

SCHOOL OF SCIENCE AND ENGINEERING

FOODCOURT AN ONLINE FOOD ORDERING

PLATFORM

Submitted in

Spring 2019

By

Hamza Bentahar

Supervised By

Pr. Iraqi Houssaini Omar

II

FOODCOURT AN ONLINE ORDERING PLATFORM

Capstone Report

Student Statement:

I attest that I have applied ethics to the design process and in the selection of the final proposed

design. And that, I have held the safety of the public to be paramount and have addressed this

in the presented design wherever may be applicable.

Hamza Bentahar

Approved by the Supervisor

Pr. Iraqi Houssaini, Omar

Hamza Bentahar
Tampon

Hamza Bentahar
Tampon

III

Acknowledgement

I would like to acknowledge my supervisor, Pr. Iraqi Houssaini, Omar who me helped me

during the design phase by providing great advice, as well as his assistance for understanding

some of the technologies used in this project. I would also like to thank all the professors who

made me learn all the required knowledge for this capstone. Finally, I am very grateful to my

family who supported me during my stay at the university, and without whom I could not

achieve this project.

IV

Table of Contents
I. Introduction ... 6

II. STEEPLE ANALYSIS ... 7

III. Feasibility study .. 9

IV. Requirement specifications ... 11

A. Functional requirements .. 11

1. Users .. 11

2. Managers ... 11

B. Non-functional requirements ... 12

C. Use case diagram ... 13

V. Technological enablers .. 14

VI. Software Architecture ... 18

VII. Software Design .. 19

A. Class Diagram ... 19

B. Sequence Diagram ... 20

VIII. Implemented features .. 22

A. User side .. 22

B. Manager side ... 28

IX. Conclusion ... 31

X. References ... 32

V

Abstract

The purpose of this capstone is to design and implement a web application that lets user order

from restaurants online. This project will help users find restaurants that match their needs,

other functionalities are added as well, such as the possibility to post a review, and the

possibility of checking the whole menu for a given restaurant. Moreover, this application gives

the ability to restaurant managers to see current orders, and to update the menu.

This report will show the whole process of creating the application, starting by the design phase,

and then showing the final result, by explaining the different technologies used.

I. Introduction

Foodcourt is a web application that helps people choosing and ordering food from nearby

restaurants, this should be achieved by implementing a search functionality along with options

to sort and filter results. The user selects a restaurant of his or her choice and browse through

the menu before proceeding to the order. This will help people discover new restaurants, have

a larger choice of menus, and save time by ordering online.

The application should also give restaurant managers a platform for processing incoming

orders, as well as, a way of communicating with their customers. Every new order should appear

in the manager’s dashboard. Managers should be able to modify their menus, publish a

description for their restaurant, and upload pictures.

This application should be accessible through the most popular web browsers in computers,

tablets or mobile phones.

7

II. STEEPLE ANALYSIS

A. Social Impact

The aim of this project is to help people choose their meals more accurately, by having

access to a larger choice of restaurants and menus. In order to make the process of

selection easier, a review system is needed to let users give feedbacks about restaurants.

These features may be beneficial to tourists who do not know the best restaurants in

the area. The online ordering feature may help workers and students order their lunch

online.

This application would also help managers to better promote their restaurants.

B. Technological Impact

To build this application, new technologies and tools would be used. These

technologies are open-source, and will be used to complete the project in the most

efficient way.

C. Environmental Impact

This application has very little environmental impact.

D. Economic Impact

With this application, restaurants may attract more customers, which will increase their

revenues. Since the main feature of the application are free for both the users and the

managers, there is no potential loss for any of them. Some additional features might be

added afterwards, to let managers have access to statistics about their restaurants, with

the purpose of helping restaurants boost their revenues.

E. Political Impact

This application is not intended to have any political impact.

8

F. Legal Impact

Since this application uses only free opensource frameworks and libraries, it will have

no legal impact.

G. Ethical Impact

Ethically, it is extremely important to secure the application to avoid any data leak.

Any new feature should be tested to avoid vulnerabilities, passwords should be

encrypted and stored securely in a database.

9

III. Feasibility study

The feasibility study is an important phase during the development of any project, its

goal is to determine whether the project is doable or not. My capstone project is about

building a web application, which purpose is to help people in choosing their favourite

food from nearby restaurants, and giving the ability to restaurant managers to better

communicate with their customers.

