 6 
1/8 0.125 T  1/9 0.1……… 1 

1/10 0.1 T  1/11 0.09……… 2 
1/12 0.083…….. 1  1/13 0.076923……… 6 
1/14 0.0714285……… 6  1/15 0.06……… 1 
1/16 0.0625         T  1/17 0.0588235294117647……… 16 
1/18 0.05……….. 1  1/19 0.052631578947368421…… 18 
1/20 0.05 T  1/21 0.047619……… 6 
1/22 0.045……… 2  1/23 0.043478260869565217391 

3…….. 
22 

1/24 0.0416……… 1  1/25 0.04 T 
1/26 0.0384615……… 6  1/27 0.037……… 3 
1/28 0.03571428 6  1/29 0.034482758620689655172 

4137931…….. 
       28 

1/30 0.03………. 1  1/31 0.032258064516129……… 15 
1/32 0.03125 T  1/33 0.03……… 2 
1/34 0.02941176470588235……… 16  1/35 0.0285714……. 6 
1/36 0.027……… 1  1/37 0.027……… 3 
1/38 0.0263157894736842105…

… 
18  1/39 0.025641……… 6 
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1/40 0.025 T  1/41 0.02439…… 5 
1/42 0.0238095…… 22  1/43 0.0232558139534883720 

93………. 
46 

1/44 0.0227……. 21  1/45 0.02…………. 1 
1/46 0.0217391304347826086 

9565…….. 
22  1/47 0.0212765957446808510 

63829787234042553191 
4893617……….. 

46 

1/48 0.02083………          1  1/49 0.0204081632653061224 
48979591483647344693 
877551……… 

42 

1/50 0.02 T  1/51 0.0196078431372549……… 16 
1/52 0.01923076……… 6  1/53 0.0188679245283……… 13 
1/54 0.0185……… 3  1/55 0.018…………. 3 
1/56 0.017857142………. 6  1/57 0.0175443859649122807……

… 
18 

1/58 0.017241379310344827586 
20689655………. 

28  1/59 0.0169491525423728813559 
32203389830508475762711 
864406779661……… 

58 

1/60 0.016……… 1  1/61 0.0163934426229508196721 
31147540983606557377049 
18032278688524590…… 

60 

1/62 0.0161290322580645……… 15  1/63 0.0158730……… 6 
1/64 0.015625 T  1/65 0.0153846……… 6 
1/66 0.015……… 2  1/67 0.0149253731343283582 

089552238805970………… 
33 

1/68 0.014705882352941176… 16  1/69 0.01449275362318840579 
710…. 

22 

1/70 0.0142857……… 6  1/71 0.01408450704225352112 
6760563380281690……… 

35 

1/72 0.0138…….. 1  1/73 0.013698630......... 8 
1/74 0.0135……… 3  1/75 0.013……….. 1 
1/76 0.01315789473684210526… 18  1/77 0.0129870……… 6 
1/78 0.0128205……… 6  1/79 0.01265822784810……… 13 
1/80 0.0125 T  1/81 0.01234567890……… 9 
1/82 0.012195……… 5  1/83 0.01204819277108433734 

9397590361445783132530… 
41 

1/84 0.01190476……… 6  1/85 0.01176470588235294…… 16 
1/86 0.01162790697674418604 

65… 
 

21  1/87 0.01149425287356321839 
080459770……… 

28 

1/88 0.1136……… 2  1/89 0.0112359550561797752808
988 
76404494382022471910….. 

44 

1/90 0.01……… 1  1/91 0.0109890…….. 6 
1/92 0.010869565217391304347

826… 
22  1/93 0.0107526881720430…… 15 
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1/94 0.010638297872340425531

91489 
361702127659574468085… 

46  1/95 0.0105263157894736842……
… 

18 

1/96 0.010416……… 1  1/97 0.0103092783505154639175
2577 
31958762886597938144329
8969 
07216494845360824742268
0412 
371134002061855670……… 

96 

1/98 0.010204081632653061224
48979 
59183673469387755……… 

42  1/99 0.010……… 2 

1/100 0.01 T  1/101 0.009900……… 4 
1/102 0.009803921568627450……

… 
16  1/103 0.0097087378640776699029

12621359223300……… 
34 

1/104 0.009615384……… 6  1/105 00.952380…….. 6 
1/106 00.9433962264150……… 13  1/107 0.0093457943925233644859

81308411214953271028037
383 
1775700……… 

53 

1/108 0.00925……… 3  1/109 0.0091743119266055045871
55963302752293577981651
37614678899082568807339
44954128440366972477064
2201834862385321100……… 

108 

1/110 0.0090……… 2  1/111 0.00900……… 3 
1/112 0.0089285714……… 6  1/113 

 
 
 

0.0088495575221238938053
09734513274336283185840
70796460176991150442477
87610619469026548672566
37168141592920353982300
…….. 

