
Automatic Juxtaposition of Source
Files

by

Samuel Davis

B.Sc., The University of British Columbia, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August, 2008

c© Samuel Davis 2008



Abstract

Previous research has found that programmers spend a significant fraction
of their time navigating between different source code locations and that
much of that time is spent returning to previously viewed code. Other work
has identified the ability to juxtapose arbitrary pieces of code as cognitively
important. However, modern IDEs have inherited a user interface design in
which, usually, only one source file is displayed at a time, with the result
that users must switch back and forth from one file to another.

Taking advantage of the increasing availability of large displays, we pro-
pose a new interaction paradigm in which an IDE presents parts of multiple
source files side by side, using the Mylyn degree-of-interest function to dy-
namically allocate screen space to them on the basis of degree-of-interest
to the current development task. We demonstrate the feasibility of this
paradigm with a prototype implementation built on the Eclipse IDE and
note that it was used by the author over a period of months in the devel-
opment of the prototype itself. Additionally, we present two case studies
which quantify the potential reduction in navigation and demonstrate the
simplicity of the approach and its ability to capture complete concerns on
screen. These case studies suggest that the approach has the potential to
reduce the time that programmers spend navigating by as much as 50%.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Displaying Multiple Source Files, Side by Side . . . . . . . . 3
1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A Prototype in Multiple File Interaction . . . . . . . . . . . 6
2.1 Mylyn: Measuring Degree-of-Interest . . . . . . . . . . . . . 6

2.1.1 Automatic Code Folding . . . . . . . . . . . . . . . . 7
2.2 Features of the Prototype . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Multiple Editors . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Progressive Elision . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Graphical Annotations . . . . . . . . . . . . . . . . . 13
2.2.4 Displaying Arbitrary Concerns . . . . . . . . . . . . . 17

3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Multiple Editors . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



3.2 Progressive Elision . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Graphical Annotations . . . . . . . . . . . . . . . . . . . . . 22

4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Case Study 1: Paint . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Task 1: Scroll . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Task 2: Undo . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Task 3: Line . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Case Study 2: jEdit . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Walkthrough . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1 Navigational Aids . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Source Code Views . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Fisheye Views . . . . . . . . . . . . . . . . . . . . . . 60
6.2.2 Modularizing Views . . . . . . . . . . . . . . . . . . . 62

7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1 Taking Multiple File Interaction Further . . . . . . . . . . . 64
7.2 Better Navigation History . . . . . . . . . . . . . . . . . . . . 65
7.3 Improving Progressive Elision . . . . . . . . . . . . . . . . . 66
7.4 User Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv



List of Tables

4.1 Case study results. . . . . . . . . . . . . . . . . . . . . . . . . 54

v



List of Figures

2.1 A screenshot of the prototype. . . . . . . . . . . . . . . . . . 9
2.2 Progressive elision. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Progressive elision with a popup. . . . . . . . . . . . . . . . . 13
2.4 Arrows passing “underneath” the central column. . . . . . . . 16
2.5 A caller hierarchy with arrows indicating potential calls. . . . 18

4.1 The classes of the Paint application. . . . . . . . . . . . . . . 28
4.2 The Paint application. . . . . . . . . . . . . . . . . . . . . . . 28
4.3 The Scroll task after opening the Actions class. . . . . . . . . 30
4.4 The Scroll task after navigating to the PaintWindow con-

structor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 The Scroll task after navigating to setPaintObjectClass() in

PaintWindow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 The Scroll task after navigating to setClass() in PaintObject-

Constructor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 The Scroll task after navigating to constructionComplete() in

PaintObiectConstructorListener. . . . . . . . . . . . . . . . . 32
4.8 The Scroll task after navigating to constructionComplete() in

PaintWindow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 The Scroll task after navigating to addPaintObject() in Paint-

Canvas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.10 The Scroll task after scrolling to the PaintWindow constructor. 34
4.11 The Scroll task after editing addPaintObject() in PaintCanvas. 34
4.12 The Scroll task after finding a bug in the paintComponent()

method of PaintCanvas. . . . . . . . . . . . . . . . . . . . . . 35
4.13 The Undo task after opening the Actions class. . . . . . . . . 37

vi



4.14 The Undo task after navigating to undo() in PaintWindow. . 37
4.15 The Undo task after navigating to undo() in PaintCanvas. . . 38
4.16 The Undo task after fixing the bugs in the undo() method of

PaintCanvas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.17 The Line task after opening the PaintWindow class. . . . . . 40
4.18 The Line task after scrolling to the PaintWindow constructor. 40
4.19 The Line task after navigating to the pencilAction field of

Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.20 The Line task after navigating to PencilPaint. . . . . . . . . . 41
4.21 The Line task after navigating to PaintObject. . . . . . . . . 42
4.22 The Line task after creating a LinePaint class. . . . . . . . . 42
4.23 The Line task after copying the paint() method of PencilPaint. 43
4.24 The Line task after creating a paint() method in LinePaint. . 43
4.25 The Line task after adding a lineAction field to Actions. . . . 44
4.26 The Line task after modifying the PaintWindow constructor. 44
4.27 The jEdit task after opening the LoadSaveOptionPane class. 47
4.28 The jEdit task after scrolling to the save() method. . . . . . 48
4.29 The jEdit task after finding code which sets up a JCheckBox. 48
4.30 The jEdit task after opening the Autosave class. . . . . . . . 49
4.31 The jEdit task after scrolling to actionPerformed() in Autosave. 49
4.32 The jEdit task after navigating to propertiesChanged() in the

jEdit class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.33 The jEdit task after navigating to saveSettings() in jEdit. . . 50
4.34 The jEdit task after opening the Buffer class. . . . . . . . . . 51
4.35 The jEdit task after editing the init() in LoadSaveOptionPane. 51
4.36 The jEdit task after editing the save() method of Load-

SaveOptionPane. . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.37 The jEdit task after editing jEdit.propertiesChanged(). . . . . 52
4.38 The jEdit task after creating the method deleteAutosaveFile()

in the Buffer class. . . . . . . . . . . . . . . . . . . . . . . . . 53
4.39 The jEdit task after further editing jEdit.propertiesChanged(). 53

6.1 A fisheye view of a C program . . . . . . . . . . . . . . . . . 61

vii



Acknowledgements

I would like to thank my supervisor, Gregor Kiczales, for his guidance,
patience, and support, and for encouraging me to pursue this degree in the
first place. I am in awe of his ability to distill the essence of an idea, and
grateful for the way he engages with his work and his students. I would
also like to thank Gail Murphy for being my second reader and providing
helpful comments on this work. Finally, I thank my family and friends for
their valuable advice and support.

viii



Chapter 1

Introduction

1.1 Motivation

Most code comprehension and code modification tasks involve reading parts
of and possibly editing multiple source files. Previous work [8] has identified
the ability to juxtapose arbitrary pieces of code as cognitively important.
However, modern IDEs have inherited a user interface design in which, usu-
ally, a single source file is displayed, along with related views such as a code
outline. This single file interaction paradigm requires the user to physically
select the one source file to be viewed or edited at any given time, replacing
the file that was previously visible on the screen. As a result, any non-
trivial code comprehension or code modification task involving more than
one source file requires the user to switch back and forth from one file to
another. In fact, Ko et al. [17] reported that software developers performing
maintenance tasks on a small code base spent an average of 35% of their
time navigating between different source code locations and that much of
that time was spent returning to previously viewed code. Because each of
these navigations involves a scene change, that is, the entire contents of
the editor area is completely replaced, the user may suffer from a loss of
context and become disoriented. Furthermore, when following a chain of
cross-references in the code through multiple files, the user may even lose
track of her exploration path and spend time trying to remember or redis-
cover what she was previously looking at.

JQuery [12] addresses the problem of disorientation resulting from scene
changes at the level of structure browsing. It allows the user to trace a
variety of types of relationships among program elements within a single
view, using queries to direct the exploration task. The authors argue that it

1



reduces disorientation when compared with traditional IDE structure brows-
ing support, which requires the user to switch to a different view whenever
she needs to examine a different type of relationship. However, this does not
operate at the source code level: when the user needs to actually read or edit
the code, she must still switch between files in the traditional way. While
the JQuery view records the exploration path and may provide an easier
means of performing this navigation, the problem of scene change remains.

IDEs such as Eclipse1 support code popups, where the target of a cross-
reference (e.g. a method call) is displayed in a tooltip on top of the editor.
However, these tooltips are transient and non-editable, and because they
appear at the source of the cross-reference, they often cover up informa-
tion crucial to understanding the contents of the tooltip itself. They also
do not allow the user to follow cross-references from within the tooltip, so
they only provide access to code that is directly referenced from the current
file. Fluid source code views [6] allow the user to expand cross-references
inline, for example, displaying a method or advice body as though it were
defined at the location at which it is invoked. These views are less transient
than popups and allow code from multiple files to be displayed in a single
editor. However, they do not take advantage of today’s wider computer
screens and may make the file containing the cross references harder to un-
derstand. Like popups, fluid views display code orphaned from the context
of its own file. In some cases, this lack of context may impede understanding
of the orphaned code. Furthermore, there is concern [6, 13] that this kind
of approach could encourage programmers to view a program simply as a
sequence of statements and to think of fundamental abstractions such as
inheritance, procedures, and advice merely as code structuring techniques.
While [6] mentions the possibility of making fluid views editable, one won-
ders if programmers would sometimes forget that the code is not actually
local and make changes with broader consequences than intended.

A study of programmer behaviour during a code comprehension and
modification task [19] found that developers who successfully completed the
task reinvestigated previously examined methods less frequently than un-

1http://www.eclipse.org/

2

http://www.eclipse.org/


successful developers. However, even the successful developers performed
a substantial amount of reinvestigation. Among other things, the authors
hypothesize that developers would benefit from tools which help them to
remember relevant methods.

Ko et al. [17] proposed a model of code comprehension in which a devel-
oper repeatedly goes through a process of choosing a starting point (“search-
ing”), navigating dependencies in the code (“relating”), and “collecting” in-
formation and source locations deemed relevant, either in her head or using
some external memory aid or tool. One of two factors identified as being key
to the effectiveness of the comprehension task is the presence of a reliable
way of collecting information.