First, the technical feasibility is to understand if it is possible to complete the project

with the current technologies. This application is going to use many programming

languages and frameworks in order to ensure a good user experience for the end user,

as well as adopting good coding practices for the developer. The structure of the

application will consist of a backend and a frontend. The backend will be implemented

using NodeJs, its purpose is to handle database queries, authentication, and to serve

an API (application programming interface). The frontend should be completed using

HTML, CSS, and javascript. On top of javascript, I will use vuejs framework, which is

going to make the pages more reactive and help in building a single page application

(SPA).

Second, the temporal feasibility is crucial to make sure that it is possible to complete

the project on time. There would be a development phase in which I would have to

code the application with the chosen tools. Also, there will be a learning phase, during

which, I will have to read about the technologies that I would be using for this project.

Since I am already familiar with some of these technologies, thanks to the courses I

have completed and to my previous internship experience, I will only focus on the ones

I do not know.

Third, the economic feasibility is essential to know the budget needed for the

completion of the application, and how much income it would be able to generate once

released. The necessary budget for this project is low, the technologies needed for this

project are free to use. Regarding the IDE, I will be using WebStorm, which is excellent

for javascript development, it is a paid software but free for students. This application

can be monetized using different plans. The first one consists of displaying

advertisements to the web application by using services such as google adsense. The

10

second technique is to get a commission for every order, which means that every time

the user orders something from a restaurant, a small fee should be paid for the

maintenance of the application. The third technique would be to adopt the freemium

model, the application would have a free tier, which the users and the managers would

be able to use without cost, and in addition, a paid tier that is going give more

functionalities to the restaurant manager.

11

IV. Requirement specifications

A. Functional requirements

1. Users

- A user shall be able to sign up using his/her email address or Facebook account

- A user shall be able to sign in using his/her email address or Facebook account

- A user shall be able to search for restaurants by category, city, and name

- A user shall be able to sort restaurants by nearest, most popular, and top rated

- A user shall be able to filter results by delivery type, category, and neighborhood

- A user shall be able to get more information about a specific restaurant such as

description, opening hours, address, and pictures

- A user shall be able to grade and post a review about a restaurant

- A user shall be able to view the average grade of a restaurant and reviews from other

users

- A user shall be able to view the restaurant’s menu

- A user shall be able to select items from the restaurant’s menu

- A logged user shall be able to make an order with the selected items from the

restaurant’s menu

- A user shall be able to view his/her orders

2. Managers

- A manager shall be able to sign up using his/her email

- A manager shall be able to sign in using his/her email

- A manager shall be able to add a restaurant

- A manager shall be able to add a menu to his/her restaurant

- A manager shall be able to process the received orders

- A manager shall be able to view his/her customers

- A manager shall be able to change his/her restaurants information

12

B. Non-functional requirements

1. Performance

- Initial load time should not exceed one second

- API requests shall not exceed 500ms

2. Scalability

- The increasing number of users should not affect the performance of the application

3. Extensibility

- New features shall be easy to implement with separation of concern

4. Security

a) Confidentiality

- Traffic confidentiality shall be protected, all operations performed by users must be

preserved

b) Integrity

- The integrity of all operations performed by users must be preserved

c) Availability

- No single point of failure shall be tolerated

13

C. Use case diagram

Figure 1 Use case diagram for foodcourt

14

V. Technological enablers

A. Languages and frameworks

For this project, I decided to use javascript, as well as HTML and CSS. Hypertext markup

language (HTML) is a markup language necessary for building a web application, it is used

to describe the structure of a web page [7]. A cascading style sheet (CSS) should also be

added for a better design [8]. While HTML is used for structuring the web page, CSS is

used for styling. It enables to have complete control over the colors, fonts, and other

important aspects of web design. In addition to those two languages, I used javascript, which

makes the page more dynamic and interactive.

At first, when javascript was released in 1995 [9], it was used in the client side and

interpreted by web browsers for the manipulation of the document object model (DOM)

[10]. The language has improved a lot over the years, it can now be used outside of the

browser with NodeJS, which is a runtime environment for javascript [11]. Released in 2009

[12], NodeJS lets developers write javascript code for the backend. In order to make the

implementation easier by following the best practices and to have a better user experience,

I decided to use two frameworks: VueJs for the frontend, and Express for the backend.

B. VueJs

VueJs is an open-source framework for javascript, first released in 2014 by Evan You. It is

used for building single page applications (SPA), which is a way of interacting with the

webpage by dynamically changing some parts of the page instead of reloading the entirety

of it. This approach makes a better user experience by avoiding the constant interruptions

during navigation. Even though it is possible to build a single page application using only

javascript, it is better to use a framework, vuejs in this case, to achieve a better result with

fewer lines of code.