112 

1/114 0.00877192982456140350…
…….. 

18  1/115 0.0086956521739130434782
60………. 

22 

1/116 0.008620689655172413793
103448275……… 

28  1/117 0.00854700……….. 6 

1/118 0.008474576271186440677
96610169491525423728813
5593220338983050……….. 

58  1/119 0.0084033613445378151260
50420168067226890756302
521 
00……… 

48 

1/120 0.0083……….. 1  1/121 0.0082644628099173553719
00………. 

22 

1/122 0.008196721311475409836
06557377049180327868852
459016393442622950………. 

60  1/123 0.0081300………. 5 
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1/124 0.00806451612903225…… 15  1/125 0.008 T 
       
1/126 0.00793650………..            6  1/127 0.00.7874015748031496062

99212598425196850393700
… 

42 

1/128 0.0078125 T  1/129 0.0077519379844961240310
0……. 

21 

1/130 0.00769230………          6  1/131 0.0076335877862595419847
32824427480916030534351
14503816793893129770992
36641221374045801526717
55725190839694656488549
618320610687022900………. 
 

       130    

1/132 0.0075……….           2  1/133 0.00751879699248120300…
…….. 

         18 

1/134 0.007462686567164179104
47761194029850……….. 

         33  1/135 0.00740…..           3 

1/136 0.0073529411764705882…
……. 

         16  1/137 0.0072992700…………           8 

1/138 0.007246376811594202898
550…… 

          22  1/139 0.0071942446043165467625
89928057553956834532374
100…… 

          46 

1/140 0.00714285………..           6  1/141 0.007092198581560283687
94326241134751773049645
3900……. 

         46 

1/142 0.007042253521126760563
3802816901408450………. 

        35    1/143 0.00699300……………           6 

1/144 0.00694……….. 1  1/145 0.006896551724137931034
482758620………… 

28 

1/146 0.0068493150……….. 8  1/147 0.006802721088435374149
65986394557823129251700
…. 

42 

1/148 0.00675………. 3  1/149 0.006711409395973154362
41610738255033557046979
86577181208053691275167
785234899328859060402…
…… 

148 

1/150 0.006……….. 1  1/151 0.006622516556291390728
47682119205298013245033
1125 
82781456953642384105960
264900……… 

75 

1/152 0.006578947368421052631
………. 

18  1/153 0.006535947712418300……
……. 

16 

1/154 0.00649350…….. 6  1/155 0.00645161290322580………
.. 

15 
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1/156 0.00641025……. 6  1/157 0.006369426751592356687
89808917197452229299363
05732484076433121019108
2802547770700………… 

78 

1/158 0.006329113924050………… 13  1/159 0.006289308176100……….. 13 
       
1/160 0.00625 T  1/161 0.006211180124223602484

47204968944099378881987
57763975155279503105590
0……….. 

        66 

1/162 0.00617283950…………          9  1/163 0.006134969325153374233
12883435582822085889570
55214723926380368098159
5092024539877300………. 

         81 

1/164 0.0060975………..           5  1/165 0.0060……….           2 
1/166 0.006024096385542168674

69877951807228915662650
….. 

          41  1/167 0.005988023952095808383
23353293413173652694610
77844311377245508982035
92814371257485029940119
76047904191616766467065
86826347305389922155688
62275449101796407185628
7425149700………. 

         166 

1/168 0.005952380……….           6  1/169 0.005917159763313609467
45562130177514792899408
28402366863905325443786
9822485207100………. 

         78 

1/170 0.005882352941176470……
… 

         16  1/171 0.00584795321637426900…
…….. 

         18 

1/172 0.005813953488372093023
25……………….. 

