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SUMMARY

The use of potent and selective chemical tools
with well-defined targets can help elucidate biolog-
ical processes driving phenotypes in phenotypic
screens. However, identification of selective com-
pounds en masse to create targeted screening sets
is non-trivial. A systematic approach is needed to pri-
oritize probes, which prevents the repeated use of
published but unselective compounds. Here we per-
formed a meta-analysis of integrated large-scale,
heterogeneous bioactivity data to create an evi-
dence-based, quantitative metric to systematically
rank tool compounds for targets. Our tool score
(TS) was then tested on hundreds of compounds by
assessing their activity profiles in a panel of 41 cell-
based pathway assays. We demonstrate that high-
TS tools show more reliably selective phenotypic
profiles than lower-TS compounds. Additionally
we highlight frequently tested compounds that are
non-selective tools and distinguish target family pol-
ypharmacology from cross-family promiscuity. TS
can therefore be used to prioritize compounds from
heterogeneous databases for phenotypic screening.

INTRODUCTION

Phenotypic screening, as an alternative to target-based ap-

proaches, has proved its value in the discovery of over half of

small-molecule first-in-class new molecular entities (Moffat

et al., 2014; Swinney, 2013). Phenotypic assays are widely

used for target and lead discovery, as well as to profile for com-

poundmechanism of action (MOA) (Feng et al., 2009; Hart, 2005;

Hopkins, 2008; Jones and Diamond, 2007; King et al., 2009; Lee

et al., 2012; Moffat et al., 2014; Schirle and Jenkins, 2015; Swin-

ney, 2013). For example, reporter gene assays (RGAs) are a

representative type of high-throughput, low-cost phenotypic

screening technology whereby pathway response to compound

treatment can be observed in reporter-transfected cells typically

driving expression of a fluorescent protein (King et al., 2009).

Phenotypic screening is powerful in connecting chemistry to
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pathway modulation, but presents a challenge of following up

hits with target identification. For example, the compound

XAV939 was first identified in a Wnt pathway screen, and its

mechanism of tankyrase inhibition and prevention of axin degra-

dation was later elucidated in a separate workflow using chem-

ical proteomics (Figure 1A) (Huang et al., 2009). Similarly, a

phenotypic screen identified an inhibitor of the Smoothened-

dependent Hedgehog pathway, which later led to the identifica-

tion of GPR39 as the target (Bassilana et al., 2014). To make

phenotypic drug discovery more efficient and systematic in the

follow-up phase, one can use small molecules with well-under-

stood MOAs as chemical probes to observe the phenotypic ef-

fect of target modulation (Arrowsmith et al., 2015; Bunnage

et al., 2013; Eggert, 2013; Frye, 2010; Uitdehaag et al., 2012;

Workman and Collins, 2010), either individually or in designed

sets. A high-quality tool compound can also play a critical role

in a drug discovery project as a positive control molecule, from

optimizing signal-to-noise in screening assay development to

preclinical in vivo target validation.

Criteria that define the credibility of compounds as target

probes has been proposed previously: (1) target engagement,

i.e., potency and selectivity on target both in cell-free and cell-

based assays; (2) cell permeability, i.e., exposure at site of ac-

tion; (3) proven utility as a probe, i.e., phenotypic relevance via

a demonstrated proximal biomarker; and (4) identity of the active

species and availability (Arrowsmith et al., 2015; Bunnage et al.,

2013; Eggert, 2013; Frye, 2010; Uitdehaag et al., 2012;Workman

and Collins, 2010). While these qualities are ideal for probes, the

requisite data are difficult to obtain and available for very few

compounds relative to all possible tool compounds in large

databases that could be employed in a screening setting. More

often probes are obtained by researchers from vendor catalogs,

even thoughmanywell-known purchasable compoundsmay not

be as selective as they appear based on the catalog description.

Although recently an international collaboration was initiated to

collect qualifying tool compounds from researchers in the chem-

ical biology community (Arrowsmith et al., 2015), the practical

aspect of prioritizing existing tool compounds from large, diverse

bioactivity databases has not been sufficiently addressed.

One major difficulty for tool compound selection is compound

polypharmacology. It is well established that drugs often bind

to more than one molecular target (Gregori-Puigjane et al.,

2012; Hopkins, 2009; Roth et al., 2004), a property that emerges

prominently in large-scale, integrated bioactivity databases.
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Figure 1. Validating Target Hypotheses in

Phenotypic Screens Using Tool Compounds

(A) Rational drug design (Phenotype/Target/

Compound, left), phenotypic hits to target identifi-

cation (P/C/T, middle) and target validation/

biological exploration with tool compounds

(C/P/T, right). Rational drug design workflow

can be exemplified by the discovery of Gleevec

(Druker et al., 1996; Gambacorti-Passerini, 2008),

whereas the work of Huang et al. (2009) demon-

strated the power of phenotypic screens. The au-

thors found XAV939 in a WNT signaling phenotypic

screen, identified its target tankryase, then used it

as a tool compound to probe tankryase biology,

such as axin ubiquitination inhibition. Phenotypic

hits (green ‘‘C’’) and tool compounds (blue ‘‘C’’) may

be the same, but not necessarily: the latter have

more strict selection criteria.

(B) Schematic of the workflow for TS calculation for

prioritization of tool compounds.
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Extensive polypharmacology limits a compound’s utility as a tar-

geted tool. The known polypharmacology in bioactivity data-

bases is unfortunately a function of both the compound’s target

selectivity and the extent to which it has been profiled. Many

studies have investigated the selectivity of small molecules

against a panel of targets and the quantification thereof (Grac-

zyk, 2007; Jester et al., 2012; Uitdehaag et al., 2012; Uitdehaag

and Zaman, 2011). In one study that applied a selectivity entropy

method, Uitdehaag et al. (2012) collected representative tool

compounds for well-profiled kinase targets and evaluated their

selectivity across panels of more than 200 targets. However, it

is impractical to profile many thousands of compounds in this

manner, and published profiling panels are so far all limited to

a biased, subgenomic set of targets. In addition, the current

selectivity quantification methods are usually implemented on

a single-result data type (e.g., EC50, Ki) that describes the po-

tency of each compound for each target in the panel (Graczyk,

2007; Jester et al., 2012; Uitdehaag et al., 2012; Uitdehaag

and Zaman, 2011), but it is not uncommon to have evidence

from more than one laboratory on the activity of a certain com-

pound-target pair. To bring data frommultiple potencymeasure-

ments together, Kalliokoski and colleagues have statistically

analyzed the SD and correlation of heterogeneous Ki and IC50

data and have proposed a numerical conversion to unity (Kallio-

koski et al., 2013; Kramer et al., 2012), while Tang et al. (2014)

have designed the KIBA score to integrate multiple bioactivity

types and predict interactions between ligand and kinase tar-

gets. Yet if any source of the data should contain errors due to
Cell Chem
assay conditions, target annotation, or

result type (Tiikkainen et al., 2013), the

mistake might be propagated to the final

quantification. Using such quantification

to prioritize tool compounds will lead to

suboptimal candidates.