The way VueJs works is by building small components, which are then assembled together

for building views. Components are composed of three parts: a template that contains the

HTML, a script that contains the javascript code, and a style which holds the CSS. The

specificity of these components is their reactivity, the data is reflected on the template,

making it re ender when the data is updated.

15

Sometimes, components need to communicate with one another, there are different

approach of achieving this. One approach would be to pass data from a parent component,

to a child component by using props, similar to html attributes. Another approach is to use

an event bus, which is a way of communicating between unrelated components, this works

by making a component subscribe to an event, so every time that event is fired, the

component is notified about it. Even though the event bus way is a good way of sending

and receiving data from a component to another, it can quickly become messy and difficult

to maintain. The third approach is to use a state manage library, in my case I used VueX,

which is maintained by the core team of VueJS. This library is used as a centralized store

for all components in the application, the data is stored in it as well as the logic, any

component can have access to the data and manipulate it while ensuring that the change is

consistent.

VueX is one of the many libraries of VueJs, another library that I used is Vue-router, which

is also an official VueJs library used for routing. This works by mapping components to

paths, so that when a user accesses a specific URL, it displays the correct view.

C. NodeJs

Nodejs is a runtime environment for javascript, it was first release in 2009 to run javascript

code on the server side. The particularity of NodeJs is its single threaded nature, which can

be a drawback, but thanks to the non-blocking I/O, it can support thousands of concurrent

connections. On top of NodeJs, I also used expressjs, which is a micro framework that helps

providing the necessary features for building APIs.

For this project, I decided to use GraphQL, which is an open-source data query and

manipulation language for APIs, it was used by Facebook internally before making it

publicly available in 2015. As said in the official Graphql website: “GraphQL is a query

language for APIs and a runtime for fulfilling those queries with your existing data.

GraphQL provides a complete and understandable description of the data in your API, gives

clients the power to ask for exactly what they need and nothing more, makes it easier to

evolve APIs over time, and enables powerful developer tools.” [13]. Contrarily from a Rest

API, GraphQl has a single endpoint, and returns only the requested fields, no more, no less.

This way, we can get many resources from a single request, which helps in achieving better

performance while saving data. Figure 5 shows an example of a request using GraphQL.

16

Figure 2: Example of a graphql request

In figure 5, GraphQL is requesting a list of restaurants, their reviews, and the users who

posted these reviews. Figure 6 shows a possible response of the request.

Figure 3: Possible response of a graphql request

17

This project follows a model-view-controller (MVC) architecture, with the view being

generated by vuejs, and the model/controller by NodeJs. However, because GraphQL needs

only one endpoint, we will need only one controller which handles all requests.

The controller calls a GraphQL schema, which contains several type definitions and

resolvers. Type definition represents the structure of the application by defining object types

and their attributes. Resolvers deals with the internal logic of the application to retrieve and

modify data. There are two types of resolvers:

- Queries: Used for data fetching.

- Mutations: Used for data manipulation.

D. Database

As a database, I decided to use MongoDB, which is a non-relational database management

system (DBMS). Because MongoDB is a NoSQL (not only SQL) database, there is more

freedom for storing and retrieving data by accepting numerous data types. Not only we can

store strings, numbers, and dates like other relation databases such as MySQL, but also

Arrays and Objects. Thanks to this, retrieving data becomes easier and avoids the use of

complex queries.

MongoDB consists of collections [14], which is the equivalent of a table in a relational

database. Every collection contains documents, which are of types BSON [15], a binary

representation of JSON (javascript object notation). These documents hold the data,

similarly to a row in a relational database. However, these collections do not enforce a

schema, which gives a great flexibility of storing data, but with the drawback of dealing

with persistent data storage, which may lead to future bugs and errors. This is one of the

reasons I chose mongoose as an ORM, it enforces the use of a schema, and makes the

communication with the database easier.

One of the reasons I decided to use MongoDB is its great support for common operations

in web applications. In the case of Foodcourt, there is a search bar to search for restaurants,

the result should be sorted by relevance. MongoDB gives the possibility for search queries

[16] by indexing the attributes to search. While performing the search, MongoDB gives a

relevance score for each document, depending on how well it matches the query, then the

result can be sorted from the highest score to the lowest.

18

VI. Software Architecture

The software architecture describes the different components of the application, and the relation

between them. Foodcourt follows a model – view – controller (MVC) architecture [4]. The view

is generated in the browser using Vuejs, which communicates with the backend. Since I am

using GraphQL for this project, there is only one controller. That controller has access to

GraphQL schema [5], which in turn, calls the right mutation or query [6]. The model takes care

of accessing and retrieving the data from MongoDB.

