
p ()

URL: http://www.elsevier.nl/locate/entcs/volume85.html 16 pages

A simple canonical representation of rational
numbers

Yves Bertot
1;2

Project Lemme

INRIA Sophia Antipolis

France

Abstract

We propose to use a simple inductive type as a basis to represent the �eld of rational

numbers. We describe the relation between this representation of numbers and the

representation as fractions of non-zero natural numbers. The usual operations of

comparison, multiplication, and addition are then de�ned in a naive way. The whole

construction is used to build a model of the set of rational numbers as an ordered

archimedian �eld. All constructions have been modeled and veri�ed in the Coq

proof assistant.

This work started as a quest to �nd a simple language to represent strictly

positive rational numbers. It started as a re
exion on the proof part of rep-

resentations of rational numbers as reduced fractions: the proof must then be

a proof that the numerator and denominator are respectively prime and this

proof can be viewed as a trace of Euclid's algorithm to compute the great-

est common divisor of two numbers. Looking further, this trace can be used

directly as a data-structure to represent rational numbers.

1 From fractions to Qplus and back

We propose to use a very simple formal language, which we will call Q+, and

is given by the following syntax:

x := 1jNxjDx

This language can easily be encoded as a recursively de�ned type in a func-

tional programming language or as an inductive type in a theorem prover. For

instance, the de�nition in Coq [5] is the following one:

Inductive Qplus : Set :=

1 thanks to Milad Niqui and Lo��c Pottier for many discussions on this subject.
2 Yves.Bertot@sophia.inria.fr

c
2003 Published by Elsevier Science B. V.

1

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Bertot

One : Qplus | N : Qplus -> Qplus | D : Qplus -> Qplus.

Being given a pair of strictly positive natural numbers (p; q), actually rep-

resenting the fraction p

q
, we construct the term in our language by recusively

applying the following rules:

� if p = q then the term associated to p

q
is 1,

� if p > q then the term is Ny where y is the term associated to p�q

q
(note

that p� q > 0),

� if p < q then the term is Dy where y is the term associated to p

q�p
.

This recursive technique always terminates: if there is a recursive call, then

the sum of the two elements in the pair is strictly smaller than the sum of the

two initial elements. Thus there is a quantity that decreases strictly at each

recursive step: this ensures termination.

There may be several pairs of natural numbers representing the same ra-

tional number: in this sense the set of strictly positive rational numbers can

be viewed as a quotient set obtained from a partition of the set of pairs of

strictly positive rational numbers, but it turns out that the term in Q
+ con-

structed in this manner does not depend on the pair of numbers that was

chosen. Here is another formulation of the same algorithm that shows why.

Now this algorithm is described by a function c:

� c(1) = 1,

� if x > 1, c(x) = Nc(x� 1),

� if x < 1 c(x) = Dc(1
1

x
�1
).

It is a simple computation to verify that the two algorithms perform the same

steps.

Given a word w in the languageQ+, we can interpret this word as a fraction

using the following recursive algorithm.

� if w = 1, then the fraction is 1

1
,

� if w = Ny and y can be interpreted as the fraction p

q
, then w can be

interpreted as p+q

q
,

� if w = Dy then w can be interpreted as p

p+q
.

The fraction we obtain in this manner is always reduced: the greatest

common divisor of p and q is 1. This can be proved by recursion over the

length of w.

� Base case: if the length is 1, then w = 1, the fraction is 1

1
, which is reduced,

� Let us suppose the length is n + 1, where n � 1, let us suppose any word

of length n is interpreted in a reduced fraction. Now w can have one of two

forms:

(i) w = Ny. In this case y can be interpreted in a reduced fraction p

q
and w

is interpreted in p+q

q
. Any divisor common to p+ q and q is also common

2

Bertot

to p+ q� q and q: it is a divisor of p and q. Since
p

q
is reduced this divisor

can only be 1.

(ii) w = Dy. In this case we can reason symmetrically to the previous case.