Computational sciences have increas-

ingly affected the discipline of chemical

biology. Machine learning methods such

as naive Bayesian models and Similarity
Ensemble Approach have been proved as valuable and effi-

cient methods for virtual screening of compounds, in silico

target prediction, and side-effect prediction (Hopkins, 2008;

Keiser et al., 2009; Lounkine et al., 2012; Nidhi et al., 2006;

Scheiber et al., 2009). For example, random forest models

have been successfully used for quantitative structure-activity

relationships and compound activity predictions (Cumming

et al., 2013; Riniker et al., 2013, 2014; Sakiyama, 2009). In

addition, the semantic web and triple stores are commonly

used to assess and infer the associations of drugs and their

targets, and/or biological and clinical phenotypes from existing

connections (Azzaoui et al., 2013; Bolling et al., 2014; Chen

et al., 2012a, 2012b; Riazanov et al., 2013; Ruttenberg et al.,

2007; Samwald et al., 2011; Shadbolt et al., 2006; Wild

et al., 2012; Williams et al., 2012). However, the accuracy of

all of these computational approaches relies on the quality of

reference compound data, and not all target assertions should

be treated equally: First, the number of bioactivity measure-

ments is highly variable. Bioactivity between a compound

and a target is not sometimes composed of one IC50/EC50/Ki

number value measured by one data source, but also quite

often composed of many heterogeneous measurements from

diverse sources (shown in Figure 2A). Second, for the

same target, experimental results using different assay tech-

nologies, in different biological systems, in different labora-

tories, can vary dramatically, sometimes often more than

one to three orders of magnitude. Third, sources such as

DrugBank (Law et al., 2014) or Thomson Reuters’s Integrity
ical Biology 23, 862–874, July 21, 2016 863



A

B

C

Figure 2. Integration of Compound Activity and Selectivity Knowledge Accumulated Over Time

Mining data from all available experiments can provide insights into the concentration-dependent activity and selectivity footprint of the compound in different

types of assays from multiple laboratories, which can be more stable than one experiment over a single panel of targets.

(A and B) Visualizing compound activity data against on-targets (red) and off-targets (blue). Compounds such as nilotinib and erlotinib have a larger separation

between on-target and off-target potency measurements than non-selective compounds such as quercetin. Selective tool compounds can help elucidate

on-target biology in phenotypic assays; however, high doses in phenotypic screens (e.g., 10 mM) can render good chemical probes ineffective because multiple

off-targets can be affected as well as the on-targets. Another pair of examples are two protein kinase C (PKC) inhibitors, staurosporine and ruboxistaurin, with

different selectivity profiles. With limited profiling over time (pre-2003), staurosporine was often used as a probe to target PKC. However, accumulated testing in

publications has proved it to be unselectivewith respect tomultiple kinases. On the other hand, ruboxistaurin has demonstrated selectivity for PKC, especially the

b isoform.

(C) TS calculation example on nilotinib. As described in Table S2, strength assertion depends on individual assertions describing activity from each data source,

‘‘CHEMBL_ACTIVE,’’ ‘‘DRUGBANK_ACTIVE,’’ ‘‘INTEGRITY_ACTIVE,’’ ‘‘GVK_ACTIVE,’’ and ‘‘INHOUSE_ACTIVE.’’ Selectivity depends on three prioritized

features calculated using quantitative data. Public-domain data for this calculation are included in Data S1 (example_inputdata_toolscore_calculation.csv).
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(integrity.thomson-pharma.com) have curated qualitative

target annotations and should also be weighted as evidence

for the compound-target activity.

In this study we integrated large-scale heterogeneous data

from many data sources and investigated critical features that

drive the tool utility of a compound for a target. We quantified

this utility as the tool score (TS), which is a computational sum-

mary of diverse activity and selectivity information that does

not require data from a target panel. Next we assessed the TS

with specific phenotypic observations for 384 compounds
864 Cell Chemical Biology 23, 862–874, July 21, 2016
tested in a panel of 41 RGAs representing different cellular

pathways and identified selective tool compounds for eight

targets. We also identified 68 non-selective compounds that

were frequently published and whose polypharmacology could

be computationally classified as within a target family (local

polypharmacology) or general promiscuity (global polypharma-

cology). We found that TS-prioritized tool compounds had not

only on-target potency and selectivity, but also exhibited pheno-

typic specificity, which facilitates the molecular interpretability

of phenotypic screening.

http://integrity.thomson-pharma.com


Table 1. Number of Compounds Analyzed for Each Target Gene and Tool Compound Recommendations

Target Description

No. of

Compounds Recommended Tool Compounds

Not Recommended Tool

Compounds

ADRB2 b2-adrenergic receptor 40 formoterol, salmeterol terbutaline, ritodrine

CDK9 cyclin-dependent kinase 9 26 inhibiting target inhibits multiple RGA pathways

GSK3B glycogen synthase kinase 3 b 34 CHIR-99021

HDAC1 histone deacetylase 1 34 inhibiting target activates multiple RGA pathways

JAK2 Janus kinase 2 65 ruxolitinib

MAP2K1 mitogen-activated protein kinase

kinase 1 (MEK1)

25 refametinib, SCHEMBL346145 CHEMBL95002,

SCHEMBL1228956

PRKCA protein kinase C a 79 sotrastaurin, ruboxistaurin staurosporine

PRKCB protein kinase C b 7

SRC proto-oncogene tyrosine-protein

kinase

34 SCHEMBL8108556

TGFBR1 transforming growth factor b

receptor 1

18 LY364974, SCHEMBL3799018,

SCHEMBL3798498

SCHEMBL2239687

TNKS2 tankyrase, TRF1-interacting

ankyrin-related ADP-ribose

polymerase 2

22 XAV939, HMS1899N20,

CHEMBL2419697

30,40-dihydroxyflavone

Total 8 kinases, 3 other enzymes 384

For each target we show the number of compounds analyzed in the reporter gene assay (RGA). Using this analysis we recommend representative

tool compounds for targets that our RGA panel can distinguish. In addition to well-tested compounds, we have also identified novel tools (underlined)

for MAP2K1, SRC, TGFBR1, and TNKS2. We have also shown that commonly used compounds such as terbutaline, staurosporine, and 30,40-dihy-
droxyflavone (more such compounds in Table S5) were not good tool compounds.

Please cite this article as: Wang et al., Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic Drug Discovery, Cell Chemical
Biology (2016), http://dx.doi.org/10.1016/j.chembiol.2016.05.016
RESULTS

Meta-Analysis of Heterogeneous Bioactivity Data to
Calculate a Tool Score
To obtain a global perspective of compound bioactivity, we

integrated several data sources (Figure 2A and Supplemental

Experimental Procedures). From these many sources we

wanted to understand generally the potency, selectivity, and

other evidence supporting a compound for a given target

across qualitative target assertions and diverse quantitative

in vitro assay data types. We first defined a metric called

strength, to represent a combination of potency (where

available), amount of evidence, and confidence in data

sources (as judged by the authors’ experience), which is in-

tended to automate human expertise. Strength can be used

to quantify confidence in the in vitro target of a compound,

but not to quantify confidence in its selectivity as a cellular

probe.