Figure 4: Software architecture for FoodCourt

19

VII. Software Design

A. Class Diagram

The class diagram is used to describe the models needed to build the application. There are

ten classes, each of them has a relation with one or more other class. There are two types of

relations:

- Bi-directional association [1]: This is used to show that the class is aware of the other

class by adding a reference to the other class. The representation of this link is similar

to the relationship between Order and Product (Figure 2).

- Composition aggregation: This means that the class is part of the other class, the child

cannot exist without the parent. The representation of this link is similar to the

relationship between Restaurant and Opening (Figure 2). The arrow part points to the

child, the other part points to the parent. In this case, Opening is part of Restaurant.

While building this class diagram, I got into this issue about when to use the bi-directional

association, and when to use the composition aggregation. For classes that needs to be

accessed from multiple other classes, and for classes that may grow very large, it is better

to use the bi-direction associations. For small classes that have a link with only one other

class, the best solution is to use the composition aggregation [2].

20

Figure 5 Class Diagram for Foodcourt

B. Sequence Diagram

The sequence diagram [3] shows how the user can interact with the application, by specifying

the order of action, along with the possible failures and the expected response. In figure 3, the

sequence diagram shows the necessary actions that a user needs to make to complete an order.

The user has to search for a restaurant using keywords, then the server returns a list of

restaurants that matches those keywords, the user selects one of those restaurants and submit

his order, which is then processed in the server. Afterwards, there are two possibilities, either

the request is submitted successfully, or the request fails.

21

Figure 6 Sequence Diagram for Foodcourt

22

VIII. Implemented features

A. User side

1. Authentication

Every user can search restaurants and navigate through them; however, to make an order,

the user needs to be authenticated. In order to implement the authentication, I used json web

tokens (JWT), which is a group of encoded json objects in base64URL assembled together

[17]. Every object contains specific information needed to achieve the information by

making it consistent and secure. A json web token contains a header, a payload and a

signature, separated by a dot “.” as follow “header.payload.signature”. Following is a

description of each part:

- Header: Holds the necessary information to describe the token. It consists of two parts,

the first one is the type of token, in this case “JWT”, the second part is the algorithm

used, such as SHA256 or RSA.

- Payload: Contains the actual information, in the case of foodcourt, the payload contains

the information regarding the user, such as the name and the email.

- Signature: Generated by combining the encoded header, the encoded payload, and a

secret key, then sign it using the algorithm declared in the header. This way, we can

verify that the data was not changed.

After the user logs in the application, a json web token is generated, then stored in the local

storage. When the user makes an action that needs authentication, the token is sent to the

backend with the header, which checks if the token is valid using the secret key.

23

Figure 7: Foodcourt login page

For the registration, the user has the choice of signing in using his email address or his

Facebook account, as show in figures 7 and 8.

- Email: If the user decides to sign up with his email address, he will be asked to fill up a

form with his name, email, and password. For security, the password is hashed using

bcrypt algorithm and stored in MongoDB.

- Facebook: If the user has a Facebook account and wants to login, he or she can authorize

Facebook to give his email, name, and FacebookId, which are going to be store in

MongoDB for future use. This way, the user does not have to choose a password,

making the process of registration easier.

24

Figure 8: Foodcourt register page

2. Restaurant Search

Search is one of the main functions of the application, the user types a sentence and should find

restaurants that best match that sentence. This is achieved by using the text search functionality

of MongoDB. The indexed fields are the categories, restaurant name, and location, which means

that the user can search for restaurants depending on what they need, and the result would try

to best match the search query, and sort the result by relevance. The search bar is accessible

from the home page of the application, and does not need the user to be authenticated.

25

Figure 9: Foodcourt homepage

Once the results are retrieved, they are displayed by page and shown to the user by displaying

small details about the restaurant, such as the name, the location, and the average rating. The

user can then choose the restaurant that best suits his needs. Restaurants are displayed by page

to avoid loading the page with too much information.

Figure 10: Foodcourt restaurant results page

26

3. Making an order

After the user decides from which restaurant to make an order, he or she can then choose

items from the menu, which contains the necessary information to make the right choice. The

price is computed dynamically, so that when the user makes modifications to the cart, the

price is computed again.

Figure 11: Foodcourt view menu page

When the user is satisfied with the selected items, he or she can then proceed to confirm the

order. To complete the transaction, the user must be logged in, and should choose the delivery

method, either pickup or delivery. For the latest, the user must provide an address or choose

one of the saved addresses. After submission, the order is sent to the manager.

27

Figure 12: Foodcourt confirm order page

4. Reviews

The review section gives users the possibility to rate their experience for a given restaurant.

Other users can then see the overall rating and comments of the restaurant. To post a review,

the user must be logged in.