Another way to present the interpretation algorithm is to view it as func-

tion returning a rational number and write as a function i. We then have the

following presentation:

� i(1) = 1,

� i(Ny) = 1 + i(y),

� i(Dy) = 1

1+
1

i(y)

.

The functions c and i are clearly inverse to one another: they establish a

bijection between the set of strictly positive rational numbers and the language

Q
+.

2 The rationale behind rationals

At �rst sight, this looks like a contrived way to compute the greatest common

divisor of two numbers p and q: just compute c(
p

q
) then interpret it as a

reduced fraction
p

0

q0
and the greatest common divisor of p and q is the number

p

p0
=

q

q0
. In fact, we have not done anything else than construct a trace of the

decisions made by a simpli�ed form of the usual algorithm to compute the

greatest common divisor, known as Euclid's algorithm.

When given two numbers p and q, the greatest common divisor algorithm

requires that one divide p by q if p > q. If the remainder r is 0 then the greatest

common divisor is q, otherwise one should proceed to compute compute the

greatest common divisor of r and q. If q > p then one should divide q by p

and proceed by computing the greatest common divisor of p and r. If p = q

then the greatest common divisor is p.

A simpli�ed form of this algorithm is the algorithm where one subtract

q from p when p > q instead of dividing (this is actually the form that was

described by Euclid). In the long run, this has the same e�ect as division: one

eventually reaches a point where either p = q (which would correspond to a

null remainder in the division) or subtraction has to be done in the other way.

In the simpli�ed form, there is a three way choice that is made based on

whether p is larger or smaller than q, or equal to q. The succession of choices

made in the algorithm is simply what is recorded in the terms of the Q
+

language.

This is where the representation comes from: the initial motivation was

to construct a datastructure to represent rational numbers, so that syntactic

equality would coincide with the equality as rational numbers. The usual

datastructure, where rational numbers are represented as fractions, that is, as

pairs combining a natural number (for the numerator) and a strictly positive

natural number (for the denominator) obviously does not �t the requirement:

3

Bertot

the two fractions 22

10
and 11

5
are not syntactically equal, even though they do

represent the same rational number (for this number our representation is

NNDDDD1.

In type theory, it is usual to manipulate objects that combine data and

proofs of properties satis�ed by this data. Thus, to have fractions where syn-

tactic equality is meaningful, it would be relevant to consider only reduced

fractions, represented by triples where the �rst two elements would be the

usual natural numbers, but the third element would be a proof that the great-

est common denominator of the natural numbers is 1. In practice, syntactic

equality between proofs is even more problematic to use, but it turned out

that one could forget the �rst two elements, because the proof structure con-

tains enough information to reconstruct them. Hence the idea to represent

the rational numbers simply by the trace of the computation of the greatest

common divisor.

Still, we could have chosen to use the trace of the computation of the

greatest common divisor using the regular algorithm based on division. We

will come back to this later. The motivation to take the simpli�ed algorithm

was to have all computations easily performed by structural recursion over

Peano representations of natural numbers. This will be important when we

describe the way Q+ is implemented in a type-theory based theorem prover

like Coq.

Because of its simplicity, this representation is not particularly eÆcient,

when compared to fraction representations, it is still strictly more eÆcient than

a representation where both numerator and denominator are represented as

peano numbers, where
p

q
is represented using p + q symbols, while our rep-

resentation takes less than (p=q) + q symbols (no gain for natural numbers,

obviously); it is probably not as eÆcient as a fraction representation where

both numerator and denominators are represented as binary numbers, espe-

cially for rational numbers with a large integer part (or their inverse), where

our representation is as ineÆcient as peano numbers. For a really eÆcient

representation, continued fractions would probably be the best choice.

3 Order

If we note N 0 the function over rational numbers de�ned by:

N 0(x) = i(N(c(x)))

and D0 the symmetric function, it is obvious that both N 0 and D0 are strictly

monotonic functions over the positive rational numbers. Moreover, we have

the two following inequalities, for any two strictly positive rational numbers

x1 and x2:

N 0(x1) > 1 > D0(x2):

Combining these two facts, we get the following equivalence:

x1 > x2 , c(x1) >Q+ c(x2)

4

Bertot

where the order >Q+ is de�ned by:

� for any w1 and w2, Nw1 >Q+ 1 >Q+ Dw2,

� for any w1 and w2, Nw1 >Q+ Nw2 , w1 >Q+ w2,

� for any w1 and w2, Dw1 >Q+ Dw2 , w1 >Q+ w2.