Mylyn [14, 15], discussed in Section 2.1, is an Eclipse plugin that auto-
matically maintains a list of program elements that the user has considered
might be relevant, however, the user is only presented with the names of
each element and the containment relationships between them. When that
is not enough information, she must still individually select elements from
the list in order to view their source code. Thus, while Mylyn does help the
user to collect information in the form of a list of program elements, it does
little to help her make sense of that list.

1.2 Displaying Multiple Source Files, Side by

Side

The single file interaction paradigm makes sense if one assumes that dis-
playing a single source file will require most of the available screen space.
However, increasing screen sizes (and falling prices) create new possibilities
of which IDEs should take advantage. An IDE which uses a large screen to
display the relevant parts of multiple files side by side and in context could
reduce the time spent on redundant navigations while allowing the program-
mer to use her spatial memory to track the locations of relevant code on the
screen. Presenting each piece of code in the context of its original file may
provide useful contextual information to the user and should be conducive

3



to a more breadth-first style of code exploration; [21] discusses research
suggesting that breadth-first strategies lead to solutions more quickly, both
when programming and more generally.

Displaying multiple files at once has the potential to reduce the disori-
entation associated with jumping between code locations and could support
short term waypointing [23] by allowing the user to remember relevant code
in terms of its location on screen. It also naturally supports visual com-
parisons of source code. Allowing the programmer to see related program
elements within and across different files at the same time could make it
easier to understand how the elements are related and how they interact.
This may be especially beneficial in the context of aspect-oriented program-
ming [16], where the program contains elements that directly modify other
program elements.

Finally, this approach also creates the opportunity for visual annotations
that span multiple source files. For instance, arrows could trace method calls
or connect advice to joinpoints, and occurrences of the currently selected
identifier could be highlighted in every visible file.

1.3 Thesis Statement

An IDE which simultaneously displays parts of multiple files, allocating
screen space to each on the basis of degree-of-interest to the current task,
can display all (or much of) the code needed to complete a task at once. This
has the potential to reduce time spent on navigation and to ease concern
comprehension.

1.4 Contributions

This dissertation proposes a new interaction paradigm in which an IDE
presents parts of multiple source files side by side on a large display, dynam-
ically allocating screen space to them on the basis of degree-of-interest to the
current development task. We demonstrate the feasibility of this paradigm
with a prototype implementation built on Eclipse and note that it was used

4



by the author over a period of months in the development of the prototype
itself. Additionally, we present two case studies which quantify the potential
reduction in navigation and demonstrate the simplicity of the approach and
its ability to capture complete concerns on screen.

The remainder of this document is organized as follows. The next chap-
ter describes our prototype and Chapter 3 details salient features of its
implementation. Case studies are presented in Chapter 4 and the poten-
tial benefits and drawbacks of the system, as well as the experience of its
sole user (the author) are discussed in Chapter 5. Chapters 6 and 7 discuss
related and future work and we conclude in Chapter 8.

5



Chapter 2

A Prototype in Multiple File

Interaction

To test our hypothesis, we constructed a prototype implementation as a plu-
gin for the Eclipse IDE, targeting Java and AspectJ. The primary objective
of the implementation is to reduce the time users spend on navigation by
keeping multiple source files visible simultaneously. Since this necessarily
entails some automatic editor hiding, we adopted the philosophy that when
an editor must be hidden, it should be easy for the user to find, and we try
to avoid hiding editors that the user would be likely to still want to see. The
prototype uses arrows to indicate important relationships between program
elements both within and across files, and it aims to take advantage of the
user’s spatial memory by keeping editors in the same location as much as
possible.

Another important objective for the prototype was that it should in-
tegrate well with Eclipse. Thus, it uses the standard Eclipse editors and
commands and is meant to be a natural extension of the Eclipse user inter-
face, rather than requiring users to learn a radically new interface. As much
as possible, it should not require the user to make any extra effort, so as to
prevent laziness from being a reason not to use it. Finally, for evaluation
purposes, the prototype needed to function well enough that it could be
used by the author in its own development.

2.1 Mylyn: Measuring Degree-of-Interest

The prototype is built on Mylyn [14, 15], using its degree-of-interest func-
tion to allocate screen space to editors. Mylyn is an Eclipse plugin which

6



enhances Eclipse’s built-in views with the ability to focus on the current
task. Mylyn keeps track of the user’s tasks and maintains a task context for
each. The task context records which files and program elements are rele-
vant to a task and how interesting they are. The user indicates which task
she is currently working on and Mylyn records the history of her interactions
while working on that task, in terms of which files and program elements she
selects or edits. Each file or program element is assigned a task-specific and
time-varying degree-of-interest based on how frequently and how recently
she has interacted with it. This allows Mylyn to filter less interesting ele-
ments out of the Eclipse Package Explorer and other views, reducing clutter
and helping the user to keep track of which elements are important to the
task she is working on. It also allows her to switch to another task without
losing the current task context. When returning to a task, Mylyn saves her
from needing to remember or rediscover its context. Of course, there may be
other information about the elements in the task context that she still needs
to remember, but having to look only at the small fraction of the system
which is relevant to the task is intended to make this much easier.

2.1.1 Automatic Code Folding

Mylyn provides a command which elides the bodies of uninteresting methods
using Eclipse’s built-in code folding support. If the user does not need to
see the source code for elements which have not been added to the current
task context (for instance, if she feels that it contains enough of the code
that is relevant to the task), she can enable automatic folding. This causes
any elements which Mylyn deems uninteresting to be collapsed so that only
their headers are shown. If desired, the user can then expand an individual
element to see its body. If a collapsed element is selected or navigated to
using an outline view or a cross-reference it will be automatically expanded.

A potential negative consequence of using this command is that annota-
tions in the bodies of collapsed methods are not shown in the sidebar. For
example, when using Eclipse’s Mark Occurrences feature to highlight occur-
rences of an identifier within a file, occurrences within collapsed methods

7



will not be shown, potentially causing the user to draw inaccurate conclu-
sions. While this is really an issue inherent in Eclipse’s code folding, it may
be more problematic when a tool automatically folds code without explicit
action by the user to indicate which code should be folded.

2.2 Features of the Prototype

2.2.1 Multiple Editors

Figure 2.1 shows a screenshot2. Unfortunately, to allow them to fit legibly on
the page the screenshots in this chapter had to be taken on a much smaller
screen than the prototype would actually be used with, and other views
such as the Package Explorer are hidden. The prototype arranges editors in
three columns (there is also a two column mode suitable for smaller screens).
Within each column, space is allocated to each editor based on the degree-
of-interest of the file it displays. When more editors are open than can fit
on the screen, some are hidden, appearing only as tabs behind other editors.
Section 4 contains four series of screenshots that give some sense of the way
the display evolves, though the images only contain two columns to allow
them to fit on the page.

The set of files that are visible is directed by user actions. When only one
file is open, it fills the editor area, but as the user opens more files, whether
by selecting them from a list or by following cross-references, the display
becomes divided into columns, and the columns are eventually divided into
rows. Each editor is guaranteed to receive at least 20% of the height of
the Eclipse editor area, so there can be at most five files displayed in a
single column. Typically, the number of files displayed is smaller than this
maximum.

The Mylyn degree-of-interest is used to allocate screen space to editors
and, when required, to choose which editors are hidden. As files become
more or less interesting over time, their editors are resized accordingly, but

2All screenshots in this chapter use the AJHotDraw code base, available at http:

//swerl.tudelft.nl/bin/view/AMR/AJHotDraw

8

http://swerl.tudelft.nl/bin/view/AMR/AJHotDraw
http://swerl.tudelft.nl/bin/view/AMR/AJHotDraw


Figure 2.1: A screenshot of the prototype.

only when the user opens files or activates hidden editors. This resizing only
affects the column containing the newly opened or activated file. Thus, the
display is updated to reflect changes in the relative interests of files, but only
at predictable times, that is, when the user has initiated an action which
already causes the display to change. Furthermore, the updates consist of
relatively minor adjustments to one third of the display, in contrast to the
complete scene change that occurs when opening a file in a traditional IDE.

Because a newly opened file has a relatively low degree-of-interest, its
degree-of-interest is not used either when it is first laid out on screen or the
next time the display is updated. This allows the file’s degree-of-interest
time to become more meaningful as a result of the user’s interactions. If
the user is interested in the file, she will interact with it, causing its degree-
of-interest to rise and ensuring that it remains on the screen. On the other
hand, if the newly opened file turns out not to be interesting, it’s degree-of-
interest will become lower in relation to the files with which she does interact

9



and thus it will be shrunk or hidden when its display space is needed for
another file.

When a file is opened, it is always placed at the bottom of a column to
ensure that it is easy to find on the screen. Other editors in the column
have their sizes adjusted to make room. The newly opened editor is added
to the column whose visible files have the lowest total degree-of-interest, and
allocated 1/n of the height of that column, where n is the number of visible
files in the column (including the newly opened file). The editors already
in that column are resized so that they each receive space in proportion to
their degree-of-interest. If any editor would occupy less than 20% of the
column as a result of resizing, it is instead hidden behind the editor that
takes its place in the layout, so that its tab remains in the same location on
the screen.

Visible editors will be shifted upwards when a file above them is selected
for hiding, but otherwise, they always remain in the same relative location
on the screen. When the user activates a hidden editor, if the editor whose
place it would take is at least 15%3 more interesting than the least inter-
esting visible editor in that column, the layout is adjusted so that the least
interesting editor is hidden and the editor that would have been hidden is
shifted above or below the activated editor so that it remains visible. The
sizes of the editors in the column are then adjusted to reflect their relative
degree-of-interests.

For the most part, the user is not expected to exert direct control over
the layout. However, there is a button which causes the active editor to
expand to fill its column. This can be useful if the user wants to read a
large part of the file in depth. There is also a previous layout button which
reverses this action.

2.2.2 Progressive Elision

As an alternative to Mylyn’s automatic code folding, we use a form of elision
that should make better use of screen space by increasing the density of

3These values were arrived at through experimentation and are not claimed to be
optimal.