         21  1/173 0.0057803468208092485549
13294797687861271676300
… 

         43 

1/174 0.005747126436781609195
402298850………. 

28  1/175 0.00571428……………. 6 

1/176 0.005681 2  1/177 0.0056497175141242938531
07344632768361581920903
95480225988700……… 

58 

1/178 0.005617977528089887640
44943820224719101123595
50.. 

44  1/179 0.0055865921787709497206
70391061455251396648044
69273743016759776536312
84916201117318435754189
94413407821229050279329
60893854748603351955307
26256983240223463687150
837988826815642458100……
…. 

178 

1/180 0.005………. 1  1/181 0.0055248618784530386740 180 
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33149171270718232044198
89502762430939226519337
01657458563535911602209
94475138121546961325966
85082872928176795580110
49723756906077348066298
3425414364640883977900…
…… 

1/182 0.00549450……… 6  1/183 0.0054644808743169398907
10382513661202185792349
72677595628415300… 

60 

1/184 0.005434782608695652173
9130……… 

22  1/185 0.00540………. 3 

1/186 0.00537634408602150………
. 

          15  1/187 0.005347593582887700………         16 

1/188 0.005319148936170212765
95744680851063829787234
0425 

        46  1/189 0.00529100……….           6 

1/190 0.00526315789473684210…
….. 

         18  1/191 0.0052356020942408376963
35078534031413612565445
02617801047120418848167
53926701570680628272251
308900 

          95 

1/192 0.0052083……….           1  1/193 0.0051813471502590673575
12953367875647668393782
38341968911917098445595
85492227979274611398963
73056994818652849740932
64248704663212435233160
62176165803108808290155
44041450777202072538860
10362694300. 

        192 

1/194 0.005154639175257731958
76288659793814432989690
72164948453608247422680
41237113402061855670103
09278350………… 

         96  1/195 0.00512820………..           6 

1/196 0.005102040816326530612
24489795918367346938775
…. 

         42  1/197 0.0050761421319796954314
72081218274111675126903
55329949238578680203045
68527918781725888324873
096446700……. 

         98 

When we look at the first 32 unit fractions, with the exception of a few 

(
ଵଵ଻ , ଵଵଽ , ଵଶଷ , ଵଶଽ, ଵଷଵ) a middle school student would be able to calculate the decimal 

expansions by hand or with a basic calculator.   It is important to have the student 
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explore the decimal expansions before giving them a printed table of the decimal 

expansions. The table can lead to a good discussion about periods of rational numbers. 

We can start a discussion by asking the students, what is special about the 

fractions with terminating decimal expansions?   The student should then look at the 

table and notice that the numbers  
ଵଶ	 	 , ଵସ	 , ଵହ	 , ଵ଼ 	 , ଵଵ଴	 , ଵଵ଺	 , ଵଶ଴ , ଵଶହ	 , ଵଷଶ……. are all terminating 

decimals, thereby finding what we summarized above in Observation 1.2.  That is 

   

 

At this point the teacher with little prompting should be able to get the students to see 

that the terminating decimal expansion of 2’s and 5’s raised to the ݊th power, 
ଵଶ	•	ହ೙	 , ଵହ	•	ଶ೙ 

all have length ݊, meaning the decimal expansion is ݊	digits long.  Whereas the 

numbers 
ଵଶమ	•	ହ೙		and 

ଵହమ	•	ଶ೙,	 have length ݊ if ݊ ≥ 2. 
 

 

This is should be clear since 

ଵଶೖ		∗	ହ೙	 = 	 ଶ೙షೖଶ೙∗		ହ೙	 = 	 ଶ೙షೖଵ଴೙ = 0. ܽଵܽଶܽଷ…….ܽ௡. 

The student should also notice that for rational numbers  
ଵ௡	,	 as ݊ increases the number 

of terminating decimals seem to decrease.  Therefore, we will address the following 

problem. 

Observaton 3.1:  The terminating decimal expansion of   
ଵଶೖ ହ೙  and  

ଵହೖଶ೙		seem to 

have length ݊ if ݊ ≥ ݇. 

Observation 1.2:     A fraction  
௔௕  (in lowest terms) has a terminating decimal 

representation if and only if   ܾ = 2௡5ࣾ     for some integers ݊,݉ ≥ 0. 
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  The following is what the student can gather by investigating Table 3.1.   