To ease notations, we shall often write > for >Q+.

4 Primitive operations

4.1 Inversion

The symetry between numerator and denominator exhibited in the Q+
lan-

guage can be exploited to construct the inversion function. For instance,

NDN1 is
5

3
, while DND1 is

3

5
, and NN1 is 3 while DD1 is

1

3
. We see there

is a pattern.

Intuitively, the proof that p and q are relatively prime and the proof that

q and p are relatively prime are the same, except that all decisions are sym-

metric. Thus, constructing the Q+
representation of the inverse of the number

represented by an arbitrary word in Q+
is simply done with the following inv

function:

� inv(1) = 1,

� inv(Nx) = D(inv(x)),

� inv(Dx) = N(inv(x)).

It is simple to prove by induction on the number of N and D that if i(w)

returns the fraction p=q, then i(inv(w)) returns the fraction q=p.

4.2 Other basic operations

We do not attempt to provide eÆcient implementations of addition or mul-

tiplication. An interesting, probably eÆcient, algorithm is presented in [8],

but we only present naive implementations that use fractions as intermediary

data.

We interprete words w and w0

in Q+
as reduced fractions

p

q
and

p0

q0
, com-

puting the result fraction in the usual manner, and then re-constructing the

result word in Q+
with the c function.

4.2.1 Addition

For addition, the result fraction is

(pq0 + p0q)

qq0:

It is interesting to prove the following theorem:

1 + w = Nw

5

Bertot

Here is a simple proof. If w represents the fraction p

q
, then the fraction

constructed for 1 + w is

(1� q + p� 1)

1� q
=

p + q

q
:

When constructing the representation for this number the comparison be-

tween numerator and denominator yields that the numerator is bigger and

the resulting word is Nw
0 where w

0 is the representation of

(p+ q � q)

q
=

p

q
;

that is w0 = w.

This theorem can be used to make addition faster, by adding the integer

part of rational numbers before resorting to the more complicated general

solution. When adding an integer to a rational number the general solution

can simply be avoided.

It is also easy to prove that addition is commutative and associative, simply

because addition and multiplication are associative on natural numbers.

4.2.2 Multiplication

For multiplication, the result fraction is pp
0
=qq

0. There is no way to be sure

that this fraction is already reduced, so we really have to go the interpretation-

reconstruction process. However, we can verify that 1 really acts as a neutral

element for multiplication. The result fraction obtained when multiplying

with 1 is

1� p
0

1� q0

and the neutral property is simply inherited from the neutral property of 1

for the multiplication of natural numbers.

Here again, it may be interesting to compute a default approximation of

the product of two rational numbers by �rst computing the product of their

integer parts. This will give no gain when multiplying a natural number with

an arbitrary rational number, because one still need to resort to the general

solution to compute the multiplication of the integer with the fractional part

of the other number.

Having both addition and multiplication, it is interesting to verify that we

have distributivity. This is done in our formal proof, but we do not describe

it in details here.

4.2.3 Subtraction

Subtracting w
0 from w is meaningful only when w represents a larger rational

number than w
0, this can be checked easily thanks to the comparison procedure

outlined in section 3. The result fraction is

(pq0
� p

0
q)

qq0:

6

Bertot

There is a question whether pq0
�p

0
q really is a strictly positive natural number,

but this is a simple consequence of the fact that p=q > p
0
=q

0 (by multiplying

both sides of the inequality by qq
0).