With regard to selectivity, the issue of multiple inconsistent

measurements was a substantial challenge. Therefore we

launched a systematic evaluation of candidate features that

describe compound selectivity. Supervised machine learning

prioritized three selectivity features that distinguished selective

compounds more accurately than those comparing fold IC50s

(Table S4). We therefore implemented these features in the

selectivity component of the TS.

The TS is a multilayered information model between a

compound and a target, whose layers are tuned with empirical

knowledge, heuristics, and machine learning (Figure 1B). In Fig-

ure 2C we show an example TS calculation workflow for nilotinib

and ABL1. We have shown that TS performed better at distin-

guishing selective and non-selective tool compounds compared
with conventional fold comparisons using various numeric

aggregations on IC50 measurements (Figure S4).

Corresponding Phenotypic Selectivity in RGA Panel and
Tool Compound Utility
TS can be computed for a large number of compounds, and we

believe it can serve as a guideline in prioritizingmultiple chemical

tool compounds in a phenotypic experiment for the target to be

probed. To confirm this, we next investigated how the TS metric

reflects utility in our RGAs. In total, we selected 384 compounds

annotated with 11 targets with a range of TS values (Table 1).

Some compounds triggered agonistic or inhibitory responses

in one pathway reporter, others in multiple pathway reporters

(see Figure 3A, example compounds).

As an example, formoterol, a long-acting selective b2-adrenor-

eceptor agonist, is a strong cyclic AMP (cAMP) signaling agonist

with a DR50 of 1.0 (i.e., active at all doses tested starting from the

lowest dose) at both 12 and 24 hr (Figure 3A). This observation is

consistentwithpreviousexperiments onb2agonists (Tsvetanova

and von Zastrow, 2014; Violin et al., 2008). Similarly, LY364947,

a short-acting transforming growth factor b (TGF-b) receptor in-

hibitor (Kano et al., 2007), inhibited TGF-b signaling at high doses

with DR50 of�0.42 at 12 hr and�0.55 at 24 hr. XAV939, a selec-

tive tankyrase inhibitor (Huang et al., 2009), specifically inhibited

the Wnt signaling pathway but not cAMP signaling, TGF-b

signaling, or any of the other pathways. To quantify phenotypic

selectivity we calculated the Gini coefficient for compound activ-

ity for the entire panel of RGAs (Graczyk, 2007): the higher the

pathway selectivity, the higher the Gini coefficient. The above

compounds each had high Gini coefficients because they only

triggered pathway responses specific to their biochemical

targets: in other words, ideal tool compounds. By contrast,
Cell Chemical Biology 23, 862–874, July 21, 2016 865
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Figure 3. Connecting On-Target Biology with Specific Phenotypic Profiles

(A) RGA panel profiles of seven compounds and their Gini coefficients. For each compound, 12-hr and 24-hr DR50s of the 41 RGAs are plotted as a heatmap

(DR50 = 1.0, strong agonist; DR50 = 0, inactive; DR50 = �1.0, strong antagonist; gray, no data). Formoterol is a selective b2-agonist (TS = 5.84) and specifically

induces cyclic AMP pathway reporter. LY364947 is a selective TGF-b receptor inhibitor and inhibits TGF-b signaling. Likewise the selective tankyrase inhibitor,

XAV939 (TS = 5.27), selectively inhibits Wnt signaling. By contrast, the HDAC inhibitor vorinostat, CDK inhibitor dinaciclib, and pan-kinase inhibitor staurosporine

regulate the upstream biology of multiple RGAs in the panel and have low phenotypic selectivity, which can be reflected by their Gini coefficients.

(B) Summary of targets discussed in this study and pathways found to be regulated by these targets in the RGA panel.

Please cite this article as: Wang et al., Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic Drug Discovery, Cell Chemical
Biology (2016), http://dx.doi.org/10.1016/j.chembiol.2016.05.016
vorinostat (pan-HDAC inhibitor) (Dokmanovic et al., 2007), dina-

ciclib (pan-CDK inhibitor) (Pei and Xiong, 2005), and staurospor-

ine (pan-kinase inhibitor) (Ruegg and Burgess, 1989) activated or

inhibitedmultiple pathways, leading to lowGini coefficients. They

did not have pathway-specific profiles, suggesting target poly-

pharmacology and/or phenotypic pleiotropy (represented by

dotted lines in Figure 3B), a property that would lead to frequent

hitting across phenotypic screens.
866 Cell Chemical Biology 23, 862–874, July 21, 2016
By applying the TS to represent compound-target potency

and selectivity, DR50 as phenotypic potency metric, and Gini

coefficient as phenotypic specificity metric, we were able to

systematically compare the potency and selectivity in both

target dimension and pathway dimension and to study their cor-

relation. We observed that overall compounds having high TS

were more likely to have high phenotypic potency and selectivity

if the target was directly upstream of the pathway readout
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(Figures 3B and 4). For example, compounds with higher TS on

ADRB2 were more likely to be phenotypically potent, selective,

and long acting (Figure 4A). By contrast, if the target was up-

stream of multiple pathways then even compounds having

high TS could not correlate to high pathway selectivity. For

example, higher TS for CDK9 would likely induce apoptosis

(Dai and Grant, 2003; Pei and Xiong, 2005; Shapiro, 2006) and

an increased inhibitory effect on almost all our RGAs (Figure 4A).

Compounds having low TS were less likely to be potent and se-

lective in pathways reflecting on-target biology, but there were

exceptions (dots at upper-left quadrant of plots in Figure 4B).

For example, some compounds having low TS for TGFBR1

also had high potency and selectivity against the TGF-b signaling

pathway (Figure 4). This is because we evaluate TS based on

known bioactivity data and poorly profiled compounds cannot

by definition have high TS, even if they are potentially good tools.

In other words, a data-driven prioritization of probes will be more

adept at penalizing bad tool compounds than detecting good

tool compounds with little historical data, a trade-off that may

be acceptable in the context of designing sets with interpretable

outcomes in phenotypic screening. This is evident in the lack

of high-scoring tool compounds with low Gini coefficients

(Figure S5).

The same analysis was then extended to a total of 1,457 pre-

viously tested in-house compounds with high potency (absolute

DR50 R0.5) to study their selectivity. RGA profiles were consis-

tent with what we observed for our handpicked 384 compounds

in their relationship to TS (Figure S6). We have also included

CHIR-99021, which was nominated in the Chemical Probes

portal (Arrowsmith et al., 2015) as a GSK3B tool compound, in

our analysis. It has been confirmed to be a good tool compound

with TS of 1.94 and was selectively upregulating Wnt signaling in

our RGA panel (Gini: 0.70). Overall, these results support the

ability to use integrated but disparate bioactivity to help prioritize

tool compounds where data is sufficient.

