Lecture 3: Sequences of Rational Numbers

3.1 Rational numbers: upper and lower bounds

Definition Let A C Q. If s € Q is such that s > a for every a € A, then we call s an
upper bound for A. If s is an upper bound for A with the property that s <t whenever ¢
is an upper bound for A, then we call s the supremum, or least upper bound, of A, denoted
s = sup A. Similarly, if » € Q is such that » < a for every a € A, then we call r a lower
bound for A. If r is a lower bound for A with the property that r > ¢t whenever t is a lower
bound for A, then we call r the infimum, or greatest lower bound, of A, denoted r = inf A.

Exercise 3.1.1
Show that the supremum of a set A C Q, if it exists, is unique, and thus justify the use of
the definite article in the previous definition.

A set which does not have an upper bound will not, a fortior:, have a supremum. For
example, Q itself does not have an upper bound. Moreover, even sets which have upper
bounds need not have a supremum. Consider the set A = {a : @« € Q,a? < 2}. Then, for
example, 4 is an upper bound for A. Now suppose s € Q is the supremum of A. Suppose
s < 2 and let € = 2 — s2. By the archimedean property of Q, we may choose n € Z* such
that

25+ 1
<

from which it follows that

Hence . 5 .
(3—|——)2:32—|——8—|——2<32—|—e:2,
n n n

which implies that s + % € A. Since s < s+ %, this contradicts the assumption that s is
an upper bound for A. So now suppose s> > 2. Again let n € Z* and note that

If we let € = s2 — 2, then we may choose n € ZT so that

2s
— < €.
n
It follows that
( 1)2>32 e—l—l 2—|—1>2
s — — — — = — .
n n? n?

Thus s — % is an upper bound for A and s — % < s, contradicting the assumption that
s = sup A. Thus we must have s? = 2. However, this is impossible in light of the following
proposition. Hence we must conclude that A does not have a supremum.
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Proposition There does not exist a rational number s with the property that s = 2.

Proof Suppose there exists s € Q such that s> = 2. Choose a,b € Z* so that a and
b are relatively prime (that is, they have no factor other than 1 in common) and s = %

P
Then

so a®> = 2b%. Thus a?, and hence a, is an even integer. So there exists ¢ € ZT such that
a = 2¢. Hence
a’ = 4¢* = 2%,

from which it follows that b = 2¢, and so b is also an even integer. But this contradicts
the assumption that ¢ and b are relatively prime.

Exercise 3.1.2

Show that there does not exist a rational number s with the property that s* = 3.

Exercise 3.1.3
Show that there does not exist a rational number s with the property that s* = 6.

Exercise 3.1.4

As above, let A ={a:a € Q,a* < 2}.

(a) Show that if b € A and 0 < a < b, then a € A.
(b) Show that if « > 0, a ¢ A, and b > «a, then b ¢ A.

3.2 Sequences of rational Numbers

Definition Supposen € Z, I = {n,n+1,n+2,...}, and Aisaset. A functionp : I — A
is called a sequence with values in A.

Frequently, we will define a sequence ¢ by specifying its values with notation such as,
for example, {p(i)}ier, or {p(i)}2,. Thus, for example, {i*}52, denotes the sequence
¢ : Zt — 7 defined by ©(i) = i*. Moreover, it is customary to denote the values of a
sequence using subscript notation. Thus if a¢; = ¢(i), ¢ € I, then {a;};er denotes the

sequence . For example, we may define the sequence of the previous example by writing
.2 .
a; =1°,1=1,2.3,....

Definition Suppose {a;}ics is a sequence with values in Q. We say that {a;}icr con-
verges, and has limit L, L € Q, if for every € > 0, ¢ € Q, there exists N € Z such
that

la; — L] < e

whenever ¢ > N.

If the sequence {a;}ics converges to L, we write

lim a; = L.
1— 00

For example, clearly

o1
lm = =0
1—>00 ¢
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since, for any rational number € > 0,

1 1
|—. - 0| = - <e€
i i
. . . 1
for any ¢ > N where N is any integer larger than .
Definition Suppose {a;}ics is a sequence with values in Q. We call {a;};er a Cauchy
sequence if for every € > 0, € € Q, there exists N € Z such that
la; — ag| < €

whenever both 7 > N and £ > N.

Proposition If {a;};c; converges, then {a;}ics is a Cauchy sequence.
Proof Suppose lim; ;- a; = L. Given € > 0, choose an integer N such that

€
s — Ll < =
jai — L] < &

for all 2 > N. Then for any 7,k > N, we have

€

2

= €.

jai — a] = (@i = L) + (ax = D)| < |a; = L| 4+ |ax = L] < 5 +

Hence {a;}iecr is a Cauchy sequence.

The proposition shows that every convergent sequence in Q is a Cauchy sequence, but
the converse does not hold. For an example, let

fla) =a? —2

and consider the sequence constructed as follows: Begin by setting a1 = 1, by = 2, and
T = % If flar)f(x1) <0, set
vy = ay + 1 7
2
as = ay, and by = x1; otherwise, set
vy = 1+ b
2 b

as = 1, and by = by. In general, given a,, ©,, and by, if f(a,)f(x,) <0, set

Gn + Tp
rn =T
Gpt1 = Gy, and b,41 = x,; otherwise, set
Ty + by

Tpitl = D) ’
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Gpt1 = Ty, and b,41 = b,. Note that for any positive integer N,
any < zx; < bN

for all 2 > N. Moreover,

1
bn —an| = oN—T1”
SO
1
|$Z‘ —$k| < 2]\7——1

for all i,k > N. Hence given any e > 0, if we choose an integer N such that 2V > %,

then .
|$Z—$k| < 2]\7——1 < €,
showing that {x;}72, is a Cauchy sequence. Now suppose {z;}52; converges to s € Q.
Note that we must have
a; < s <b;

for all i € ZT. If f(s) < 0, then, since the set {a : a € Q,a®> < 2} does not have a
supremum, there exists t € Q such that s <t and f(¢) < 0. If we choose N so that

then .
|8—b]\7| S |CLN—bN|: 2]\7—_1 < t—s.

Hence by < t, which implies that f(by) < 0. However, the sequence {b;}:2, was con-
structed so that f(b;) > 0 for all 7 € Z1. Hence we must have f(s) > 0. But if f(s) > 0,
then there exists t € Q such that t < s and f(¢) > 0. We can then choose N so that t < ay,
implying that f(ax) > 0. But the sequence {a;}72, was constructed so that f(a;) < 0 for
all i € Z*. Hence we must have f(s) =0, which is not possible since s € Q. Thus we must
conclude that {z;}22; does not converge.