Zero is not element of the set of strictly positive rational numbers, so it is

not easy to express that subtraction really is the opposite of addition, still we

can express it with a theorem that has the following statement:

8w;w
0
2 Q

+
: (w + w

0)� w
0 = w

To prove this theorem, we need to show that

(p00
q

0
� p

0
q

00)

q00q0

is the same as p=q, where p00
=q

00 is the reduced fraction of

(pq0 + p
0
q)

qq0;

that is, there exists a natural number a such that pq0+p
0
q = ap

00 and qq
0 = aq

00

thus the �rst fraction can also be written

a� (p00
q

0
� p

0
q

00)

aq00q0
=

((pq0 + p
0
q)q0

� p
0
qq

0)

qq0q0
=

pq
02

qq02
=

p

q
:

5 Encoding the whole rational �eld

To encode the whole rational �eld, we need to add 0 and negative numbers.

This is easily done by constructing a disjoint sum. In Coq it will be written

as follows:

Inductive Q : Set :=

Qpos : Qplus -> Q

| Qzero : Q

| Qneg : Qplus -> Q.

Generalizing inversion on this �eld is trivial, simply lifting the operation de-

�ned in section 4.1. Generalizing addition, multiplication, and subtraction is

easily done from the basic operations for strictly positive rationals, taking care

of signs almost independently of the computation of signi�cative numbers.

For instance, when adding two positive numbers, the result is positive, and

the absolute values must be added. On the other hand, when adding a positive

and the negative value, then the absolute values (in Q
+) must be compared.

If the absoluve value of the positive argument is larger, then the result will be

positive, but the resulting absolute value is going to be the subtraction of the

two values.

Of course, a null value may occur among the operands, but this is easily

taken care of by expressing the properties of 0 as neutral element for addition

and as absorbing element for multiplication. Taking the opposite of a rational

number is a simple syntactic operation: just change the sign, when there is

one.

7

Bertot

Comparison can also be extended to the full �eld. Here also, it is only a

matter of extending comparison for positive numbers given in section 3 with

a rule of signs: negative numbers are smaller than 0, which is smaller than

positive numbers. For numbers of the same sign, we just compare their abso-

lute values, not forgetting to invert the results when the compared numbers

are negative.

6 Implementing the functions in Coq

The calculus of inductive constructions, as implemented in the Coq system,

provides good support for describing and proving properties of structural re-

cursive functions. Functions of this kind are easily recognized according to a

syntactic pattern when using pattern-matching constructs: recursive calls are

only permitted on direct subterms of a special argument and these subterms

appear as variables in a pattern.

The function c that we describe above to construct an element of Q+

from a pair of non-zero natural numbers is not structural recursive. There

are several techniques to handle functions that are not structural recursive,

several of them include constructing functions that take proofs of termination

as arguments [1,2]. Here we have chosen a simpler path: we add a extra

arti�cial argument to the function, whose purpose is only to count the number

of allowable recursive calls. The function we obtain has the following form:

Fixpoint Qplus_c [p, q, n : nat] : Qplus :=

Cases n of

O => One

| (S n') =>

Cases (minus p q) of

O =>

Cases (minus q p) of

O => One

| v => (D (Qplus_c p v n')) end

| v => (N (Qplus_c v q n'))

end

end.

In this function we are computing the representation of p=q and the result is

correct only for suitable values of n. A simple analysis of the code shows that

it suÆces that n is larger than the maximum of p and q.

The use of an arti�cial argument to the Qplus c function makes that it

is also de�ned when its semantics makes no sense. For instance, if numera-

tor or denominator is zero, the value returned is (D (D ...One)) or (N (N

...One)). When stating any proof about this function we need to check that

we are talking only about meaningful uses.

For instance, we proved that the function Qplus c is correct, as stated by

8

Bertot

the following theorem (there are more theorems about addition than about

maximum in Coq and we chose to use this as a lower bound of acceptable

values of n). Here the fact that p and q are non-zero is ensured by the fact

that they are computed by Qplus i.

Theorem construct_correct:

8 w : Qplus, p, q, n : nat.

(Qplus_i w) = (p, q) ! (le (plus p q) n) !

(Qplus_c p q n) = w.

