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Preface

Have you ever looked at the first few digits the decimal expansion of a number and tried to
recognize which number it was? You probably do it all the time without realizing it. When
you see 3.14159... or 2.7182818... you have no trouble spotting 7 and e, respectively. But are

you on familiar terms with 0.572467033... or 0.405465108...? These are 73 and

log3—1log2, both of which have interesting stories to tell. You will find them, along with
those of more than 10,000 other numbers, listed in this book. But why would someone bother
to compile a listing of such facts, which may seem on the surface to be a compendium of
numerical trivia?

. . -3 . . "
Unless you had spent some time with , you might not realize that it is the sum of two

o0

¢ C‘;k and > k(£ (2k)— £ (2k +1)). The proof that each sum
k=1

very different series, Z(—l)
k=1

equals is elementary; what connection there may be between the two series remains

elusive. The number log3 —1log2 turns up as the sum of several series and the value of certain

o) o k+1 £ ©
definite integrals: Z : , Z( lk) , I dx and j
—~3k o 2k (x+D(x+2)

either number, this information might well lead you to additional findings or help you explain
what you had already discovered.

Mathematics is an adventure, and a very personal one. Its practitioners are all exploring
the same territory, but without a roadmap they all follow different paths. Unfortunately, the
mathematical literature dwells primarily on final results, the destinations, if you will, rather
than the paths the explorers took in arriving at them. We are presented with an orderly
sequence of definitions, lemmas, theorems and corollaries, but are often left mystified as to
how they were discovered in the first place.

The real empirical process of mathematics, that is, the laborious trek through false
conjectures and blind alleys and taking wrong turns, is a messy business, ill-suited to the crisp
format of referred journals. Possibly the unattractiveness of the topic accounts for the scarcity
of writing on the subject. How many unsuccessful models of computation did Turing invent
before he hit on the Turing machine? How did he even generate the models? How did he
realize that the Halting Problem was interesting to consider, let alone imagine that it was
unsolvable? What did his scrap paper look like?

This book is a field guide to the real numbers, similar in many ways to a naturalist’s
handbook. When a birdwatcher spots what he thinks may be a rare species, he notes some of
its characteristics, such as color or shape of beak, and looks it up in a field guide to verify his
identification. Likewise, when you see part of a number (its initial decimal digits), you should
be able to look it up here and find out more about it. The book is just a lexicographic list of
10,000 numbers arranged by initial digits of their decimal expansions, along with expressions
whose values share the same initial digits.

. If your research led to

1 ) 2e" +1
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This book was inspired by Neil Sloane’s A Handbook of Integer Sequences. That work,
first published in 1971, is an elaborately-compiled list of the initial terms of over 2000 integer
sequences arranged in lexicographic order. When one is confronted with the first few term of
an unfamiliar sequence, such as {1, 2, 5, 16, 65, 326, 1957,...}, a glance at Sloane reveals that
this sequence, number 589, is the total number of permutations of all subsets of n objects, that

is, Zk'{k]=z( oy —n'z , which is the closest integer to nle. Sloane’s book is
k=1 - k=1J
extremely useful for finding relatlonships among combinatorial problems. It leads to
discoveries, which help in turn generate conjectures that hopefully lead to theorems.
What impelled me to compile this catalog was an investigation into Riemann’s {-function
that I began in 1990. It struck me as incredible that we have landed men on the moon but still

o0

have not found a closed-form expression for £(3) = % I say incredible because in the 18th
k=1

century Euler proved that {(s) = Z% is a rational multiple of 7* for all even s, and gave a
k=1

formula for the coefficient in terms of Bernoulli numbers. No such formula is known for any
odd s. It is not even known whether a closed form exists.

o0

1 < 1 (-1)*
I began exploring such sums as » ———, » ——— and ) ———, whose values
;k‘ k' kz::‘k‘ +k kZ:;‘k‘ -k

can often be written as simple expressions involving various values of the C-function. For

C 1 5 = 1 7 1+ zcoth z
example, =—-{(3), =——————— and the remarkable
kz; K-k 4 kz; k*—k> 6 2

$ 1 1 . . .
ZW :E . To keep track of these many results, I kept them in a list by numerical
k=2 -

value, conveniently obtained using Mathematica®. Very quickly, after experimenting with

sums of the form zg(ak+b)—l, I began to notice connections that led to the following
k=1

theorem.
Theorem 1. For a >1 an integer, b an integer such that a+5>2 and c a positive real
1 b
number, then Z T ch(aj il )
Jj=1

An proof is given at the end of the chapter. The proof is elementary, but I never would
have been motivated to write down the theorem in the first place without studying the
emerging list of expressions sorted by numerical value.