 Table 3.2:  NUMBER R(࢔)OF TERMINATING DECIMALS 
૚ࢗ for ૚	 ≤ 	ࢗ ≤  ࢔

݊ R(݊)  ݊ R(݊) 
1 1  2 2 
4 3  5 4 
8                5  10 6 

16 7  20 8 
25 9  32 10 
40 11  50 12 
64 13  80 14 

100 15  125 16 
128 17  160 18 
200 19    

 

The information from the table can then be turned into a graph that shows the 

distributions of terminating decimals.  This is why it is important for teachers to be 

knowledgeable of programs like Mathematica so that they are able to produce visuals to 

help students better understand the information in tables.   

In Mathematica, the command      ܍ܔ܊܉܂[૛࢔ ∗ ૞࢓, ,࢔} ૙, ૛}, ,࢓} ૙, ૛}]  
produces the list   ൛{૚, ૞, ૛૞}, {૛, ૚૙, ૞૙}, {૝, ૛૙, ૚૙૙}ൟ. 
Now the command  [۴܍ܔ܊܉܂]ܖ܍ܜܜ܉ܔ[૛^࢔ ∗ ૞^࢓, ,࢔} ૙, ૛}, ,࢓} ૙, ૛}]]] 	

 

Problem 1.    Let R(݊) be the number of terminating unit fractions  
ଵ௤		, for 1 ≤ ݍ ≤ ݊. 

Find an estimate for R(݊). 
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 removes the outer brackets and produces the list, 

{1,5, 25, 2, 10, 50, 4, 20, 100}. 

Finally the command ܜܚܗ܁ ቂ۴܍ܔ܊܉܂ൣܖ܍ܜܜ܉ܔ[૛࢔ ∗ ૞࢓, ,࢔} ૙, ૛}, ,࢓} ૙, ૛}]൧ቃ , 
produces the list, {૚, ૛, ૝, ૞, ૚૙, ૛૙, ૛૞, ૞૙, ૚૙૙}. 
Since we chose to look at values of ݊ from 0 to 2 and ݉ from 0 to 2, we notice that 

some values 2௡ are missing from the list (namely 8, 16, 32, and 64).  

To fix this define, ۲۲ = ࢔^૛]܍ܔ܊܉܂]ܖ܍ܜܜ܉ܔ۴]ܜܚܗ܁ ∗ ૞^࢓, ,࢔} ૙, ૛૙}, ,࢓} ૙, ૛૙}]]]; 
:[_ܖ]܀܀   = ,۲۲]ܜܚ܉۾} ,[࢔  .;{࢔
Then the command [࢔]܀܀]܍ܔ܊܉܂, ,࢔} ૚, ૜૛}], 
Produces the list  

 {{૚, ૚}, {૛, ૛}, {૝, ૜}, {૞, ૝}, {ૡ, ૞}, {૚૙, ૟}, {૚૟, ૠ}, {૛૙, ૡ}, {૛૞, ૢ}, {૜૛, ૚૙}, {૝૙, ૚૚}, {૞૙, ૚૛}, {૟૝, ૚૜}, {ૡ૙, ૚૝}, {૚૙૙, ૚૞}, {૚૛૞, ૚૟}, {૚૛ૡ, ૚ૠ}, {૚૟૙, ૚ૡ}, {૛૙૙, ૚ૢ}, {૛૞૙, ૛૙}, {૛૞૟, ૛૚}, {૜૛૙, ૛૛}, {૝૙૙, ૛૜}, {૞૙૙, ૛૝}, {૞૚૛, ૛૞}, {૟૛૞, ૛૟}, {૟૝૙, ૛ૠ}, {ૡ૙૙, ૛ૡ}, {૚૙૙૙, ૛ૢ}, {૚૙૛૝, ૜૙}, {૚૛૞૙, ૜૚}, {૚૛ૡ૙, ૜૛}}  
 

That is, 200 is the 19th number in the list and therefore there are 19 terminating fractions  ଵ௤  for 1 ≤ 	ݍ ≤ 200	(see also Table 3.1). 