We can also de�ne a Qplus c' function that takes only the numerator and

denominator of the fraction and adds them before calling Qplus c. Thus, the

fraction n=m will be represented by the term (Qplus c' (n)(m)).

De�ning addition and multiplication by converting terms from Q
+ to pairs

of natural numbers is then an easy example of structural-recursive program-

ming:

Definition Qplus_add : Qplus -> Qplus -> Qplus :=

[w, w' : Qplus]

(Cases (Qplus_i w) of

(p,q) =>

(Cases (Qplus_i w') of

(p',q') =>

(Qplus_c

(plus (mult p q') (mult p' q)) (mult q q')

(plus (plus (mult p q') (mult p' q)) (mult q q')))

end)

end).

Thanks to the use of pure structural recursive programming, the reductions

rules of the calculus of inductive constuctions can always work on closed term,

and we can test our addition function on pairs of fractions.

Definition Qplus_c' [n,m:nat] := (Qplus_c n m (plus n m)).

Eval Compute in

(Qplus_i (Qplus_add (Qplus_c' (5)(7))(Qplus_c' (1)(3)))).

= ((22),(21)) : nat*nat

We have followed the same principles for all functions on Qplus and on Q.

all functions are programmed in structural recursive way, sometimes with an

extra argument to bound the recursive calls, and the functions have been made

total by giving an arbitrary value when they should have been unde�ned.

7 Constructing the rational number �eld

In theorem provers, the tradition is to use a de�nitional approach, where new

concepts are de�ned from old ones. In our case, we want to consider that the

9

Bertot

natural numbers are given with the basic operations, addition, multiplication,

subtraction, and comparison, the sets Q+ and Q are de�ned as above, trans-

lation from words in Q+ to pairs of natural numbers, and the de�nition of

basic operations are also given. From this, we want to show that Q satis�es

the properties of an ordered archimedian �eld. Thus, we have to redo a whole

bunch of proofs that were simply solved in the previous section by refereeing

to the set of mathematical rational numbers, which we should not be using

now.

In fact, we only have to prove the 13 axioms that de�ne an ordered archi-

median �eld [4] (there are 14 axioms for a complete ordered archimedian �eld,

but obviously we cannot expect completeness).

Of course, the fact that some functions are normally not total re-appears in

the properties with have proved. For instance, the following property expresses

that inversion is the symetric operation to multiplication, but the zero case

is clearly avoided in the statement, even though our inversion function does

have a value for zero.

Q_inv_def: 8x : Q. x 6= Zero !

(Q_mult x (Q_inv x)) = (Qpos One).

8 Continued fractions

Readers with enough mathematical background may already have recognized

simple continued fractions in the Q+ language. When considering long se-

quences of the same symbol, it is possible to use natural numbers, as summa-

rized by the following equalities:

N 0kx = k + x D0kx = 1=(k + 1=x)

Combining these equations to analyze large words, we obtain that the word

Na0Da1 :::NanDan+11

actually represents the number

a0 +
1

a1 +
1

...

an +
1

an+1 + 1

This is known as a �nite simple continued fraction. In this sense we redis-

cover a fact that is already known: when looking for canonical representation

for rational numbers, continued function can be used, as long as all the ak's

are strictly positive, except for the �rst one. This representation is actually

used in algorithms proposed by Kornerup and Matula in [7] where the rep-

resentation is also enhanced by looking at the step taken when computing

the greatest common divisor, but this time when numbers are represented in

binary format. The algorithms proposed in Kornerup and Matula's work are

10

Bertot

\on-line" algorithms, which in a functional programing approach we might

also want to consider as \lazy" computing algorithms.

If this construction is preferred to the other one for use in a theorem prover

or in a functional programming language with recursive types, it is sensible

to start by representing the rational numbers that are strictly greater than

1. In this manner, we avoid taking care of the special case for a0 which does

not need to be strictly positive. If we only represent numbers that are greater

than 1, then a0 also needs to be positive.