Figure 13: Foodcourt reviews page

28

B. Manager side

1. Authentication

Any restaurant can create an account and add his or her restaurant to Foodcourt. The process

is simple, the manager creates an account, and then add details about the restaurant, as shown

in Figure 16. The authentication is similar to the user side, by using json web tokens.

Figure 14: Foodcourt login manager form

Figure 15: Foodcourt register manager form

29

Figure 16: Foodcourt add restaurant form

2. Manage Orders

Once the manager logs in, the first page would display the list of current orders. Each order

displays the basic information, such as the delivery type, the status and the delivery address. To

get more details, the manager clicks on the order to display more details along with the

possibility to update the status.

Figure 17: Foodcourt dashboard

30

Figure 18: Foodcourt order details page

3. Update menu

This section allows the manager to update the menu by adding more categories and more

products.

Figure 19: Foodcourt add category form

Figure 20: Foodcourt add product form

31

IX. Conclusion

Foodcourt was an interesting project to work on, I used many great tools to achieve this result.

Working with javascript and NodeJs was very interesting, it requires a deep knowledge in

programming, and a good understanding of internal features. Working on this project made me

learn more about many of the recent technologies such as Nodejs, MongoDB and Graphql.

There are many possibilities to improve this project for future work. For instance, we can add

more features on the manager side that will help in better understanding customers, by

displaying accounting and financial results. Also, one improvement would be to suggest new

restaurants to a user depending on previous choice, by using machine learning algorithms. For

now, the customer can pay only by cash when the order is delivered; however, it would be better

if the user could pay by credit or debit card.

32

X. References

[1] “The class diagram,” UML basics, 15-Sep-2004. [Online]. Available:

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.

html#N102A9. [Accessed: 17-Feb-2019].

[2] “Data Models¶,” Data Models - MongoDB Manual. [Online]. Available:

https://docs.mongodb.com/manual/data-modeling/. [Accessed: 24-Feb-2019].

[3] “The sequence diagram,” UML basics, 16-Feb-2004. [Online]. Available:

https://www.ibm.com/developerworks/rational/library/3101.html. [Accessed: 24-Feb-2019].

[4] IBM Knowledge Center. [Online]. Available:

https://www.ibm.com/support/knowledgecenter/SSRTLW_9.5.0/com.ibm.etools.jsf.doc/topic

s/cmvc.html. [Accessed: 27-Feb-2019].

[5] “A query language for APIs.,” GraphQL. [Online]. Available:

https://graphql.org/learn/schema/. [Accessed: 07-Mar-2019].

[6] “A query language for APIs.,” GraphQL. [Online]. Available:

https://graphql.org/learn/queries/. [Accessed: 07-Mar-2019].

[7] “What is HTML?,” What is HTML. [Online]. Available:

https://www.w3schools.com/whatis/whatis_html.asp. [Accessed: 10-Mar-2019].

[8] “What is CSS?,” What is CSS. [Online]. Available:

https://www.w3schools.com/whatis/whatis_css.asp. [Accessed: 10-Mar-2019].

[9] Press Release Announcing Javascript, 04-Dec-1995. [Online]. Available:

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease

67.html. [Accessed: 10-Mar-2019].

[10] What is the Document Object Model?[Online]. Available: https://www.w3.org/TR/WD-

DOM/introduction.html. [Accessed: 10-Mar-2019].

33

[11] N. Foundation, “About,” Node.js. [Online]. Available: https://nodejs.org/en/about.

[Accessed: 17-Mar-2019].

[12] Nodejs, “nodejs/node-v0.x-archive,” GitHub. [Online]. Available:

https://github.com/nodejs/node-v0.x-archive/tags?after=v0.0.4. [Accessed: 18-Mar-2019].

[13] “GraphQL: A query language for APIs.,” A query language for your API. [Online].

Available: https://graphql.org/. [Accessed: 21-Mar-2019].

[14] “Glossary¶,” Glossary - MongoDB Manual. [Online]. Available:

https://docs.mongodb.com/manual/reference/glossary/#term-collection. [Accessed: 01-Apr-

2019].

[15] “JSON and BSON,” MongoDB. [Online]. Available: https://www.mongodb.com/json-and-

bson. [Accessed: 01-Apr-2019].

[16] “Text Search¶,” Text Search - MongoDB Manual. [Online]. Available:

https://docs.mongodb.com/manual/text-search/. [Accessed: 05-Apr-2019].

[17] auth0.com, “JSON Web Tokens Introduction,” JSON Web Token Introduction. [Online].

Available: https://jwt.io/introduction. [Accessed: 10-Apr-2019].