Comparison of Selective and Non-selective Tool
Compounds
In Table 1 we list our recommendations regarding fit and unfit

tool compounds for eight targets. In addition to well-profiled

drugs, compounds that were less measured but exhibited

decent selectivity could also be useful tool compounds. We

have also tested compounds having similar structures but

different TS (Figure 5). Interestingly, well-tested 30,40-dihydroxy-
flavone did not appear to have detectable cellular activity in any

RGA assay, although it was shown to bind TNKS2 (Narwal et al.,

2013). XAV939 and CHEMBL562310 were very different in struc-

ture but both were good TNKS2 tool compounds and selectively

inhibited Wnt signaling. Similarly, SCHEMBL346145 and refa-

metinib were both decent MAP2K1 tool compounds. However,
Figure 4. Compound-Target Tool Scores and Corresponding Phenotyp

(A) For each compound, 12-hr and 24-hr DR50s of the 41 RGAs are plotted next t

inactive; DR50 = �1.0, strong antagonist; gray, no data) Compounds having high T

the corresponding pathway reporter assay, while compounds having higher TS on

long-acting compounds such as formoterol had higher TS and stronger phenotyp

having low TS (due to incomplete knowledge) also had high phenotypic potency/

600 measurements in ChEMBL).

(B) Correlation between tool score and phenotypic potency/selectivity for ADRB
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CHEMBL95002, a close analog of SCHEMBL346145, was

more promiscuous. Using TS we can identify selective and inac-

tive/non-selective analogs from the same scaffold to better

elucidate target hypotheses.

Importantly, many non-selective compounds are used

improperly as target probes in published studies that the TS

metric would help to avoid. Having applied the TS to all com-

pounds in our database tested against at least 100 targets, we

propose a list of compounds that are unsuitable for phenotypic

tools (Table S5). We observed that these 68 compounds can

be divided into two categories, target family-specific (such as

pan-kinase inhibitors) and generally promiscuous compounds.

To distinguish the two categories we have defined PFAM alloca-

tion similarly to our definition of target allocation (Supplemental

Experimental Procedures). Compounds having high primary

PFAM allocation are more specific to certain conserved PFAM

domains (Bateman et al., 2004; Finn et al., 2014), such as the ki-

nase domain, whereas compounds having low primary PFAM

allocation were reported to be active against multiple types of

targets. Examples of the former category include staurosporine

(active against many kinases) and chlorpromazine (active

against many GPCRs), while the latter include quercetin and re-

sveratrol. In Figure 6 we show the phenotypic potency of these

less attractive tool compounds: Pan-kinase inhibitors tend to

have high potency and low selectivity in the RGA panel, whereas

pan-GPCR binders and general promiscuous compounds have

weak phenotypic activity in the panel overall. We posit that while

PFAM-selective compounds may have utility in investigating

target class polypharmacology (Gujral et al., 2014), PFAM-unse-

lective compounds have little explanatory value in cellular

assays.

DISCUSSION

In this study we have systematically studied important criteria of

good tool compounds: potency, selectivity, and phenotypic

correspondence. We derived the TS to systematically evaluate

integrated heterogeneous compound bioactivity data and to

assess the utility of a compound as chemical probe for a given

target in terms of potency and selectivity. Using TS we have

collected and categorized fit and unfit tool compounds, and

also prospectively prioritized tool compounds and validated their

pathway specificity.

Understanding Heterogeneous Potency and Selectivity
Information is Non-trivial
Contrary to the common belief that it is possible to use mean,

geometric mean, or minimum to aggregate multiple mea-

surements and derive good understanding of the potency and

selectivity of a compound, the complexity and heterogeneity of
ic RGA Panel Profiles

o each other as a heatmap next to its TS (DR50 = 1.0, strong agonist; DR50 = 0,

S on ADRB2 and TGFBR1 were more likely to be potent and selective against

CDK9 were more potent on almost all tested assays. Among ADRB2 agonists,

ic selectivity than short-acting ones such as ritodrine. Some TGFBR1 inhibitors

specificity (e.g., SB-525334, 33 measurements in ChEMBL versus LY364947,

2, CDK9, and TGFBR1 (more in Figure S5).
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Please cite this article as: Wang et al., Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic Drug Discovery, Cell Chemical
Biology (2016), http://dx.doi.org/10.1016/j.chembiol.2016.05.016
bioactivity data, as shown in Figures 2A and 2B (plus qualitative

annotation not shown in the figure), is beyond simple arithmetic

aggregation. The use of assertion stack helps us bring together

diverse data and infer knowledge of the compound-target

activity.

Similarly, the selectivity cannot be treated as ratio or fold of

aggregated data because data from different origins may not

agree with each other. Our supervised machine learning

approach and follow-up comparison of selectivity features

have shown that fold IC50s are not the best features to

use for classifying selective tool compounds. For example, if

we had used fold IC50 to pick MAP2K1 tool compounds, we

would not have identified SCHEMBL346145 because one-off

measurements gave it negative log fold IC50 values (Figure S7).

Instead, one needs to study the distribution of on-target

and off-target measurements and rely on reproducible

evidence of their potency differences. The TS is able to

collect such information via layers of potency assertion
and multiple features of selectivity to produce a relative

ranking of compounds among a library of tool compound

candidates.

Avoiding the Bias of Popularity and ‘‘Target-at-
First-Sight’’
It is important not to be biased by the first known target of a com-

pound, even if the compound comes from a project designing

compounds for this target, and/or has very high potency on

this target. Although we did not place a hard cutoff on the num-

ber of targets profiled, more profiling would clearly enlarge the

knowledge space of the compound and facilitate better decision

making using the TS: all other conditions being equal (sufficient

evidence of confirmed activity and selectivity), the more mea-

surements a compound has been through, the higher TS it will

be assigned. For example, with more than 900 measurements

and still maintaining PKC selectivity, ruboxistaurin (Ishii et al.,

1996) has a high TS of 3.39 (Figure 2B).
Cell Chemical Biology 23, 862–874, July 21, 2016 869
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Figure 6. Identification and Classification

of Selective and Non-selective Tool Com-

pounds

(A) Example classification of compounds using their

TS as well as their PFAM allocation. The former can

be used to rank good tool compounds (green box)

against undesirable ones (red box) while the latter

can be used to distinguish target family-specific

(locally promiscuous, blue box) and globally pro-

miscuous compounds (yellow box) among the

undesirable tool compounds. Good tool com-

pounds can be used as target validation probes

while locally promiscuous compounds can be used

to evaluate the phenotypic assay system.

(B) Local promiscuity versus overall RGA potency

for less selective tool compounds. Locally promis-

cuous compounds such as pan-kinase inhibitors

have high potency against all reporter gene assays

(upper right), whereas compound targeting GPCR

and globally promiscuous compounds usually have

lower potency over all assays (lower left).
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On the other hand, being ‘‘famous’’ and well tested alone will

not inflate the compound TS: staurosporine has a low TS on

PRKCB (TS = 0.05) because it is well profiled and has many

highly potent off-targets (Karaman et al., 2008; Ruegg and

Burgess, 1989; Tamaoki et al., 1986) (Figure 2B), which are

properly picked up by the TS calculation. The lack of selectivity

of staurosporine is also reflected in the RGA panel, with a low

Gini of 0.3 (Figure 3A). Another example is terbutaline, an

ADRB2 agonist and known drug (Ahlquist, 1976; Jones and

Scott, 2011). Terbutaline inhibited high-affinity choline trans-

porter 1 (SLC5A7) activity at the nanomolar level (http://

pubchem.ncbi.nlm.nih.gov/bioassay/588401), and affected cell

confluence in a functional cAMP assay (Kaya et al., 2012). Addi-

tionally it also failed to exhibit a clear cAMP signaling pattern in

our RGA panel. As a result, we recommend formoterol instead

of terbutaline as chemical probe for ADRB2’s cAMP signaling

mechanism (Table 1). Indeed many low-TS compounds are

popular and well tested (Table S5), and some are marketed

drugs, but do not meet the criteria of a good tool compound.