A rational number greater than 1 is necessarily an integer greater or equal

to 2, or an integer greater or equal to 1 plus the inverse of a natural number,

or a number of the form

a +
1

(b+ 1
x
)
;

where a and b are strictly positive natural numbers, and x is a rational num-

ber greater than 1. This can be described with the following new inductive

de�nition.

Inductive Qplus' : Set :=

Nat : positive -> Qplus'

| NatInv : positive -> positive -> Qplus'

| R : positive -> positive -> Qplus'.

Having this subset of the �eld of rational numbers, it is a simple matter

to add 1 and inverses of rationals greater than 1 to get all strictly positive

rational numbers and to add 0 and opposites of positive rational numbers to

get all rational numbers, this is done using the following inductive de�nition:

Inductive Q' : Set :=

G1 : Qplus' -> Q'

| One' : Q'

| IG1 : Qplus' -> Q'

| Zero' : Q'

| OIG1 : Qplus' -> Q'

| OOne' :Q'

| OG1: Qplus' -> Q'.

In this description, G1 is used for numbers larger than 1, One' is used for 1,

IG1 (the I stands for inverse) is used for numbers between 0 and 1, actually

(IG x) represents the inverse of (G1 x), Zero' stands for 0, OIG1 is used

for numbers between �1 and 0, actually (OIG1 x) represents the opposite of

(IG1 x), OOne' is used for �1, and OG1 is used for numbers lesser than �1,

actually (OG1 x) represents the opposite of (G1 x).

Basic operations can be de�ned on this structure by following the guide-

lines given both by the interpretation of terms in Qplus' as �nite continued

fractions or as compact encodings of terms in Q
+, but this work has not been

done yet.

11

Bertot

9 Inductive proofs on rational numbers

Having an inductive structure to describe rational numbers, it can be used to

guide proofs about these numbers, in the same manner as the peano structure

of natural numbers guides proofs by providing the usual induction principle

on these numbers. In this section, we show how this leads us into a new way

of proving things, that may sometimes turn out to be more eÆcient.

9.1 A proof that the square root of 2 is not rational

The intuition behind this proof is that the square root of two actually is

represented by the following in�nite continued fraction:
p
2 = 1 +

1

2 +
1

2 +
1
...

In other terms, if
p
2 were a rational number, then it would be represented

by the the term:
p
2 = NDDN

p
2

This is impossible, because it leads to an in�nite element in an inductive type.

Let us suppose that
p
2 is rational, and let us show that

p
2 = NDDN

p
2:

The square of 1 is 1 and 1 < 2, since the square function is increasing, thenp
2 is necessarily of the form Nx, N1 is 2 and 22 > 2 then

p
2 is necessarily of

the form NDx0, ND1 is 3=2 and (3=2)2 = 9=4 > 2, then
p
2 is necessarily of

the form NDDx00, NDD1 is 4=3 and (4=3)2 < 2 then
p
2 is necessarily of the

form NDDNy, where y represents a strictly positive rational number which

we also denote y. By the de�nition of interpretation of N and D, we have:
p
2 = 1 +

1

2 +
1

1 + y

:

Using a few algebraic transformations that are all licit because y is strictly

positive, we get the following equality:
p
2 =

3y + 4

2y + 3

After squaring both sides of the equality, multiplying by (2y + 3)2 (a strictly

positive number), and simplifying, we get:

2 = y2

This proves that y =
p
2 and leads to the contradiction we are looking for.

The same form of reasoning applies to prove that
p
3 is not rational, this

time using the fact that if
p
3 were rational, it would have to verify the fol-

12

Bertot

lowing equality:
p
3 = NDN

p
3:

It is even possible to re-do this proof by only following the structure sug-

gested by the Q+ language, but without explicitely using the N and D con-

structs. Here it is:

We prove by induction on n, that there is no pair of non zero numbers p

and q such that p + q � n and p2 = 2q2. Let us take an arbirtrary n and, as

induction hypothesis, let us suppose that for allm < n, there is no pair of non

zero numbers p0 and q0 such that p0 + q0 = m and p02 = 2q02. Let us suppose

we have two non zero numbers p and q such that p+ q = n and p2 = 2q2. Let

us prove that there is a contradiction.