10



useful information. Progressive elision computes interest at the line level
rather than only at the declaration level and allows the user to adjust the
amount of elision on a per-file basis and using a continuous scale, in contrast
to Mylyn’s global on/off control. Each line of code is assigned an interest
level based on the degree-of-interest values of its parent declaration and of
any elements it references. For example, the interest level of a call to a
method m1 in the body of m2 is the sum of the degree-of-interests of m1 and
m2. Each file has a threshold, and lines with an interest level below the
current threshold are hidden. The user can control the level of elision for a
given file using a popup slider to change the threshold. Comments, closing
delimiters, and blank lines are assigned progressively lower interests than
code or declarations, so within a given element, they are generally the first
things to be hidden.

Unlike automatic code folding, where “interesting” elements are shown
in full and others have only their headers visible, progressive elision allows
elements to be partially visible or completely hidden. This means that
when the level of elision is set high enough, space is not wasted showing the
headers of uninteresting elements, which are still readily accessible using
Eclipse’s popup Quick Outline view (the Quick Outline view is not filtered
by Mylyn). On the other hand, if a method is not part of the task context
but accesses methods or fields which are, the parts of the method that
access those elements may be shown. In order to place these fragments of a
method in context, the header of a method is always shown when any part of
its body is visible. Finally, methods which are part of the task context may
have uninteresting pieces hidden. Figure 2.2 presents an example showing
partially elided methods.

When a line or multiple consecutive lines are elided, this fact is indicated
with a small coloured triangle in the left vertical ruler which points at the
location where text has been elided, as well as with the standard Eclipse
elision indicator at the end of the line preceding the elided text, as shown in
Figure 2.2. Moving the mouse over the triangle displays a popup containing
the hidden text (compare Figure 2.2 and Figure 2.3, and clicking on the
triangle unfolds the text in the editor. The colour of the triangle indicates

11



Figure 2.2: Progressive elision.

the kind of text that is hidden. A hidden block of text containing any state-
ments or declarations is indicated with a blue triangle. If the hidden text is
simply delimiters closing a code block or a statement, for instance, if it is
a single line containing only a closing brace, the corresponding triangle will
be dark grey. In this case, if the code is well-formatted, the fact that the
block or statement has been closed will also be obvious from the indentation
level of the next visible line. When a hidden block of text consists only of
whitespace, it is indicated with a just visible, light grey triangle. If the hid-
den text is a comment, the corresponding triangle will be green (by default,
Eclipse’s Java editor colours comments green). Thus, the prominence of the
triangle corresponds to the significance of the hidden text.

Progressive elision is intended to fully hide elements which are completely
uninteresting while showing the interesting parts of relatively uninteresting
elements to provide more context. This makes it possible for two interesting
elements in the same file to be visible at once, even when they are textually

12



Figure 2.3: Progressive elision with a popup.

separated by numerous declarations. While it is subject to the same issue as
any form of code folding, namely, that hiding information may lead the user
to draw false conclusions, it is hoped that it will increase the reliability of
the user’s conclusions by hiding less interesting information as compared to
Mylyn’s automatic code folding. While displaying multiple files in a column
reduces the vertical space allotted to each, progressive elision tries to use
that space more effectively.

2.2.3 Graphical Annotations

By laying out editors in a two-dimensional space, rather than making them
accessible only through a one-dimensional list, we are adding a dimension to
the user’s interaction. We are also encouraging the user to work and think in
this two-dimensional space, rather than thinking of one editor at a time and
viewing the one-dimensional editor list as separate from normal interaction.
This creates both an opportunity and a potential problem. Presenting mul-

13



tiple files side by side could allow the IDE to display additional information
about the relationships between files, but it also creates a more complex
display – especially when one considers that each Eclipse editor contains
two vertical rulers potentially showing more than a dozen different kinds
of annotations – and this obviously has the potential to cause confusion.
In order to help the developer make sense of this two-dimensional space,
we graphically indicate important relationships between program elements
both within and across files, using arrows. A toolbar button allows the user
to toggle this feature on and off.

There are three relationships which are shown graphically: method calls,
advice applying to a method,4 and advice applying to an expression. For
method calls, an arrow is drawn from the calling expression to the method
declaration based on the static type of the receiver. For simplicity, the
declarations of overriding methods which could be invoked depending on
the dynamic type of the receiver are not indicated (but see Section 2.2.4 for
an exception). Advice applying to a method is indicated by an arrow from
the declaration of the advice to the method declaration. Advice applying to
an expression, such as a method call, is indicated with an arrow from the
advice declaration to the expression. Other relationships, such as references
to pointcuts and fields, could be indicated, but would risk overly cluttering
the display.

In keeping with AJDT’s gutter annotations, arrows indicating advice
application are coloured orange. For other arrows, the target of the arrow
is assigned a colour from a fixed set, chosen to be easily distinguishable,
using a scheme which tries to avoid using the same colour twice. Every
arrow pointing to a given location is drawn in that location’s colour. As
a consequence, when a location is scrolled offscreen and later returns to
view, it may be assigned a different colour if its previous colour has been
assigned to a new location. Given the number of relationships present in the
code, the fact that they change as it is edited, and the fact that the subset

4In this paragraph, we use phrases such as “advice applying to a method” as a short-
hand for “advice with a pointcut which statically matches a method, possibly with a
dynamic test.”

14



which are visible on screen (and their relative position) changes frequently,
permanently assigning colours would certainly lead to a less readily under-
standable display, where multiple arrows of the same colour cross. This
design choice implies that the user should not try to remember relationships
by their colour. Rather, the colours serve to make the arrows easy to dis-
tinguish. Whether this will work in practice needs to be validated: users
may automatically associate relationships with colours and become confused
when they change, or they may become accustomed to this use of colour.

Arrows are drawn only when both the source and target of the rela-
tionship being indicated are visible on the screen. A possible refinement
would be to also draw arrows to offscreen targets if they have a very high
degree-of-interest. If an arrow is drawn between the left and right columns,
it passes “underneath” the central column so as to prevent editors in the
middle of the screen from being buried under crisscrossing lines. Figure 2.4
contains an example of this. Arrows typically point to the left edge of the
first line of a declaration, since this is the lexical start of the declaration and
is near the conceptual location that the declaration assumes control upon
being invoked. However, when the arrow is coming from a location more
than 25 pixels to the right of the last character in the declaration’s header,
it will point to a location just to the right of this character (depending on
how the code is formatted, this is usually the location of the opening brace
which starts the body of the declaration). This not only avoids drawing un-
necessarily long arrows but also gives the arrow the appearance of pointing
at the declaration rather than past it, making it easier for the user to follow.

Given locations X, Y, and Z on the screen, when drawing an arrow from
X to Z, if there is already an arrow from Y to Z, the new arrow will instead
point to Y, the tail of the first arrow, whenever either the resulting line
segment XY is less than half the length of XZ or the angle between XY and
YZ is less than 10◦. This reduces clutter and in the second case also avoids
drawing nearly overlapping arrows. A small square is drawn wherever the
line segments join to indicate that that location also contains a reference to
the target of the arrow.

15



Figure 2.4: Arrows passing “underneath” the central column.

16



2.2.4 Displaying Arbitrary Concerns

Section 2.2.1 described how the history of the user’s interactions determines
which files are visible. The set of visible files essentially functions as a view of
the Mylyn task context, providing access to a set of program elements which
are implicitly related by their relevance to the current task, as determined
by the degree-of-interest function. However, the multiple file interaction
paradigm also lends itself naturally to displaying concerns specified in any
other manner. As a simple example, the user can select any subset of the
results from an Eclipse search and display them simultaneously. She can
then compare the results without having to manually iterate back and forth
through them. In some cases, such as when searching for the readers and
writers of a field, the results of a search might constitute a well-defined
concern, in which case the user can easily display the components of that
concern together.

There is a tighter integration with the Eclipse call hierarchy view. This
view can display either a caller or callee hierarchy as a tree. The proto-
type adds an Open Children command which displays the children of the
currently selected node in the tree. This command hides the currently open
editors and opens editors containing the selected node and its immediate
children, with the selected node in the central column and its children on
either side. The Eclipse caller hierarchy on a method m1 includes calls to
methods which m1 overrides, that is, calls which may or may not actually
invoke m1, depending on the dynamic type of the receiver. Normally, we
do not graphically indicate such calls, but when Open Children, is invoked,
all relationships shown in the call hierarchy are indicated with arrows, as
shown in Figure 2.5. Thus, this command provides an alternate view of the
call hierarchy which shows the source code for one level of the hierarchy at
a time, with the call relationships graphically displayed. Sometimes a node
has too many children to fit simultaneously on the screen. In this case, we
partition the children into groups and augment the call hierarchy view with
next and previous buttons which allow the user to iterate through the groups
(the previous layout button in the main Eclipse toolbar allows the user to

17



Figure 2.5: A caller hierarchy on RectangleFigure.handles() (center),
with arrows indicating potential calls. In particular, notice that the call to
the abstract handles() method of AbstractFigure (top right) is shown as
calling RectangleFigure.handles().

return the display to the state it was in prior to invoking the call hierarchy).
Viewing a level of the caller hierarchy in this way allows the user to make
comparisons of the callers of a method in terms of what parameters they
pass and how they use its results, without having to navigate back and forth
between them. Displaying the children of a method in the callee hierarchy
could allow the user to better understand how they interact to make up the
functionality of that method.

To facilitate the understanding of crosscutting concerns, we have im-
plemented a command that shows how advice crosscuts the system. When
invoked on an advice, the advice is displayed alongside each shadow which
is a static match for its pointcut. This makes it easy to see how the advice
interacts with the code it advises. A complimentary command to display

18



all the advice which applies to or within a method could also be useful,
although this has not been implemented in the prototype.

Finally, it should be fairly straightforward to integrate this approach
with a concern description tool such as FEAT [20] and with JQuery [12].
This would allow the user to simultaneously view the source code for the
different parts of a concern as captured by these tools.

19



Chapter 3

Implementation

The prototype is implemented as a plugin for Eclipse version 3.3.1.1. It
works with any Eclipse editor, although progressive elision does depend
on Eclipse’s internal JavaEditor class,5 using it to retrieve its associated
ProjectionViewer, and thus is only available for subclasses of JavaEditor,
including the AJDT editor for AspectJ. It was necessary to make some minor
changes to two Eclipse classes; these are described in the following sections.
The plugin also relies on some internal packages which are not part of the
public API of Eclipse and might therefore change in future versions.