This confirms the observation that sometimes there are more

strict criteria for selective chemical tool compounds than drugs

(Arrowsmith et al., 2015). Many of the low-quality probes

mentioned by Arrowsmith et al. (2015) were also found using

our computational approach and were given low TS.

During our evaluation of these compounds and to which on-/

off-targets they have been measured, we found that investiga-

tion around a compound could be biased toward what was

known to be the primary target. For example, erlotinib had

more than 200 total bioactivity measurements in ChEMBL,

23% of which were against epidermal growth factor receptor

(EGFR) (i.e., target allocation = 23%). With apomorphine and

DRD2 this number was higher, at 36% (Figure S1A). While this

multiple evidence improved the on-target strength, it did not

directly contribute to the selectivity of these compounds. How-
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ever, once the measurements were binned

into different potency ranges, the high-po-

tency target allocations were reflective of a

compound’s selectivity. For example, with
higher potency of erlotinib the binned target allocation of EGFR

increases from 41% at 100 nM, to 86% at 10 nM, and 100% at

%1 nM (Figure S1B). By contrast, the allocation of DRD2 in apo-

morphine’s measurements did not increase at high potency and

there were other sub-nM targets such as DRD1/4/5. For the well-

used quercetin (Gryglewski et al., 1987; Sankari et al., 2014; Shin

et al., 2015; Vita, 2005), more than 300 quantitative investiga-

tions were distributed among a diverse set of targets, none of

which had high-potency allocation (Figures 2B and S1B). In other

words, quercetin is not a potent or selective tool compound to

the best of our knowledge. Strikingly, quercetin appears as a

bound ligand in 20 different published structures in the RCSB

PDB bound to diverse proteins and even G-quadruplex DNA.

Handling Incomplete Profiling Data
It is unfortunately not realistic to have every target profiled for

every compound before picking the best tool compound for a

target. Uneven target panels for individual candidate com-

pounds are often the best we can get, despite our effort in

large-scale information integration. The TS would not give a

high score to poorly tested compounds for which too little was

known, and we can only be as good as data available at any

time point. For example, even staurosporine would have ap-

peared selective if we had calculated its TS back in the early

2000s (Figure 2B, highlighted in dotted box). As a result, as

new data become available, updating TS is important for the

best prioritization of tool compounds as time goes on. The

completeness issue is also one of the reasons why we have de-

signed the TS to be independent of target panels because they

are inherently incomplete. Unlike target panel-based Gini coeffi-

cients, the TS is equally computable whether the compound has

been tested against one, ten, or 100 targets, and the scores

computed with unequal numbers of measurements can still be

compared with each other (Figure 5).

http://pubchem.ncbi.nlm.nih.gov/bioassay/588401
http://pubchem.ncbi.nlm.nih.gov/bioassay/588401
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Importantly, the score is not a de novo target prediction, but

rather an attempt to infer the complex property of ‘‘tool-ness’’

by organizing prior knowledge with a combination of expert-

derived rules and machine learning. Therefore, in terms of

validating the TS, there would be minimal value in simply recon-

firming target binding experimentally. Moreover, there are no

large-scale methods to test tool compound potency and selec-

tivity across the human proteome. Instead we chose to validate

our TS in terms of how it translates to selectivity profiles in a

panel of cellular pathway assays, which better reflects the goal

of prioritizing compounds as probes for phenotypic drug discov-

ery. Admittedly, the RGA panel with its 41 reporters has limited

power of dissecting all possible pathway phenotypes and under-

lying targets. However, this is an extremely useful model to

connect target specificity and pathway specificity and confirm

prioritized tool compounds within its coverage.

Application of Tool Compounds in Phenotypic Assays
Requires Data Awareness and Caution
There are other criteria for tool compounds that were mentioned

in previous studies, such as cell permeability or physicochemical

properties, which are not explicitly investigated here. However,

bioactivity data collected fromcell-based dose-response assays

is often a reliable proxy for such properties.

Another important factor is the expression levels of the in-

tended targets in the phenotypic experimental system (cell

line/mutant cell line, primary tissue, etc.). Compounds cannot

act on targets that are not expressed in the tissue. As a result,

apparent ‘‘dirty’’ drugs, i.e., compounds with polypharmacol-

ogy, can still help deconvolute the biology when the tissue

expression of their individual targets is taken into consideration

(Emig et al., 2011). For example, Gujral et al. (2014) selectedmul-

tiple kinase inhibitors with a broad range of polypharmacology

targets and applied regularized regression to kinase expression

levels to validate cell-type-specific kinases that regulate cancer

cell migration. Furthermore, for stress testing a phenotypic sys-

tem and determining whether the readout is specific enough to

desired biology, target family-specific compounds such as

pan-kinase inhibitors can also be used to evaluate the readout

under multiple perturbations, and thus computational methods

to identify them is also important. In such cases, less selective

tool compounds could still become good tools in probing targets

for phenotypes or in developing more specific assays.

The inverse is true, unfortunately, for good tool compounds

that might become bad tools in an unfit phenotypic assay

(Arrowsmith et al., 2015). A potent and selective compound

cannot have cellular activity if its target is absent in the pheno-

typic assay. In addition, as shown in Figure 2A, many experi-

ments have confirmed nilotinib’s selectivity on BCR-ABL at

below 10 nM, whereas at above 1 mM nilotinib will bind to other

targets as well. Thus the experimental design should take into

consideration what the effective concentration within the pheno-

typic system would be. Testing nilotinib at an effective concen-

tration of 10 nM or lower will likely reveal the on-target biology

of BCR-ABL, whereas if the intracellular compound concentra-

tion reaches beyond the micromolar range, multiple kinases

will be inhibited and the observed phenotype, such as prolifera-

tion inhibition, can be the result of the on-target, or any of the

off-targets, or the combination thereof. Furthermore, targets
affecting multiple downstream signaling pathways, or induction

of apoptosis, are less likely to be specifically probed in a pheno-

typic assay setup, as shown in the example of vorinostat

(Dokmanovic et al., 2007), and dinaciclib (Pei and Xiong, 2005)

(Figure 3). Using better andmore specific tool compounds would

not have improved the fishing of these targets from our RGA

experiments due to the design of the reporters and the corre-

sponding pathways (King et al., 2009). Therefore, careful evalu-

ation of historical experimental data and setting up ongoing

phenotypic assays is as important as the tool compound itself

for the success of target hypothesis validation.

SIGNIFICANCE

One of the key interfaces between chemistry and biology is

chemical tool compounds and how they provide insight

into biological function and mechanism in phenotypic as-

says. In this study we systematically evaluated heteroge-

neous bioactivity data and phenotypic effect, designed a

computational method for the prioritization of tool com-

pounds, identified public-domain compounds with high and

low selectivity, and profiled their cellular phenotype. This is

the first report of a large-scale, data-driven method for tool

compound selection not tailored to a specific target panel.