Since 12 < 2 < 22, we know that q < p < 2q, let p0 = p� q, we know that

p0 < q and since q is non zero, we have p0 < p. We also have

(p0 + q)2=2q2:(1)

If q � 2p0 then there exists an x > 0 such that 2p0 = q + x, the above

equality can be transformed into:

(2p0 + 2q)2 = 8q2:

This gives

9q2 + 6qx + x2 = 8q2

and after simpli�cation:

q2 + qx+ x2 = 0:

This is not possible if q > 0.

On the other hand, if q > 3p0 then there exists an x such that q = 3p0 + x

and we can simplify the equality 1 into the following one:

16p02 + 8p0x+ x2 = 18p02 + 12p0x + x2

and after simpli�cation

0 = 2p02 + 12p0x:

Again, this is not possible if p > 0. Thus, we know that 2p0 < q < 3p0, let q0

be the non zero number such that q = 2p0 + q0 and q0 < p. We have

(3p0 + q0)2 = 2� (2p0 + q0)2)(2)

Now let p00 be the strictly positive number p00 = p0 � q0 With this number the

equation 2 becomes:

(3p00 + 4q0)2 = 2� (2p00 + 3q0)2

and after simpli�cation:

p002 = 2q02

By construction p0 < q0 < p and q0 < q, thus p00 + q0 < n and by using the

induction hypothesis, we can deduce that there is a contradiction. The proof

is over.

13

Bertot

If we analyze the structure of this proof, it follows directly the structure

given by Q+ and the previous proof:

(i) The decision to perform proof by induction on the sum of the numerator

and denominator is guided by the fact that the function c terminates

because the sum of the numerator and denominators decreases,

(ii) the introduction of the number p0 corresponds to the application of N

that is the �rst element of the segment NDDN that is repeated in the

continued fraction expansion,

(iii) the introduction of the number q0 corresponds to the two applications of

the D that occur in NDDN ,

(iv) the introduction of the number p00 corresponds to the last N occurring in

NDDN ,

(v) the concluding use of the induction hypothesis corresponds to the remark

that the continued fraction for
p
2 is in�nite.

This proof may look a little more complicated, but we have gone to all

these tedious steps to show that we have never used any other operations

that multiplication, addition, and subtractions, and comparisons of natural

numbers. This is important to show that this proof that square root of 2 is

not rational is very simple in the amount of mathematical tools it uses. This is

an important point when considered mechanized proofs, where the full extent

of mathematical knowledge is rarely available. The usual proof, as proposed

initially by Euclid, goes through the argument that if p2 = 2q2, then p2 is

even, then p is even, then q is even, and the fraction is not reduced. This

proof usually requires that one de�ne the concept of even numbers and then

show that if the square of a number is even, this number is also even. Euclid's

proof carries over to
p
3 only at the expense of de�ning the property to be a

multiple of 3, and with a little e�orts it also carries over to a proof that the

cubic root of 2 or 3 is not rational. Proofs relying on the Q+ structure carry

easily to the proof that
p
3 is not rational, but they are not adapted for cubic

roots.

10 Related work

Continued fraction have been used in mathematics for a long time. John Wal-

lis, a professor at Oxford in the 17th century actually introduced the name and

described them. Euler showed that simple continued fraction were in 1-1 cor-

respondance with rational numbers. Lagrange showed that roots of quadratic

equations were either rational numbers or periodic continued fractions. More

recently, a french clock-maker, Achille Brocot, and the german mathematician

Moritz Abraham Stern devised a technique to represent rational numbers that

turns out to represent the same inductive structure as the rational numbers

in Q+ [9,3] (for an introductory presentation see [6]). Inline algorithms for

14

Bertot

the basic operations on continued fractions have been studied by Vuillemin

[10] and similar algorithms have been devised by Niqui [8] for the structures

described by Stern and Brocot, which are the same as ours. Milad Niqui

and the author of these lines plan to collaborate to construct the proofs that

the algorithms described by Niqui compute the same values as the algorithms

described naively in this work.