3.1 Multiple Editors

Eclipse already supports displaying multiple editors, but only when the user
drags them into position with the Mouse. There is no API that allows them
to be programmatically arranged or resized. To get around this limitation,
we simulated drag and drop events using an internal Eclipse class.6 When-
ever a file is opened, Eclipse arbitrarily chooses another open file and places
the new file on top of it. Then, we simulate drag events to move it into
the desired position and resize it appropriately. This creates a slight de-
lay, barely noticeable on a fast computer, when opening a file. However,
when opening multiple files at once, for example, when selecting several re-
sults of a search, or when activating a Mylyn task context, the delay can
last several seconds, and the movement of editors on the screen is visible.
This is because using drag and drop means that the display is updated af-
ter each editor is positioned. The problem could be eliminated if Eclipse

5org.eclipse.jdt.internal.ui.javaeditor.JavaEditor
6org.eclipse.ui.internal.dnd.DragUtil

20



added a public API for manipulating the editor area that allowed multiple
operations to be performed before updating the display.

We use our own representation of the Eclipse editor area, dividing it
into columns which are in turn divided into editor stacks, each of which
contains an ordered list of editors and a pointer to the currently active ed-
itor. This is much more convenient than Eclipse’s internal representation
which is essentially a binary tree that splits the editor area into successively
smaller regions. This allows us to save previous editor layouts and to sepa-
rate code that manipulates our representation from the code that converts
these manipulations into the drag events needed to manipulate Eclipse’s
representation. We do not update our representation if the user manually
drags an editor to a new location, because Eclipse provides no notification
of such actions (although it would probably be possible, though non-trivial,
to determine the current layout and update our representation before at-
tempting to manipulate it). Therefore, users should not manually rearrange
editors.

We modified the JavaEditor class to provide access to the currently
selected element so that we can ensure it remains visible when the editor is
resized. This is a minor, non-critical feature.

3.2 Progressive Elision

Progressive elision is implemented using Eclipse’s support for projection,
also used to implement code folding. For each open JavaEditor, we main-
tain a model of its lines which maps each line to the declaration it belongs
to (if any) as well as to its lexical position within the file, keeps a list of
the references to other elements that appear on each line and computes the
interest level of each line. When updating the level of elision, the set of
text regions that are to be elided is computed and compared with the set
of regions that are already elided. Any overlapping or adjacent regions are
combined into a single region and, for each resulting region, a subclass of
ProjectionAnnotation is added to the ProjectionAnnotationModel that
Eclipse associates with each JavaEditor. The process for revealing text is

21



similar: the set of regions to be expanded is computed and compared with
the set of elided regions, resulting in elided regions having their annotations
removed or replaced with one or more annotations which span fewer lines.
The annotation controls the drawing of coloured triangles in the margin.

The elision level is changed using a slider whose position is interpreted
internally as a number between 0 and 1. In the initial implementation, this
number was mapped to an interest level by equating the current least and
most interesting lines with 0 and 1, respectively. The result was then taken
as a threshold, and any less interesting lines were hidden. However, the in-
terest level space is typically both sparsely populated and heavily clustered.
The result was that, sometimes, moving the slider a short distance caused
dramatic changes, while other times, moving it a long distance appeared
to have no effect. We refined the implementation by sorting the lines by
interest level (using line numbers to break ties) and interpreting the slider
position as the percentage of lines that should be hidden. The result is a
much smoother control.

In order to allow multiple annotations to be collapsed or expanded with-
out updating the display after each one, we had to add the appropriate
methods to ProjectionAnnotationModel.7 We also had to give it a public
fireModelChanged() method. Without these changes, smoothly adjusting
the level of elision would not have been possible.

3.3 Graphical Annotations

Graphical annotations are implemented by drawing on an SWT canvas which
we overlay with the editor area. Because SWT does not support transparent
canvases, the canvas is configured to use the editor area as its background
and must be repainted every time the editor area changes, for example,
whenever the user types, scrolls, brings up or dismisses a tooltip, or selects
text. This can cause graphical annotations to flicker, and it sometimes causes
a small delay in changes to the editor area becoming visible. This is because
many of the changes which must cause the canvas to be repainted are not

7org.eclipse.jface.text.source.projection.ProjectionAnnotationModel

22



events that Eclipse allows one to listen for, but rather happen shortly after
mouse or keyboard events. For example, when the mark occurrences feature
is enabled, the set of marked occurrences is updated a short time after the
user selects an identifier. In order for the canvas to reflect these changes,
we use a timer to update it after a small delay. Whenever an editor opens,
we must attach a listener to each of its scroll bars so that we can update
the canvas when scrolling. This is because mouse events on scroll bars are
handled by SWT at a high level and not passed down to the Eclipse UI
toolkit, JFace.

23



Chapter 4

Case Studies

Ultimately, the measure of the utility of a system such as this is the extent
to which it improves programmer productivity. This appears to depend on
the answers to two questions: (1) Does the system reduce the time spent on
navigation? and (2) What effect does it have on the time spent on activities
other than navigation?

The primary quantifiable benefit of the system is expected to be a re-
duction in the time spent navigating. Therefore, if it does not in fact reduce
navigation time, the second question becomes moot in this context. For that
reason, answering the first question is the first step in a practical evaluation
of the system; if it is answered in the affirmative, future work should explore
the second question through user studies. Section 7.4 describes some of the
questions that such studies could investigate.

This chapter presents two case studies involving programming tasks
taken from previous user studies into programmers’ behaviour when investi-
gating unfamiliar code [17, 19]. The first case study consists of maintenance
tasks on a simple drawing application; the second consists of a more involved
change to a popular text editor. These case studies are a first step toward
answering question (1) and also serve to demonstrate our approach in action
and show that it can capture much of the code relevant to a task in a single
view.

4.1 Methodology

For each programming task, we analyzed the knowledge required to perform
the task, including structural relationships (e.g. which methods make calls
to a particular method, which class in a hierarchy implements a method),

24



concern-to-code mappings (i.e. which program elements participate in the
implementation of a concern), design rules (e.g. operations of a certain sort
should be handled by a particular object), method behaviours (e.g. that a
method uses certain state in computing its result, that a method updates
certain data structures), and the locations of relevant code (e.g. code that
can serve as a template for a part of the solution, helpful comments).

This analysis resulted in a set of facts a developer ought to know in
order to perform the task and a plausible sequence of code locations to
be read (to discover these facts) or edited (to complete the task). Note
that there may be room for debate about exactly how much information is
needed to properly complete a task. Because most systems are too large to
permit a developer to read every line of code that might be relevant, there
is probably always a certain amount of assumption involved in determining
how a system works, and how best to implement an enhancement or bug
fix. So, the amount of code a developer actually needs to read in some
sense depends on a combination of luck and the keenness of her intuition.
Also, there may be many different reasonable exploration paths that would
uncover the needed information. We tried to make realistic choices.

By counting the number of navigations a developer would have to per-
form to visit this sequence of locations, both when using our prototype and
when using Mylyn and Eclipse alone, we get a rough measure of the poten-
tial impact of the system on navigation time. Because the analysis is based
only on the information which a developer should know in order to suc-
cessfully complete the task, our navigation counts approximate a best case;
real developers will likely take wrong turns and discover facts that turn out
to be irrelevant to the task. We expect that such unnecessary navigations
may incur a similar benefit when using our prototype and we claim that
our prototype will not significantly penalize developers for them by filling
the screen with irrelevant files. This claim is based on the success of My-
lyn, which would be of little benefit if task contexts were prone to becoming
heavily polluted with extraneous elements. Our analysis makes the generous
assumption that the developer remembers all the facts they have discovered;
in practice we expect that real developers will need to revisit previous lo-

25



cations more than we have modeled, so our analysis may underestimate the
savings that result from our approach. Also, because our approach may
help developers find previously visited locations of interest more easily, real
developers may perform extra unnecessary navigations when not using our
prototype. Our analysis does not account for these possibilities.

Our assessment of the potential impact of the system on navigation time
uses navigation counts for a developer who is both lucky and intuitive as
a proxy for the time spent navigating in the best case. We think that this
allows us to make a reasonable estimate of the potential effect of the system
on navigation time in the expected case, ignoring the cognitive impact of the
system which should be measured through user studies. Given that devel-
opers spend a significant fraction of their time performing navigations [17],
improvements in navigation time should translate into higher productivity.

The following sections walk through each task, describing the sequence
of actions taken by an imaginary developer without reference to whether
she is using the prototype or not. A series of screenshots illustrate how the
prototype evolves to display the whole task context. Section 4.4 presents
the results in terms of the number of navigations performed when using and
not using our prototype.

In order to allow the screenshots to fit legibly on the page, it was nec-
essary to increase the font size and greatly reduce the width of the Eclipse
window. As a result, the screenshots show editors that are not nearly wide
enough for practical use. We also set the prototype to use its two column
mode. However, even a 24" widescreen display, which is much smaller than
the largest displays currently on the market, can accommodate 3 columns of
source files, each 80 characters wide (in 10 pt. font). When looking at the
screenshots, the reader should keep in mind that in real use, there would be
three columns of editors, each probably at least twice as wide (in characters)
as the editors shown here and two to three times as high (in lines).

26



4.2 Case Study 1: Paint

As a starting point, we analyzed the user study performed in [17], in which
programmers were given 70 minutes8 to complete five maintenance tasks on a
small drawing application called Paint, implemented in Java using Swing.9

The number of actions performed by each programmer on each task was
recorded, where examples of actions include reading code, editing code, and
performing a navigation. An analysis of their behaviour concluded, among
other things, that they could benefit from a workspace that allowed them
to keep relevant information on the screen. Three of the tasks involve fixing
real (i.e. not artificial) bugs, and the other two are enhancement tasks.
While the codebase used was very small, it was described as “reasonably
complex” and the study had the advantage that, before our implementation
was completed, we were able to determine relatively quickly whether the
system could produce the measurable improvement that we expected.