Rather it uses a maximum of qualitative and quantitative

bioactivity data and is robust, reproducible, and recomput-

able as the data evolve. Our analyses can be widely used by

chemical biologists for prioritizing among existing libraries

of tool compounds (e.g., vendor catalogs) from experiments,

literature, and patents, and for designing phenotypic experi-

ments that can better utilize the power of chemical tool

compounds and avoid biases of well-tested compounds.

EXPERIMENTAL PROCEDURES

Defining Primary Target and Primary PFAM Domain

Target allocation, defined as the proportion of measurements on each target

for a given compound, was used to rank all targets of the compound. The

target with the highest allocation was assigned the primary target (on-target).

If two targets had the same allocation for a compound, they were compared

with the lowest micromolar activity measured and the lower one was assigned

the primary target.

Similar to the definition of target allocation, we have defined the PFAM allo-

cation to be the proportion of the PFAM domain represented by all targets of a

compound. For example, if a compound is active against two kinase targets

with each m and n measurements, the kinase domain allocation is m + n/all

measurements on all domains. The PFAM domain that had the highest alloca-

tion was assigned the primary PFAM domain of the compound.

Potency Strength

We have designed an ‘‘assertion stack’’ consisting of assertions for each data

source. Different from conventional Boolean assertions (for example, in graph

approaches), each of our compound-target assertions is a qualitative predi-

cate with a weight (‘‘strength’’) evaluated empirically from its supporting evi-

dence. Higher strength represents higher reliability of the assertion. Each

high-level assertion is supported by multiple low-level assertions and the

strength increments with multiple orthogonal sources of evidence (Figure 1B;

Tables S1 and S2; Supplemental Experimental Procedures).

Selectivity Features

We trained supervised machine learning models on a training set of 507

compounds from DrugBank (Law et al., 2014) (Supplemental Experimental

Procedures). From the many possible combinations of 36 selectivity features
Cell Chemical Biology 23, 862–874, July 21, 2016 871



Please cite this article as: Wang et al., Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic Drug Discovery, Cell Chemical
Biology (2016), http://dx.doi.org/10.1016/j.chembiol.2016.05.016
(Figure S3 and Table S3), our models prioritized the combination of high-po-

tency target allocation (TA_Q1_R, Figure S1), on-/off-target potency difference

(Q1_IC50_diff, Figure S2), and on-/off-target measurement distribution

difference (Wilcoxon_RS_Pval, Table S4 and Supplemental Experimental

Procedures). Respectively, these three features represent a historical pre-

ponderance of high-activity data points obtained for the primary target, the

spread of difference between on- and off-targets, and the significance of

that spread. TS is defined as the product of potency strength and combined

selectivity.

Evaluation of TS

To evaluate the performance of TS, we used it to rank selective and non-selec-

tive compounds in the 507 compound modeling set, and compared it with

fold-IC50 features (Figure S4). Additionally we conducted RGA experiments

on compounds with high and low TS to confirm their pathway potency and

selectivity.

Identification of Non-selective Compounds Using TS

From our integrated database (Supplemental Experimental Procedures) we

have filtered for compounds, which have been profiled against over 100

targets. Then for each of these compounds we identified the primary targets

as described earlier. TS was calculated for each compound-primary target

pair and we have identified 68 public compounds having TS <1.0. Then for

each of the 68 compound we identified the primary PFAM domain and calcu-

lated PFAM allocation (Table S5).

Reporter Gene Assay

Compounds shown in Table 1 and Figure S6 were tested in duplicate in eight-

point dose response (half-log dilution from top concentration 2 mM) in 41 RGAs

representing 18 pathways with multiple stimuli (King et al., 2009). The dose-

response potency was measured using DR50 (averaged over duplicates),

defined as the difference in number of active doses and inactive doses divided

by total number of doses. A potent agonist has a DR50 value of 1.0, a potent

antagonist has a DR50 of �1.0, and an inactive compound has a DR50 of 0 in

the RGA (King et al., 2009).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, five tables, and two data files and can be found with this article

online at http://dx.doi.org/10.1016/j.chembiol.2016.05.016.
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Supplemental Information 
 
Supplemental Figures and Legends 
 

 

Figure S1. (Related to Figure 1 and Figure 2) Target allocation (proportion of measurements) for each target 
of erlotinib, apomorphine and quercetin.  
A) The total target allocation reveals preference of targets. B) Target allocation binned into different potency ranges. 
Erlotinib has high allocation for EGFR at high potency, reflective of frequently confirmed selectivity, while 
apomorphine and quercetin (primary target DRD2/AKR1B highlighted in red) have less selectivity even at high 
potency. 
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Figure S2. (Related to Figure 1 and Figure 2) Definition of Q1 and Q3 of on-/off-target micromolar activities, 
and Q1_IC50_diff. 
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Figure S3. (Related to Experimental Procedures) Feature correlation matrix.  
Some selectivity features were highly correlated, others not. 
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Figure S4. (Related to Experimental Procedures) Comparing value distributions for fold IC50 features and 
TS.  
To evaluate the performance of TS, we used it to rank selective and non-selective compounds in the 507 compound 
modeling set, and compared it with fold-IC50 features. (Y axis is the corresponding log fold IC50 using various 
aggregation methods). The TS was better at separating the manually annotated good (“yes”) and less selective (“no”) 
tool compounds in the DrugBank dataset. 
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Figure S5. (Related to Figure 4) Correlation between compound target TS and phenotypic potency and 
selectivity.  
Each dot represents a compound. Its TS (on-target potency × selectivity) is shown on the x-axis, and the product of 
phenotypic potency (maximum absolute DR50) and phenotypic selectivity (Gini coefficient) on the y-axis. 
Compounds having high TS were more likely to be more potent in the phenotypic assay, and if their targets were 
upstream of the reported pathway (Figure 3B), then their selectivity will also be higher. 
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Figure S6. (Related to Figure 4) Tool utility and phenotypic specificity.  
For 1457 compounds the activity and selectivity in target dimension (TS, x-axis) and selectivity on pathway 
dimension (Gini coefficient, y-axis) are plotted against each other. Each dot represents one compound, colored by 
DR50 (red: high potency). Compounds with high TS tend to be potent and selective in only one or a few of the 41 
pathway RGAs (upper-right quadrant), whereas compounds with low TS can be selective due to lack of 
data/knowledge (upper left) or non-selective as indicated by low TS (lower left). Importantly, few compounds with 
high TS exhibit a low Gini score (lower-right quandrant). 
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Figure S7. (Related to Table1 and Figure 5) TS identifies selective tool compounds while IC50s alone not.  
X axis is TS and Y axis is the corresponding log fold IC50. Ranking by TS allowed us to prospectively select 
MAP2K1 tool compounds, which were later validated to be selective in the RGA panel, while high fold IC50 
differences alone could not have distinguished these compounds due to heterogeneity in the measurements. For 
example, refametinib would not be chosen as tool compound using any of the three fold IC50 metrics. For 
SCHEMBL346145 (highlighted) the measurements were shown in the box. Red dots are MAP2K1 measurements, 
and blue dots multiple other targets. Depending on the number of data points per target the IC50 aggregations are 
different. One off target having only one data point (leftmost blue dot among the red ones in the box) has lower 
aggregated IC50s than MAP2K1’s. TS captures the overall selectivity and gives this compound a high rank despite 
the apparent lack of IC50 fold difference. Only data from public domain were shown. 
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Supplemental Tables 

Table S1. (Related to Experimental Procedures) Attributes of an assertion. 