11 Conclusion

All proofs described in this paper have been performed using the Coq system

and are available from the author on demand. These proofs include a proof

that Q has a �eld structure and a new presentation of the proof that
p
2 is not

rational.

We have given a quotient free representation of rational numbers. There ex-

ists several other such representations, and actually continued fractions, with

which our representation is related also provide such a quotient free represen-

tation. Another example is where positive rational numbers are represented

by �nite lists of relative numbers, where the kth element describes the power

of the kth prime number. Such lists may be of practical use if multiplication

plays a more important role than comparison. However, the mathematical

background needed to ascertain the validity of this representation is much

more important than for our notation, as it relies on the fundamental the-

orem of arithmetics (unicity of decomposition of any natural number as a

product of powers of prime numbers).

The beauty of our representation is in its simplicity. It is remarkable

that the positive rational numbers, such a dense set, can be obtained from

the natural numbers by virtually adding only one inductive constructor. The

constructor N corresponds to the successor function of peano arithmetics, the

constructor we add is simply the D constructor, which is simply presented as

a symmetric to the N constructor.

Practical applications to this representation seem hard to �nd, mainly

because the basic operations are so clumsy. We have shown that the inductive

structure it gives to the set of rational numbers is well adapted to certain

kinds of proofs. For instance, proofs that � is not rational may possibly be

made easier thanks to this structure, since some of the known proofs rely on

the fact that the rational numbers whose sum of numerator and denominator

is bounded never get close enough to �. Also this presentation of rational

numbers can be used as an intermediary step to prove the correctness of

eÆcient algorithms for exact computation on rational numbers and this will

be used in future collaboration with M. Niqui.

As a last remark, I would like to point out that the whole elaboration of

this representation comes directly from a re
ection on proof as proof objects

in type-theory based theorem provers. Although all the statements given

in this paper can easily be expressed in a wide variety of theorem provers,

15

Bertot

the guideline for elaborating the data-structure is provided by a study of the

structure of proofs that two numbers are relatively prime, in other words, a

study of Euclid's algorithm to compute the greatest common divisor of two

numbers.

References

[1] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recursion
in type theory. In J. Harrison and M. Aagaard, editors, Theorem Proving in

Higher Order Logics: 13th International Conference, TPHOLs 2000, volume
1869 of Lecture Notes in Computer Science, pages 1{16. Springer-Verlag, 2000.

[2] Ana Bove and Venanzio Capretta. Nested general recursion and partiality in
type theory. In Richard J. Boulton and Paul B. Jackson, editors, Theorem
Proving in Higher Order Logics: 14th International Conference, TPHOLs 2001,
volume 2152 of Lecture Notes in Computer Science, pages 121{135. Springer-
Verlag, September 2001.

[3] Achille Brocot. Calcul des rouages par approximation, nouvelle m�ethode. Revue
chronom�etrique. Journal des horlogers, scienti�que et pratique, 3:186{194, 1861.

[4] David Delahaye and Micaela Mayero. Field: une proc�edure de d�ecision pour les
nombres r�eels en coq. In Proceedings of JFLA'2001. INRIA, 2001.

[5] Bruno Barras et al. The Coq Proof Assistant Reference Manual, Version 7.3.
INRIA, http://coq.inria.fr/doc/main.html, oct 2002.

[6] Brian Hayes. On the teeth of wheels. American Scientist, 88(4):296{300, july-
august 2000.

[7] Peter Kornerup and David Matula. LCF: A lexicographic binary representation
of the rationals. Journal of Universal Computer Science, 1(7):484{503, july
1995.

[8] Milad Niqui. Exact Arithmetic on Stern-Brocot Tree. submitted, jan 2003.

[9] Moritz Abraham Stern. Ueber eine zahlentheoretische Funktion. Journal f�ur

die Reine und angewandte Mathematik, 55:193{220, 1858.

[10] Jean E. Vuillemin. Exact real computer arithmetic with continued fractions.
IEEE Transactions on Computers, 39(8):1087{1105, aug 1990.

16