Because the tasks used in this study are small and the sets of facts a
developer must know to implement them have some overlap, we treat them
independently, imagining that each task is being performed by a different
developer. One of the debugging tasks, Yellow, and one of the enhancement
tasks, Thickness, require so little information to complete that they do not
provide an opportunity for our prototype to have much impact in this kind
of study, and thus we do not discuss them. However, it is quite possible
that user studies would show that our approach is beneficial even for these
smallest tasks because real users may perform much more navigation than
is strictly necessary to complete them.

The Paint application is implemented in one package whose classes are
listed in Figure 4.1. The application’s interface is shown in Figure 4.2.

8Programmers were interrupted with math problems every 2.5 to 3.5 minutes, and
spent 15 minutes on average handling these interruptions.

9The source code of Paint is available at http://www.cs.cmu.edu/~marmalade/

studies.html

27

http://www.cs.cmu.edu/~marmalade/studies.html
http://www.cs.cmu.edu/~marmalade/studies.html


Figure 4.1: The classes of the Paint application.

Figure 4.2: The Paint application.

28



4.2.1 Task 1: Scroll

This task involves fixing a bug in which scroll bars do not always appear
after painting outside the canvas, and when they do, it becomes distorted.
In [17], on average, study participants spent 17 minutes on the task and
performed 64.5 actions. However, only one of ten subjects completed the
task successfully.

In search of the code that controls when painting happens, our imag-
inary developer begins by opening the Actions class and seeing that it
declares the public fields clearAction, undoAction, pencilAction, and
eraserAction (Figure 4.3). Guessing that pencilAction is responsible
for painting, she searches for references to it and arrives at the construc-
tor of the PaintWindow class. Seeing that pencilAction is attached to a
JRadioButton (4.4), she realizes that pencilAction selects the pencil tool
but does not actually perform any drawing. Returning to the Actions class,
she sees that pencilAction selects the pencil with the call

paintWindow.setPaintObjectClass(PencilPaint.class)

and follows the cross-reference back to PaintWindow (4.5). She then fol-
lows another method call which leads her to the setClass() method of
the PaintObjectConstructor class and she notices that this class contains
methods that handle mouse events (4.6). Looking for the code that is
invoked when drawing on the canvas, she looks at the mouseReleased()

method and then follows a method call to the constructionComplete()

method of PaintObjectConstructorListener (4.7). Seeing that this is
an abstract method, she uses the Quick Type Hierarchy to navigate to its
lone implementor, taking her back to the PaintWindow class (4.8). From
there, she follows the call to the addPaintObject() method in PaintCanvas

and sees that this in turn calls repaint() on itself (4.9). Scrolling up to
the class declaration, she sees that PaintCanvas extends from the Swing
class JPanel. Returning to PaintWindow.constructionComplete(), she
uses the Mark Occurrences command on the canvas field and scrolls up to
find that the PaintWindow constructor embeds it in a JScrollPane(4.10).
Based on her knowledge of Swing, she realizes that the scroll bars will not

29



Figure 4.3: The Scroll task after opening the Actions class.

appear unless the preferred size of the canvas is updated. Returning to
PaintCanvas.addPaintObject(), she adds the necessary code (4.11). Run-
ning the program reveals that the scroll bars now appear, but that the canvas
is not drawn correctly when it is scrolled. Selecting the paintComponent()

method of PaintCanvas from the Quick Outline, she notices an extra call
to clipBounds.getX() which should be clipBounds.getY() (4.12). Cor-
recting this error completes the task.

30



Figure 4.4: The Scroll task after navigating to the PaintWindow constructor.

Figure 4.5: The Scroll task after navigating to setPaintObjectClass() in
PaintWindow.

31



Figure 4.6: The Scroll task after navigating to setClass() in PaintObject-
Constructor.

Figure 4.7: The Scroll task after navigating to constructionComplete() in
PaintObiectConstructorListener.

32



Figure 4.8: The Scroll task after navigating to constructionComplete() in
PaintWindow.

33



Figure 4.9: The Scroll task after navigating to addPaintObject() in Paint-
Canvas.

Figure 4.10: The Scroll task after scrolling to the PaintWindow constructor.

34



Figure 4.11: The Scroll task after editing addPaintObject() in PaintCanvas.

Figure 4.12: The Scroll task after finding a bug in the paintComponent()
method of PaintCanvas.

35



4.2.2 Task 2: Undo

In this task, developers were asked to fix a bug in which the “Undo my last
stroke” button does not always work. The button is supposed to undo the
last painting operation or clearing of the canvas. In [17], on average, study
participants spent 6 minutes on the task and performed 30 actions, with
nine of ten subjects completing the task successfully.

Our developer begins by opening the Actions class and marking oc-
currences of the undoAction field, discovering that it invokes the undo()

method of the PaintWindow class (Figure 4.13). She navigates to this
method (4.14) and, from there, she follows a call to PaintCanvas.undo()

and observes that nearby methods of the PaintCanvas class such as clear()
and addPaintObject() end with a call to repaint(), whereas undo() does
not (4.15). She then adds a call to repaint() to the undo() method.

While [17] considers this to be a complete fix to the bug, our developer
notices that the undo button is still sometimes disabled when it should
not be. Returning to PaintWindow.undo(), she sees that this method
disables the undo button whenever the method sizeOfHistory() in the
PaintCanvasclass returns zero. Judging this logic to be correct, she returns
to PaintCanvas.undo(), which removes the last element from the history

field. By looking at this method and the addPaintObject() method, she
learns that the current set of PaintObjects are stored in a Vector, and
that the history is a Vector of Vectors, where each Vector stores the com-
plete state of the canvas at some point in time. By using the debugger, she
realizes that the call

history.removeElement(history.lastElement())

actually removes the first element which is equal to the last element, which
is not necessarily the last element in the Vector (this occurs when the “Clear
the canvas” button is pressed, causing the undo history to contain multiple
equal blank canvases). She fixes this bug by replacing the above call with
history.removeElementAt(history.size() - 1) (4.16).

36



Figure 4.13: The Undo task after opening the Actions class.

Figure 4.14: The Undo task after navigating to undo() in PaintWindow.

37



Figure 4.15: The Undo task after navigating to undo() in PaintCanvas.

Figure 4.16: The Undo task after fixing the bugs in the undo() method of
PaintCanvas.

38



4.2.3 Task 3: Line

In this task, developers were asked to add a tool for drawing straight lines
which could be activated with the provided radio button. A line should be
visible while the user is drawing it. In [17], on average, study participants
spent 22 minutes on this task and performed 67 actions, with six of eight
subjects who attempted the task completing it successfully.

The developer begins by opening the PaintWindow class and seeing that
it declares the fields pencilButton, eraserButton, and lineButton (Figure
4.17). Marking occurrences of lineButton takes her to the PaintWindow

constructor where she sees that pencilButton and eraserButton are ini-
tialized with AbstractActions defined in the Actions class, but lineButton
is initialized only with the string “Line” (4.18). Following the cross-reference
to the pencilAction field of Actions, she sees that the effect of the “Pen-
cil” button is to pass the PencilPaint class to the setPaintObjectClass()
method of PaintWindow (4.19). She then follows the cross-reference to the
PencilPaint class which reveals that it draws lines between the points
stored in a package visible array, points (4.20), and that it extends the
PaintObject class. A Quick Type Hierarchy on PaintObjectshows that it
is an abstract class, that PencilPaint is its only direct descendant, and that
EraserPaint extends from PencilPaint. The developer realizes she will
need to create a LinePaint class. Following the reference to PaintObject,
she sees that it implements only setColor() and setThickness() (4.21), so
she decides that it would be best for LinePaint to extend from PencilPaint

(this is the solution advocated in [17]).
The developer creates a LinePaint class (4.22), returns to PencilPaint

to copy the its paint() method (4.23), and then pastes it into LinePaint,
modifying it to draw a straight line between the first and last point in the
array (4.24). Returning to the Actions class, she creates a lineAction field
which activates the LinePaint class (4.25), then returns to the PaintWindow
constructor to intialize the lineButton field with this action (4.26).

39



Figure 4.17: The Line task after opening the PaintWindow class.

Figure 4.18: The Line task after scrolling to the PaintWindow constructor.

40



Figure 4.19: The Line task after navigating to the pencilAction field of
Actions.

Figure 4.20: The Line task after navigating to PencilPaint.

41



Figure 4.21: The Line task after navigating to PaintObject.

Figure 4.22: The Line task after creating a LinePaint class.

42



Figure 4.23: The Line task after copying the paint() method of PencilPaint.

Figure 4.24: The Line task after creating a paint() method in LinePaint.

43



Figure 4.25: The Line task after adding a lineAction field to Actions.

Figure 4.26: The Line task after modifying the PaintWindow constructor.

44



4.3 Case Study 2: jEdit

The study conducted in [19] consisted of a single, larger task: programmers
were asked to modify the jEdit text editor10 to allow disabling of the au-
tosave feature, which saves backup copies of all open files (“buffers”) at a
user-specified interval. The version of jEdit in question (4.1-pre6) “consists
of 64,994 noncomment, nonblank lines of source code, distributed over 301
classes in 20 packages.” Successfully completing this task requires a signifi-
cant level of understanding of the code and entails modifying the GUI and
persisting the enabled/disabled state of the autosave feature as well as dis-
covering how to disable it. Subjects were given one hour to investigate the
program and a further two hours to complete the task, and were provided
with detailed instructions on how to exercise the autosave feature, excerpts
from the jEdit user manual, a detailed change request, and eight test cases
that their solution had to pass.11

The quality of solutions was evaluated in terms of both correctness and
conformance to the design of jEdit. Two subjects were deemed “highly
successful” and completed the task in just over an hour. The other three
took nearly the full two hours; one produced a buggy, “low-quality” solution
while the other two failed on four of five subtasks.

4.3.1 Walkthrough

Subjects were also given the following “expert knowledge:” “a checkbox
should be added to org.gjt.jedit.options.LoadSaveOptionPane to en-
able/disable the autosave. The autosave timer is in org.gjt.sp.jedit.