Attribute Description 

assertion_id Unique assertion ID 

assertion Short string identifying the kind of assertion.  The meaning of each assertion is listed in 
Table S2. 

inchi_key The InChI key for the compound this assertion is applied to. 

gene_id NCBI (Entrez) Gene ID 

gene_symbol NCBI (Entrez) Gene Symbol 

tax_id NCBI taxonomy ID 

Strength Strength of the assertion on a scale from 1 (weakest) to 8 (strongest) 

Attrs Key-Value list of assertion-specific information (e.g. data source identifiers) 
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Table S2. (Related to Experimental Procedures) Assertions and corresponding strength contributions by 
evidence type, source and potency range for compound-target activity.  

Type Assertion Description Strength Evidenced By 

 ACTIVE 
Compound is active 
against a target.  

Maximum of evidence strengths from below 
sources, plus 1 if evidence count > 2 
  

CHEMBL_ACTIVE 
DRUGBANK_ACTIVE 
GVK_ACTIVE 
INTEGRITY_ACTIVE 
INHOUSE_ACTIVE 

Qualitative, 
curated data 

DRUGBANK
_ACTIVE 

Compound has an 
activity association 
with a target in 
DrugBank 

7 for approved drugs 
2 for approved nutraceuticals 
else 1 

DRUGBANK_IDS 

INTEGRITY_
ACTIVE 

Compound has an 
activity association 
with a target in 
Integrity 

7 for approved drugs  
5 if Phase III or higher 
3 if IND filed or higher 
2 if Preclinical 
else 1 

INTEGRITY_ENTRY_NUM
BERS 

Quantitative 
assay data 

CHEMBL_AC
TIVE 

Compound is active 
against a target 
in ChEMBL. 

3 if more than one low nanomolar value for 
target (<=50 nM) 
2 if more than four activities (< 1 
micromolar) for target 
1 if it has a micromolar value <= 1 for 
target 

CHEMBL_ASSAY_IDS 
CHEMBL_TARGET_IDS 
CHEMBL_MOLECULE_IDS 

GVK_ACTIV
E 

Compound is active 
against a target in 
GVK 

3 if more than one low nanomolar value 
(<=50 nM) for target 
2 if more than four activities (<1 
micromolar) for target 
1 if it has a micromolar value <= 1 for 
target 

GVK_ACTIVITY_IDS 
MICROMOLAR_VALUES 

Internally 
validated 

quantitative 
assay data 

INHOUSE_A
CTIVE 

Compound is active 
against a target in 
internal assays 

4 if more than one low nanomolar value 
(<=50 nM) for target 
3 if more than four activities (<1 
micromolar) for target 
1 if it has a micromolar value <= 1 for 
target 

INHOUSE_ASSAY_IDS 
MICROMOLAR_VALUES 
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Table S3. (Related to Experimental Procedures) Calculated features describing on-/off-target measurements 
(features selected for TS selectivity in bold) 
Feature Description  

num_target Number of different targets (each target identified by its gene id) tested for each 
compound. 

num_homologene_group Number of different targets (each target identified by its homologene group id, 
same for the remaining descriptors below) tested for each compound.  

IC50_GeoMean_R Compound-target dose response value (aggregated by geometric mean per target) 
of on-target. 

IC50_GeoMean_B Minimum of compound-target dose response value (aggregated by geometric mean 
per target) over all off-targets 

IC50_GeoMean_Fold IC50_GeoMean_B/IC50_GeoMean_R, log scale 

IC50_Mean_R Compound-target dose response value (aggregated by mean per target) of on-
target. 

IC50_Mean_B Minimum of compound-target dose response value (aggregated by mean per 
target) over all off-targets 

IC50_Mean_Fold IC50_Mean_B/IC50_Mean_R, log scale 

IC50_Min_R Compound-target dose response value (aggregated by min per target) of on-target. 

IC50_Min_B Minimum of compound-target dose response value over all off-targets 

IC50_Min_Fold IC50_Min_B/IC50_Min_R, log scale 

Max_strength_R Maximum of compound-target strength of on-target group. 

Max_strength_B Maximum of compound-target strength of off-target over all off-targets. 

Strength_Diff Max_Strength_R – Max_Strength_B. 

Strength_Rank Ranking the Max_Strength_R and strength of off-target group in a descending 
order. Strength_Rank is the rank of the Max_Strength_R. 

Q1_IC50_R The lowest 25 percentile of micromolar activities (Q1_IC50) of on-target group, 
log scale. 

Q1_IC50_B The lowest 25 percentile of micromolar activities (Q1_IC50) of off-target group, 
log scale. 

Q1_IC50_diff Difference of on target and off target Q1_IC50, log scale. 

Q3_IC50_R 75-percentile of the micromolar activity of on-target measurements. 

Q3_IC50_B 75-percentile of the micromolar activity of off-target measurements. 

Q3_IC50_diff Difference of on target and off target Q3_IC50, log scale. 

Q3_Q1_diff Q3_IC50_R - Q1_IC50_B 

Total_Size The total number of measurements of each compound. 

TA_R On-target allocation 

TA_B Maximum off-target allocation over all off-targets 

RB_Diff TA_R - TA_B 

RB_Ratio TA_R/TA_B, or 0 if TA_B undefined 

TA_Q1_R High-potency (less than 25 percentile of all measurements) on-target allocation. 

TA_Q1_B Maximum high-potency (less than 25 percentile of all measurements) off-target 
allocation over all off-targets. 

TA_Q1_Diff TA_Q1_R - TA_Q1_B. 

TA_Q1_Rank All targets’ allocations at high-potency are ranked from high to low and 
TA_HP_Rank is the rank of the on-target allocation within this list. 

TA_gtQ1_R Low-potency (above 25 percentile) on-target allocation. 

TA_gtQ1_B Maximum low-potency (above 25 percentile) off-target allocation over all off-
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targets. 

TA_gtQ1_Diff TA_gtQ1_R – TA_gtQ1_B. 

TA_gtQ1_Rank All targets’ allocations at low-potency are ranked from high to low and 
TA_gtQ1_Rank is the rank of the on-target allocation within this list. 

Wilcoxon_RS_Pvalue P-value of Wilcoxon rank-sum test comparing micromolar activity between on-
target and all off-target measurements.  
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Table S4. (Related to Experimental Procedures) Performance (AUC) of models trained with different feature 
sets.  