 

Finally the command 
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,[࢔]܀܀]܍ܔ܊܉܂]ܜܗܔ۾ܜܛܑۺ ,࢔} ૚, ૚૙૙}]] 
produces the graph, 

 

 

 

The graph shows that the farther we extend the n values the terminating decimals 

become less dense. The graph also shows that R(ݑ) grows “logarithmically”.  To test the 

hypothesis that the values become less dense as the n values increase, let’s look at 

what happens.   

The command, [࢔]܀܀]܍ܔ܊܉܂}]ܜܗܔ۾ܜܛܑۺ, ,࢔} ૚, ૛૙૙}], ,[࢔]ܖܡ܊ܗ܀]܍ܔ܊܉܂ ,࢔} ૚, ૝૜૙૙}]}] 
produces the list, 

{1,1}, {2,2}, {4,3}, {5,4}, {8,5}, {10,6}, {16,7}, {20,8}, {25,9}, {32,10}, {40,11}, {50,12}, {64,13}, {80,14}, {100,15}, {125,16}, {128,17}, {160,18}, {200,19}, {250,20}, {256,21}, {320,22}, {400,23}, {500,24}, {512,25}, {625,26}, {640,27}, {800,28}, {1000,29}, {1024,30}, {1250,31}, {1280,32}, {1600,33}, {2000,34}, {2048,35}, {2500,36}, {2560,37}, {3125,38}, {3200,39}, {4000,40}, {4096,41}, {5000,42}, {5120,43}, {6250,44}, {6400,45}, {8000,46}, {8192,47}, {10000,48}, {10240,49}, {12500,50}, {12800,51}, {15625,52}, {16000,53}, {16384,54}, {20000,55}, {20480,56}, {25000,57}, {25600,58}, {31250,59}, {32000,60}, 
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{32768,61}, {40000,62}, {40960,63}, {50000,64}, {51200,65}, {62500,66}, {64000,67}, {65536,68}, {78125,69}, {80000,70}, {81920,71}, {100000,72}, {102400,73}, {125000,74}, {128000,75}, {131072,76}, {156250,77}, {160000,78}, {163840,79}, {200000,80}, {204800,81}, {250000,82}, {256000,83}, {262144,84}, {312500,85}, {320000,86}, {327680,87}, {390625,88}, {400000,89}, {409600,90}, {500000,91}, {512000,92}, {524288,93}, {625000,94}, {640000,95}, {655360,96}, {781250,97}, {800000,98}, {819200,99}, {1,000,000,100}, 
 

The results we obtain are surprising at the least.  One would think that if we looked at all 

of the terminating decimals 	ଵ௤	up to 
1

1,000,000
 ,  we certainly would expect to see a 

large number of  terminating decimals.  Our result shows that there are only 100 

terminating decimals 
ଵ௤  for 1	 ≤ 	ݍ ≤ 1,000,000	. 

The command 

,۲۲۲]ܜ۴ܑ܌ܖ۴ܑ ࢇ + ,[࢞]܏ܗۺ࢈ ,ࢇ} ,{࢈ ࢞] 
 produces {ࢇ → −૛૙. ૟૟૝ૠ૙૛૛ૢ૝૛૛૜૞૛, ࢈ → ૡ. ૙૟૞૚ૡૡ૝૝૜૚ૡૢૢૢ૛} 
The command [_ܠ]ܖܡ܊ܗ܀: = −૛૙. ૠ + ૡ. ૙૟ ∗  ;[࢞]܏ܗۺ
defines the Robyn function estimating the number of terminating decimals up to 1/x. 

If we substitute ݔ with 1,000,000 for we get the following, ܖܡ܊ܗ܀[૚, ૙૙૙, ૙૙૙] = ૢ૙. ૟૞, ,૚૙૙]ܖܡ܊ܗ܀ ૙૙૙] = ૠ૛. ૙ૢ ܖܡ܊ܗ܀[૚૙, ૙૙૙] = ૞૜. ૞૝, ,૚]ܖܡ܊ܗ܀ ૙૙૙] = ૜૞. 

These Robyn estimates are not great, but they are in the ball park. Thus, since ܖܡ܊ܗ܀[૚૙^૚૙૙] = ૚ૡ૜૞. ૚ૡ 
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we think that it is true that the percent of unit fractions with terminating decimals among 
the fractions up to 1/googol is very close to zero. 
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