Autosave.” Thus, our imaginary developer begins by opening the class
LoadSaveOptionPane and discovers that GUI components should be set up
in the init() method (Figure 4.27). Looking at the save() method re-
veals that it reads the state of the GUI components and passes it to the jEdit
class using its set*Property() methods (4.28). Searching for “checkbox”

10http://www.jedit.org
11The complete experimental package is available at http://www.cs.mcgill.ca/

~martin/tse1/

45

http://www.jedit.org
http://www.cs.mcgill.ca/~martin/tse1/
http://www.cs.mcgill.ca/~martin/tse1/


within LoadSaveOptionPane finds code which sets up a JCheckBox and adds
it to the GUI (4.29). Once the developer is ready to modify the GUI, this
code will serve as a template.

Opening the Autosave class, the developer discovers that the method
setInterval() will stop the autosave timer when the interval is set to zero
(4.30). She also observes that the timer invokes the actionPerformed()

method of Autosave which retrieves the list of open files and iterates through
them, calling the autosave() method of the Buffer class on each one (4.31).
The Call Hierarchy view reveals that the setInterval() method is called
only by jEdit.propertiesChanged(). Opening propertiesChanged() re-
veals that the interval is retrieved using getIntegerProperty("autosave")

(4.32), and the developer concludes that she will need to modify this method
to call setInterval(0) instead if autosave is disabled. Returning to the
LoadSaveOptionPane. save() method confirms that the "autosave" prop-
erty is set to the value of the autosave text field.

One of the requirements is that the state of the autosave feature persist.
So, the user returns to the jEdit class and looks in the Quick Outline for a
save method. She selects the saveSettings() method and determines that
it will save all of the properties to disk, including the new property she will
need to add to encode the enabled/disabled state of autosave (4.33).

Returning to Autosave.actionPerformed(), and opening a call hier-
archy on the call to Buffer.autosave() shows that it is only called by
actionPerformed(), that is, the autosave feature is only activated by the
timer, so disabling the timer will be enough to prevent all autosaving.

Because the change request specifies that autosave backup files must be
deleted as soon as autosave is disabled, the user opens the Buffer class and
looks in the Quick Outline for a delete method. Not finding one, she uses
Eclipse’s Incremental Find feature to search for the word “delete.” This
brings her to a comment in the finishSaving() method pointing out the
use of flags such as DIRTY and AUTOSAVE DIRTY to represent Buffer states.
She also sees that the autosave file is deleted whenever the buffer is saved
using the method File.delete() (4.34).

Returning to LoadSaveOptionPane, the developer adds a JCheckBox

46



Figure 4.27: The jEdit task after opening the LoadSaveOptionPane class.

field to allow disabling autosave. In LoadSaveOptionPane. init(), she
copies the template code found earlier and modifies it to set up the new
checkbox and add it to the GUI, initializing it using a new boolean property,
"autosave.enabled" (4.35). Then, she edits the save() method so that
it will set the state of this property based on the checkbox (4.36).

Returning to Autosave.actionPerformed(), she copies the code that
retrieves the list of open files and iterates through them, then returns to
jEdit.propertiesChanged() where she pastes this code and modifies it to
call the yet to be created method Buffer.deleteAutosaveFile() on each
open file (4.37). Using Eclipse’s Quick Fix option to create the method takes
her back to the Buffer class where she provides the implementation of the
method . This requires a more careful inspection of the class to understand
how the flags are used (4.38). She also modifies the load() method to
prevent loading of autosave files when the feature is disabled. Finally, she
returns to jEdit.propertiesChanged() and adds the necessary logic to call
Autosave.setInterval(0) when autosave is not enabled (4.39).

47



Figure 4.28: The jEdit task after scrolling to the save() method.

Figure 4.29: The jEdit task after finding code which sets up a JCheckBox.

48



Figure 4.30: The jEdit task after opening the Autosave class.

Figure 4.31: The jEdit task after scrolling to actionPerformed() in Autosave.

49



Figure 4.32: The jEdit task after navigating to propertiesChanged() in the
jEdit class.

Figure 4.33: The jEdit task after navigating to saveSettings() in jEdit.

50



Figure 4.34: The jEdit task after opening the Buffer class.

Figure 4.35: The jEdit task after editing the init() in LoadSaveOptionPane.

51



Figure 4.36: The jEdit task after editing the save() method of LoadSaveOp-
tionPane.

Figure 4.37: The jEdit task after editing jEdit.propertiesChanged().

52



Figure 4.38: The jEdit task after creating the method deleteAutosaveFile()
in the Buffer class.

Figure 4.39: The jEdit task after further editing jEdit.propertiesChanged().

53



Task
Navigations

Returns
Eclipse Prototype

Scroll 10 7 5
Undo 4 2 2
Line 7 3 4
jEdit 13 6 8

Total 34 18 19

Table 4.1: Case study results.

4.4 Results

Table 4.1 presents the results of the case studies. The central columns show
the number of navigations for each task when using Eclipse and when using
the prototype. These numbers count explicit navigations such as following a
cross-reference or selecting an editor tab to bring its editor to the front (when
not using the prototype). In some cases, a cross-reference is followed when
using the prototype to a location which is already open and perhaps visible,
but we still count this as an explicit navigation. Although it is possible
the developer using the prototype would see that the location was directly
accessible without following the cross-reference, we do not assume that they
will. We do not consider scrolling to be navigation, partly because of the
extremely unrealistically small screen used for the case studies. The final
column of the table counts the number of times that a developer using the
prototype would have returned to a file that was already on screen, whether
they did so with an explicit navigation or not. While the difference in the
first two columns measures how many explicit navigations a developer using
the prototype would have saved, the last column represents how many scene
changes were avoided.

The last row of the table shows the totals across all tasks. In total, the
potential savings in navigations when using the prototype was 47%. Also,
56% of navigations would have taken the user back to a file that was already
on the screen if she were using the prototype.

54



Although fairly small (especially as presented), these case studies reveal
the general pattern that was experienced by the author when using the
prototype for tasks of a much longer duration and which is to be expected
given that it is based on Mylyn. Initially, the editor area goes through a
period of evolution as files are added and resized. Then, as the degree-of-
interest function stabilizes, it changes less and less as it converges to the
most important files.

55



Chapter 5

Discussion

The author used various versions of the prototype over a period of months
in the development of the prototype itself. This chapter describes some
subjective impressions.

In general, the ability to see multiple files at once was very useful. Not
only did it make it easier to reason across multiple files, it also made it
easy to work on two sub-tasks at once, when each was mostly restricted
to a different file. Each sub-task was perceived as being associated with
a different part of the screen, and switching between them only required
changing one’s gaze. Like Mylyn’s explicit support for task contexts, this
made it easier to recover context when switching sub-tasks, even when these
sub-tasks were not explicitly managed by Mylyn.

Often, the presence of an arrow pointed out that a relevant declaration
was on the screen when it might not otherwise have been noticed, especially
just after opening a file by following a cross-reference. Depending on the
situation, this circumstance would either allow the user to follow a cross-
reference without explicitly performing a navigation, or it would encourage
them to look at information they would not otherwise have bothered to
navigate to. This was generally found to be beneficial, but it does raise
the possibility of distracting the user with too many details. At least once,
the presence of an arrow resulted in the body of a method being glanced at
without any thought. This supports the idea that simultaneously displaying
important elements in different files and graphically overlaying structure on
to the text might allow the user to synthesize information from multiple
code locations much faster than if they had to explicitly navigate between
them, no matter what navigation aids they might use.

Arrows also made it easier to locate cross-references that were known to

56



be present, and they were helpful in thinking about the call relationships
between three or more methods without getting lost. In one case, the pres-
ence of calls to a set method in one code block and to the corresponding
get method in a subsequent block, as pointed out by arrows, provided a
strong hint as to the relationship between the two code blocks. When edit-
ing the code, the appearance of arrows denoting new method calls gave an
increased feeling of confidence that the new code was correct, because it
made it apparent that it had the right structure. Also, when editing every
call to a method in a piece of code, the arrows identifying that method acted
like the Mark Occurrences feature of Eclipse, with the advantage that they
remained visible when the cursor was moved.

Unfortunately, the author had less experience with progressive elision,
partly due to a bug that went unfixed for a long while, but also because
it required more explicit action than the other features of the prototype.
It is possible that making the elision slider a fixed part of the interface
rather than a popup would encourage it to be used more. However, to
the extent that progressive elision was used, it did not cause confusion and
the transition between elision levels was not difficult to follow. Setting the
elision level so that blank lines, delimiters and comments were hidden was
found to be quite useful as it allowed the information density in the editor to
be increased without significantly altering the appearance of familiar code.

57



Chapter 6

Related Work

The approach discussed in this dissertation seeks both to reduce the amount
of navigation which the programmer must perform and to display those
pieces of code which are most interesting in the context of a given task.
Therefore, we structure our discussion of related work in terms of two some-
what overlapping categories. The first, discussed in Section 6.1, contains
tools which try to ease the navigation task by providing some kind of out-
line or map of a part of a system. The second, discussed in Section 6.2,
contains tools which provide a view, usually effective, of a set of program
elements or code snippets which would otherwise be more scattered. This
is achieved either by augmenting the editor with new features or by using
special constructs to bring scattered elements together within the editor.

6.1 Navigational Aids

JQuery [12], described in Section 1.1, uses a query language to build a tree-
structured model of some of the entities and relationships making up a part
of a system. This provides a convenient navigable index to relevant source
code locations while also helping the user to keep track of her exploration
path. However, the IDE still only displays one file at a time. In contrast,
Relo [22] allows the user to build a two-dimensional graphical diagram, sim-
ilar to a UML diagram, by explicitly indicating the relationships and nodes
to be included, rather than through queries. The user can incrementally
expand the diagram by following inheritance, method call, and other rela-
tionships, or the diagram can be automatically constructed from the user’s
navigations in Eclipse. Notably, Relo allows the user to expand individual
methods in the diagram to reveal their source code, and even allows the code

58



to be edited. Relo thus makes it possible to juxtapose code from different
files, once the relevant items have been added to the diagram. However, be-
cause it would be cumbersome to perform a task involving significant reading
or editing of the code using Relo alone, the user must switch between Relo
and the standard Eclipse views. In fact, users in a preliminary evaluation
of Relo were given two monitors, one for Eclipse and one dedicated to Relo.
The approach described in this dissertation makes juxtaposition more nat-
ural by incorporating it into the standard Eclipse environment, rather than
providing a special view. Still, this approach could be used in concert with
Relo.