Feature set 5-fold cross 
validation 

DT RF NB Average 

All 36 features 1 0.78 0.89 0.84 0.83 
2 0.62 0.90 0.80 0.77 
3 0.64 0.97 0.82 0.81 
4 0.84 0.89 0.79 0.84 
5 0.70 0.90 0.63 0.75 

Average 0.72 0.91 0.78 0.80 
3 features using fold 

IC50  
1 0.77 0.77 0.72 0.75 

2 0.63 0.79 0.80 0.74 

3 0.71 0.82 0.75 0.76 

4 0.75 0.87 0.74 0.78 

5 0.47 0.69 0.71 0.62 

Average 0.66 0.79 0.74 0.73 
3 features using 

iterative optimization 
1 0.78 0.76 0.78 0.78 

2 0.85 0.86 0.90 0.87 

3 0.63 0.92 0.92 0.82 

4 0.83 0.83 0.84 0.83 

5 0.63 0.85 0.83 0.77 

Average 0.74 0.84 0.85 0.81 
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Table S5. (Related to Figure 6, separate file) 68 compounds with over 100 targets and not suitable as tool 
compounds for the corresponding targets, selected using TS (less than 1). Their primary targets as well as 
primary PFAM domains were reported. Primary PFAM allocation is the proportion of measurements on the primary 
PFAM domain. The higher the PFAM allocation, the more target family-specific the compound is likely to be. 38 
out of the 68 less selective tool compounds were tested in the RGA panel and in Figure 6B the correlation between 
PFAM allocation and RGA potency is shown. 
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Supplemental Experimental Procedures 

Collection of bioactivity data 
Data from both internal and external sources are collected and normalized within Novartis. These data consist of two 
pillars: One is bioinformatics knowledge from sources like NCBI Entrez Gene [1], GeneOntology [2, 3], UniProt [4]. 
The other is cheminformatic knowledge from sources like Drugbank [5], ChEMBL [6] and BindingDB [7, 8]. 
Compound-related data are standardized (CACTVS toolkit, Xemistry) and connected using the IUPAC InChIKey [9, 
10] representation of the structures, whereas target-related data are standardized and connected using NCBI Entrez 
Gene IDs. Multiple genes in the same homolog gene group are merged using HomoloGene 
(http://www.ncbi.nlm.nih.gov/homologene). Compound bioactivity data in dose response are normalized to micro-
molar as the standard unit.  

One limitation of the data normalization process, where targets were converted to Entrez Gene IDs and 
HomoloGene IDs, was the identification of subunits of complexes and target isoforms. It was possible that one 
subunit or isoform was assigned on-target and the rest off-targets. The comparable potency values on both on- and 
off- targets led to apparent lack of selectivity for a compound hitting a complex or multiple isoforms. 

Calculating compound-target activity strength 
Conventionally, computational inferences are done using binary assertions (true-false predicates). They can be 
described in a form like “if ├ X and ├ Y then ├ Z”, meaning if assertions of the form X and Y have been proven true, 
then Z is also proven [11]. For example, “if ‘a inhibits b’ can be proven, and ‘b activates c’ can be proven, then 
‘inhibiting a will activate b and cause induction of c’ is proven”. However, the bioactivities of compounds are rarely 
binary in real world. Extending this key logical foundation to make new assertions with quantitative attributes is 
necessary to describe knowledge of compound-target network.  

Here we define assertions as statements about compounds that are derived from data integrated from multiple 
sources. Each assertion is an entity with attributes (Table S1). Some assertions are derived from other assertions, 
while others are derived directly from data sources. The relationship between derived assertions and the evidences 
they are derived from is captured in an evidence table. Assertion types and their supporting evidence assertions are 
provided (Table S2). In practice, however, these assertions will vary depending on the reader’s available data 
sources. Both ChEMBL and DrugBank are publicly available resources that may be used for a TS calculation. The 
particular numeric values for lower-level assertions were developed by the authors on the basis of personal expertise 
and experience working with the named data sources. For example, we propose that the advancement of a drug in a 
clinical pipeline is a type of proxy for in vivo validation and we expect that a drug that progresses to a launched 
status is better validated for its primary target than a tool from preclinical studies; we have therefore weighted 
Integrity compound-target pairs accordingly. We advise the reader to similarly implement personal domain-expertise 
to tune strength values for additional content that may be added. We have programmed these assertion logic rules so 
that all assertions derived from all data we collected from in-house and external sources are pre-calculated and 
stored in our database tables. Both the integrated data and the dependent assertions are maintained and updated 
regularly.  

Calculating descriptors of selectivity 
Estimating compound selectivity from disparate integrated data is a previously unexplored meta-analysis wherein 
we assume that we do not know a priori the most informative parameters. We therefore created and calculated 
thirty-six features that describe various aspects of the distribution of on-/off-target bioactivity measurements. 
Definitions of all 36 features are listed in Table S3. In this list we included features commonly used as selectivity 
descriptors such as the fold differences of IC50 (and other dose-response results such as Ki, EC50 etc., abbreviated 
as IC50 for simplicity), as well as descriptors describing the size and distribution of dose response measurements. 
Missing IC50 values were filled with 10000 micro-molar for the calculation of dependent features such as 
conventional IC50 aggregations and fold differences, and the lack of compound-target activity assertion was filled 
by strength=0. Wilcoxon rank-sum p-values which were not computable were filled with 1, and which exceeded the 
significance value of 1E-32 were replaced with 1E-32 for ease of computation. In Figure S3 we show the 
correlation of these features. While some features were closely related, others were describing very different 
information.  
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Prioritizing descriptors of selectivity 
We used a dataset consisting of 507 drugs from DrugBank and manually annotated 35 of them as selective tool 
compounds on the basis of their apparent selectivity in bioactivity profiles (as visible in Figure 2A-B). Then we 
built three supervised machine learning models using this dataset: decision trees (DT [12]), random forest (RF [13]) 
and naive Bayesian (NB [14]). We iteratively used subsets of the 36 features to train the models, and used five-fold 
cross validation to evaluate the performance of the models. Area under the curve (AUC), defined as the area under 
the receiver operating characteristic curve (ROC curve), was compared among the models. In Table S4 we report 
the AUC of models trained with all 36 features, fold IC50 features, and a final optimized subset consisting of three 
features. This latter set of optimized features allowed us to train models that had comparable or sometimes better 
performance than the complete feature set, and consistently outperform the models trained with only fold IC50 
features. 

Defining tool score (TS) 
Generally speaking, good chemical probes should have high numbers of measurements, high strength, without 
sacrificing the on-target potency, separation of on-target and off-target measurements, or the high-potency on-target 
allocation in their measurements. While it was possible to predict compounds’ selectivity using machine learning 
models and the optimized feature set, for convenience and interpretability we incorporated the key selectivity 
features from machine learning into a computable metric that could be used independent of a model. We defined 
selectivity as  

ݕݐ݅ݒ݅ݐ݈ܿ݁݁ܵ ൌ ሺܳ1_10/݂݂݅݀_50ܥܫ	 ൅ ܴ_1ܳ_ܣܶ െ  .ሻሻ/3	݁ݑ݈ܽݒܲ_ܴܵ_݊݋ݔ݋10ሺܹ݈݅ܿ݃݋݈

The TS is then defined as 

ܶܵ	 ൌ ݄ݐ݃݊݁ݎݐܵ ൈ  .ݕݐ݅ݒ݅ݐ݈ܿ݁݁ܵ

In Figure S4 we compare four features of good and bad tool compounds among the training set, IC50_Mean_Fold, 
IC50_GeoMean_Fold, IC50_Min_Fold, and TS. TS is better at distinguishing the good and bad tool compounds.  

Table S5, Figure S5-S7 are discussed in main manuscript. 

Code for computing the TS is made available at www.github.com/novartis. 
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