In [17], the behavior of developers performing maintenance tasks was
analyzed and the authors concluded that tool support for collecting and si-
multaneously viewing code fragments and documentation could significantly
reduce the time that developers spend performing navigations. Based on this
study, JASPER [3] is an Eclipse plugin which allows the user to manually
build a storable collage of “artifacts” called a working set. Each artifact is a
contiguous region of code, a text note, or a web page. Code artifacts are not
editable because of their tiny size and lack of surrounding context, but they
link back to the code, so the working set serves as a sort of two-dimensional
outline that also supports direct comparisons of code fragments. A working
set might represent a complete task context or a more focused concern, and
can be saved as documentation for future maintenance work. A key advan-
tage of this approach is that it allows developers to keep track of interesting
code at the level of arbitrary code fragments rather than at method and
field granularity. However, this leads to difficulties keeping the working set
synchronized with the source code, and users must explicitly indicate the
code fragments to be added to the set.

59



6.2 Source Code Views

6.2.1 Fisheye Views

Progressive elision bears some resemblance to fisheye views [7] of source
code which are intended to hide irrelevant details to make room for higher
level context. Given that a particular line of code is the focal point of
interest, a degree of interest function, unrelated to the Mylyn degree-of-
interest, assigns an interest value to each line of code based on its distance
from the focal point in the abstract syntax tree and its overall indentation
level, with less indented lines and lines close to the focal point receiving
higher scores. Lines with interest values below a threshold are elided. While
this provides an excellent picture of the location of the focal point within
the overall structure of the file (see Figure 6.1), much of this structure may
be either irrelevant to the task at hand or already in the developer’s head,
and highly relevant details may be hidden. The ability to activate a fisheye
view on demand seems likely to be useful, but they may not be suitable as
the primary view of the code (hence their lack of widespread adoption in
source code editors more than two decades after they were proposed).

Jaba [4] is an experimental Java programming environment which com-
bines fisheye visualization and code folding with elements of literate pro-
gramming. The editor and linked outline view both present a class as a
hierarchy of collapsible chunks, each of which can be named. Chunks can
correspond to methods or blocks, in which case they are automatically de-
fined, or they can be arbitrary regions of code, defined by the user through
the automated insertion of special comments. The user can collapse or ex-
pand individual chunks to explore the hierarchy, or she can automatically
collapse or expand all chunks of a certain type. If she specifies a focal point,
the set of expanded chunks can be automatically determined using the fish-
eye degree of interest function. As in our approach, an interest threshold
slider allows the user to control how much of the file is elided.

Jakobsen and Hornbæk [10] present an Eclipse plugin that replaces the
standard Eclipse Java editor with a fisheye view of the source file. In con-
trast to previous work, the editor is divided into separate focus and context

60



Figure 6.1: A fisheye view of a C program (taken from [7]). Line numbers
are shown at left and ellipses indicate elided text. Line 39 is the focal point.

areas, with the focus area in the middle acting like a normal Java editor and
the non-editable context areas above and below it displaying lines selected
using the degree of interest function, modified to incorporate a measure of
semantic distance from the focus area and fixed rules about the relative im-
portance of different kinds of source code lines. While using a focus area
saves the user from having to indicate which single line should be the focal
point, this approach has the disadvantage that the context area changes ir-
regularly as the user scrolls. The authors use the overview+detail technique,
providing an overview of the file along the side of the editor which shows
its structure by rendering the entire file in an unreadable microfont. The
mapping between the overview and the lines of code displayed in the context
area is indicated graphically, allowing the user to see the location of context
lines within the file. Additionally, lines in the context area with lower inter-
est scores are displayed in a smaller font, despite previous evidence [5] that
reduced font sizes result in slower performance than elision.

61



Progressive elision could be thought of as a fisheye view with multiple
focal points defined by the task context and a degree of interest function
based on Mylyn instead of syntactic distance measures. However, progres-
sive elision is much less focused on structure than a true fisheye view: with
the exception of method headers, no attempt is made to ensure that the
syntactic ancestors of each visible line are also visible. This substantially in-
creases the density of interesting information (in the Mylyn sense). Finally,
because the semantic distance function used by Jakobsen and Hornbæk puts
an emphasis on declarations of elements referenced in the focus area, their
context area appears to function similarly to a Mylyn filtered outline. This is
in contrast to our approach, which gives importance to lines which reference
interesting elements.

6.2.2 Modularizing Views

Together with Mylyn, our work can be seen as a lightweight approach to
virtual remodularization in that the developer’s view of the code changes to
reflect her current focus. Fluid AOP [9] is a more explicit technique, using
pointcuts to localize scattered code within a single editor which propagates
edits back to the appropriate locations. This supports the on-demand cre-
ation of crosscutting views which, even though they are effective, do not
constrain the underlying code by refactoring it into a new decomposition.
Rather, fluid AOP allows the user to create and work with multiple over-
lapping decompositions, each of which is suitable for a different task. While
our approach uses views created implicitly from the user’s interaction history
and is not restricted to sets of elements that can be identified by pointcuts,
it is still possible to use a query facility such as Eclipse’s built-in search to
gather scattered components into a single view. However, fluid AOP can
go further, overlaying multiple similar pieces of code into one partially ed-
itable abstraction. Because fluid AOP allows a single edit to be propagated
to multiple locations, it can also save the developer from having to make
duplicated edits. To some extent, we could achieve the same benefit by in-
corporating some form of linked editing [24], however, without a mechanism

62



similar to pointcuts, the user would have to manually select the regions to
be edited.

Decal [11] is an experimental object-oriented programming system which
supports two mutually crosscutting decompositions, one which partitions the
code into classes, and another which cuts it into modules. Each program
element belongs both to a class and to a module, and virtual source files [1]
are used to provide both a class-centric view and a module-centric view of
the code. Because both classes and modules are linguistic constructs, these
views are not derived from the program, they are (equally important facets
of) the program, and they can be edited with clearly defined semantics.

Visual separation of concerns [2] supports remodularization by altering
the program storage model, rather than using a linguistic or a purely presen-
tational approach. A program is stored as a collection of potentially nested
program elements such as classes, methods, and fields, and the editor is free
to show whatever subset of the program elements is desired, without being
constrained to showing a single and complete compilation unit. In addition
to supporting multiple mutually crosscutting views, this technique permits
revision control systems to operate at a granularity smaller than the file, po-
tentially enabling automatic concern identification through the application
of data mining techniques to the resultant revision histories.

63



Chapter 7

Future Work

Areas of future work include exploring other ways to leverage the multiple
file interaction paradigm, investigating how to better support navigation
history in a multiple file interface, and improving progressive elision. Im-
portantly, user studies should be done to better evaluate the usefulness of
this approach.

7.1 Taking Multiple File Interaction Further

While our prototype displays multiple files at once, the user can only interact
with one file at a time.12 Future work could extend some of the operations
that currently apply to a single file so that they can be used across multi-
ple files. Potential candidates include the find/replace operation and Mark
Occurrences. Additionally, the Quick Outline view might be extended with
the option to include all visible files. If Eclipse added support for selecting
multiple blocks of text, allowing the user to copy, format, indent, or com-
ment/uncomment them all at once, this would extend naturally to multiple
files.

We could explore what other kinds of graphical annotations are enabled
by the multiple file interaction paradigm. For example, we could indicate
overrides and implements relationships and navigation paths taken by the
user, perhaps incorporating “brushing,” where relationships are indicated
only when the mouse passes over one of their participating elements. We
could even allow the user to add their own annotations by drawing on the

12Eclipse allows text to be dragged from one file to another, but unfortunately, unlike
copy and paste, this does not automatically update import statements. This is probably
because the drag and drop feature was only intended to be used with one file at a time.

64



code, associating the drawings with the current task.
Layouts could be bookmarked or saved and shared as in JASPER [3],

and when activating a Mylyn task context, the user could have the option
to select from previously saved layouts.

Finally, given a sufficiently large screen, some form of prediction could
be used to automatically populate the display. For instance, an artifact
recommender such as [18] could periodically inject a new file into the display.

7.2 Better Navigation History

Eclipse maintains a history list of previously visited code locations and allows
the user to move backward and forward through this list much as they would
when using a web browser. Unfortunately, this feature is not as useful as it
could be. For instance, the list only displays file names, making it impossible
to distinguish multiple locations within the same file. Also, the tendency of
programmers to move back and forth between the same locations may lead
to many more duplicated history entries than is common when browsing
the web, and Eclipse provides no special features to handle this. When
multiple files are displayed side by side, repeatedly clicking on the back
button can cause the cursor to jump back and forth between editors without
actually revealing any new information, causing confusion and frustration.
The multiple file interaction paradigm thus renders Eclipse’s history feature
even less useful.

Our prototype augments Eclipse with a history of editor layouts, but
it could be more useful to provide a hybrid history list that includes both
previous layouts and code locations within a layout, perhaps excluding lo-
cations which do not cause an editor either to open, to cease to be hidden,
or to reveal a different location.

Another approach would be to provide separate navigation histories for
each editor. Synergistically, the option to follow a cross-reference to another
file without opening a new editor could also be provided. This would mean
that when following a chain of cross-references to some destination, the user
could choose whether to open each new file in a new editor, leaving the

65



navigation history visible on the screen, or to follow cross-references within
the same editor, thereby preventing the allocation of screen space to unin-
teresting files visited along the way. Recently, Sherwood has experimented
with giving the Eclipse user exactly this kind of control [21] in the context
of the single file interaction paradigm, resulting in an interface which is very
similar to a tabbed web browser. She observed that users exploited this
power to mark waypoints for future exploration; combining her approach
with ours would associate these waypoints with locations on the screen.

7.3 Improving Progressive Elision

The line-level interest function used in progressive elision is quite straight-
forward and could probably be improved. For instance, lines which do not
contain any field or method references, such as those using only local vari-
ables, could have their interest level set based on the interest levels of nearby
lines which use the same variables. Similarly, method and field declarations
with a low degree-of-interest could have their line-level interests increased
when they are used by interesting methods in the file. Both of these ideas
would add an informal flavour of program slicing [25] to progressive eli-
sion. It might also be interesting to experiment with a two-dimensional
elision control, where the user can adjust both the amount of elision and
the relative weighting of the degree-of-interests of its parent declaration and
its references. Another possibility would be to extend the Mylyn degree-
of-interest model to include statements or even expressions, tracking their
interest in terms of developer interactions with them. While it might not
be possible to infer that the developer has read some piece of code, it would
give the developer the power to explicitly indicate that a fragment of code
is interesting, as JASPER [3] does.

Progressive elision could also be used as a form of semantic zooming
when navigating within a file. Instead of scrolling a large distance, the user
could zoom out, scroll a short distance, and then zoom back in; we have
not explored this possibility. To better facilitate this use, we could provide
explicit support for returning to a previous level of elision.

66



Finally, the kind of overview used in Jakobsen and Hornbæk’s fisheye
editor [10] (see Section 6.2.1) could also be used with progressive elision,
perhaps in the form of a popup, to graphically map visible code fragments
to their locations within the file. This could help to keep the user oriented
when she changes the level of elision and might also help to compensate for
the lack of structural information in partially elided methods as compared
to fisheye views [7]. The overview could also be used to display Eclipse
annotations, including annotations in elided code.

7.4 User Studies

An important piece of work that remains to be done is a more complete eval-
uation of our approach. User studies could investigate whether it actually
improves programmer productivity, what effect, if any, it has on program-
mers’ mental models, whether programmers are able to remember relevant
code in terms of its location on screen, and whether programmers actually
like using the system. It would also be worthwhile evaluating how the vari-
ous facets of the system affect programmers’ ability to make sense of what
they see and to comprehend the system they are working on. For instance,
we could explore whether users can make sense of the transition between
more and less elided views, whether using elision in this way really makes
the context “feel” accessible, and whether it prevents the user from discov-
ering that hidden information is actually important. It would be interesting
to find out if the code fragments displayed in partially elided elements are
readily identifiable, if they provide useful context, and if they can reasonably
be edited. It should also be established whether using a display which is
larger, has a higher information density, and consists of more parts causes
any significant problems. Finally, users may find graphical annotations an-
noying or distracting and may prefer them to be used in a more on-demand
fashion.

67



Chapter 8

Conclusion

This research proposes that IDEs take advantage of increasing screen sizes
by juxtaposing parts of multiple files in order to present as many of the
interesting parts of the code as possible. We illustrated the feasibility of
this concept with a prototype that uses Mylyn to allocate screen space to
files and to provide a variable level of elision within files. We also used
graphical annotations in an attempt to help the user understand the con-
nections within and across files. Case studies were presented to illustrate
the approach in action. They also provided a rough measure of 50% as the
potential reduction in the time spent navigating.

While this approach can be seen as providing a new view of a Mylyn
task context, allowing the user to work with it at the source code level, it
could also be seen as a presentation-level mechanism for modularity. Pro-
gressive elision is intended to allow you to move smoothly between a viewing
a complete source file and progressively smaller subsets which are focused
on a task. Unlike traditional code folding approaches and approaches based
on virtual source files, the boundaries of these views are not crisply defined.
Displaying multiple editors at once is meant to support the developer in
thinking outside the class, juxtaposing the elements of a concern even when
they are scattered across multiple files, but without orphaning them from
their lexical context. Using graphical annotations, quite possibly beyond
those implemented here and perhaps including ad-hoc user-created annota-
tions (e.g. by allowing the user to draw on the code) might help to transform
the display into something more than a text editor, illuminating connections
within the code and supporting the user in thinking about a concern as a
concrete entity.

68



Bibliography

[1] Mark C. Chu-Carroll, James Wright, and David Shields. Supporting
aggregation in fine grained software configuration management. In SIG-
SOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium
on Foundations of software engineering, pages 99–108, New York, NY,
USA, 2002. ACM.

[2] Mark C. Chu-Carroll, James Wright, and Annie T. T. Ying. Visual
separation of concerns through multidimensional program storage. In
AOSD ’03: Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 188–197, New York, NY, USA,
2003. ACM.

[3] Michael J. Coblenz, Andrew J. Ko, and Brad A. Myers. JASPER:
an Eclipse plug-in to facilitate software maintenance tasks. In eclipse
’06: Proceedings of the 2006 OOPSLA workshop on eclipse technology
eXchange, pages 65–69, New York, NY, USA, 2006. ACM.

[4] Andy Cockburn. Supporting Tailorable Program Visualisation Through
Literate Programming and Fisheye Views. Information and Software
Technology, 43(13):745–758, 2001.

[5] Andy Cockburn and Matthew Smith. Hidden Messages: Evaluating
the Efficiency of Code Elision in Program Navigation. Interacting with
Computers: The Interdisciplinary Journal of Human-Computer Inter-
action, 15(3):387–407, 2003.

[6] Michael Desmond, Margaret-Anne Storey, and Chris Exton. Fluid
Source Code Views for Just In-Time Comprehension. In Workshop on

69



Software Engineering Properties of Languages and Aspect Technologies,
Bonn, Germany, March 2006.

[7] G.W. Furnas. Generalized Fisheye Views. In Human Factors in Com-
puting Systems III. Proceedings of the CHI’86 conference, pages 16–23,
Amsterdam, 1986. ACM.

[8] T. R. G. Green and M. Petre. Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework. Journal of Visual
Languages and Computing, 7(2):131–174, 1996.

[9] Terry Hon and Gregor Kiczales. Fluid AOP Join Point Models. In
Proceedings of the Asian Workshop on Aspect-Oriented Software De-
velopment, pages 14–17, 2006.

[10] Mikkel R. Jakobsen and Kasper Hornbæk. Evaluating a fisheye view
of source code. In CHI ’06: Proceedings of the SIGCHI conference on
Human Factors in computing systems, pages 377–386, New York, NY,
USA, 2006. ACM.

[11] Doug Janzen and Kris de Volder. Programming with Crosscutting Ef-
fective Views. In Proceedings of the European conference on object-
oriented programming, pages 197–222, Oslo, 2004. Springer-Verlag.

[12] Doug Janzen and Kris De Volder. Navigating and Querying Code With-
out Getting Lost. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 178–187,
New York, NY, USA, 2003. ACM.

[13] Mik Kersten, Matt Chapman, Andy Clement, and Adrian Colyer.
Lessons Learned Building Tool Support for Aspectj. In Matt Chap-
man, Alexandre Vasseur, and Gnter Kniesel, editors, AOSD 2006 -
Industry Track Proceedings, Bonn, Germany, March 2006.

[14] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for
IDEs. In AOSD ’05: Proceedings of the 4th international conference on

70



Aspect-oriented software development, pages 159–168, New York, NY,
USA, 2005. ACM.

[15] Mik Kersten and Gail C. Murphy. Using Task Context to Improve
Programmer Productivity. In SIGSOFT ’06/FSE-14: Proceedings of
the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 1–11, New York, NY, USA, 2006. ACM.

[16] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Pro-
ceedings European Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242, Berlin, Heidelberg, and New York, 1997.
Springer-Verlag.

[17] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet
Aung. An Exploratory Study of How Developers Seek, Relate, and Col-
lect Relevant Information during Software Maintenance Tasks. IEEE
Transactions on Software Engineering, 32(12):971–987, 2006.

[18] Martin P. Robillard. Automatic Generation of Suggestions for Program
Investigation. In ESEC/FSE-13: Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, pages
11–20, New York, NY, USA, 2005. ACM.

[19] Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. How Effective
Developers Investigate Source Code: An Exploratory Study. IEEE
Trans. Softw. Eng., 30(12):889–903, 2004.

[20] Martin P. Robillard and Gail C. Murphy. FEAT: a tool for locating,
describing, and analyzing concerns in source code. In ICSE ’03: Pro-
ceedings of the 25th International Conference on Software Engineering,
pages 822–823, Washington, DC, USA, 2003. IEEE Computer Society.

[21] Kaitlin Duck Sherwood. Path Exploration during Code Navigation.

71



Master’s thesis, The University Of British Columbia, Vancouver, B.C.,
Canada, July 2008.

[22] V. Sinha, D. Karger, and R. Miller. Relo: Helping Users Manage Con-
text during Interactive Exploratory Visualization of Large Codebases.
Visual Languages and Human-Centric Computing, 2006. VL/HCC
2006. IEEE Symposium on, pages 187–194, Sept. 2006.

[23] Margaret-Anne Storey, Li-Te Cheng, Ian Bull, and Peter Rigby. Way-
pointing and Social Tagging to Support Program Navigation. In CHI
’06: CHI ’06 extended abstracts on Human factors in computing sys-
tems, pages 1367–1372, New York, NY, USA, 2006. ACM.

[24] M. Toomim, A. Begel, and S.L. Graham. Managing Duplicated Code
with Linked Editing. Visual Languages and Human Centric Computing,
2004 IEEE Symposium on, pages 173–180, Sept. 2004.

[25] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th
international conference on Software engineering, pages 439–449, Pis-
cataway, NJ, USA, 1981. IEEE Press.

72


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Displaying Multiple Source Files, Side by Side
	Thesis Statement
	Contributions

	A Prototype in Multiple File Interaction
	Mylyn: Measuring Degree-of-Interest
	Automatic Code Folding

	Features of the Prototype
	Multiple Editors
	Progressive Elision
	Graphical Annotations
	Displaying Arbitrary Concerns


	Implementation
	Multiple Editors
	Progressive Elision
	Graphical Annotations

	Case Studies
	Methodology
	Case Study 1: Paint
	Task 1: Scroll
	Task 2: Undo
	Task 3: Line

	Case Study 2: jEdit
	Walkthrough

	Results

	Discussion
	Related Work
	Navigational Aids
	Source Code Views
	Fisheye Views
	Modularizing Views


	Future Work
	Taking Multiple File Interaction Further
	Better Navigation History
	Improving Progressive Elision
	User Studies

	Conclusion
	Bibliography