After a time, I became somewhat obsessed with expanding the list of values and
expressions and found that as it grew it became more and more useful. I began to add material
not directly related to my research and found that it raised more questions than it answered. It
became for me both a handbook and a research manifesto

o0 o0

Z

k= 1 k=

shared the same 20-

k>0 a
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to treat analytically. After verifying that the sums were equal to over 500 digits, I began to

look for generalizations, exploring such sums as Z 7 Z Rk Zg £2k1) Z ’Z ,E3k1)
k>0 k>0 - -

give a few examples. The results suggested a conjecture, which soon yielded the following
theorem:

0

Theorem 2. For ¢ > 1 real and p prime, Z
i1 ¢’ k=1

b

Moebius function.

For a proof, see the end of the chapter. Alternatively, the theorem may be expressed in the

form Z’u (kp ) Z . This allows us to relate such strange expressions as

k=1 a k= (”P)

o0

E ! —_— E — o Moebius function sums. Unfortunately, the theorem seems to
—\2
= ( 72-) k= ( )

shed no light on trickier sums like

=y k"k '

This book is what is known in computer science as a hash table, a structure for indexing in
a small space a potentially huge number of objects. It is similar to the drawers in the card
catalog of a library. Imagine that a library only has 26 card drawers and that it places catalog
cards in each draw without sorting them. To find a book by Taylor, you must go to drawer “T”
and look through all of the cards. If the library has only a hundred books and the authors’
names are reasonably distributed over the alphabet, you can expect to have to look at only two
or three cards to find the book you want (if the library has it). If the library has a million
books, this method would be impractical because you would have to leaf through more than
20,000 cards on the average. That’s because about 40,000 cards will “hash” to the same
drawer. However, if the library had more card drawers, let’s say 17,576 of them labeled
“AAA” through “ZZZ,” you would have a much easier time since each drawer would only
have about 60 cards and you would expect to leaf through 30 of them to find a book the library
holds (all 60 to verify that the book is not there).

Hashing was originally used to create small lookup tables for lengthy data elements. The
term “hashing” in this context means cutting up into small pieces. Suppose that a company
has 300 employees and used social security numbers (which have nine digits) to identify them.
A table large enough to accommodate all possible social security numbers would need 10°
entries, too large even to store on most computer hard disks. Such a table seems wasteful
anyway, since only a few hundred locations are going to be occupied. One might try using just
the first three digits of the number, which reduces the space required to just a thousand
locations. A drawback is that the records for several employees would have to be stored at that
location (if their social security numbers began with the same three digits). An attempt to store
a record in a location where one already exists is called a “collision” and must be resolved
using other methods. There will not be many collisions in a sparse table unless the numbers
tend to cluster strongly (as the initial digits of social security numbers do). Using this scheme
in a small community where workers have lived all their lives might result in everyone hashing
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to the same location because of the geographical scheme used to assign social security
numbers. A better method would be to use the three least-significant digits or to construct a
“hash function,” one that is designed to spread the records evenly over the storage locations. A
suitable hash function for social security numbers might be to square them and use the middle
three digits. (I haven’t tried this.)

Getting back to the library, notice that any two cards in a drawer may be identical (for
multiple copies of the same book) or different. The only thing they are guaranteed to have in
common is the first three letters of the author’s last name. Now imagine that the library sets up
2620 drawers. Aside from the fact that you might have to travel for some time to get to a
drawer, once you arrive there you will probably find very few cards in it, and the chances are
excellent that if there is more than one card, you are dealing with the same author or two
authors who have identical names. Of course, it’s still possible for two authors to have
different names that share the same 20 first letters.

This book is a hash table for the real numbers. It has 10*° drawers, but to save paper only
the nonempty drawers are shown. But it differs very significantly from the card catalog of a
library, in which the indexing terms (the “keys”) have finite length. When you examine two
catalog cards, you can tell immediately whether the authors have the same name, even if their
names are very long. When you look up an entry in this book, you can’t tell immediately
whether the expressions given are identically equal or not. That’s because their decimal
expansions are of infinite length and all you know is that they share the same first 20 digits.
With that warning, I can tell you there is no case in this book known to the author in which two
listed quantities have the same initial 20 digits but are known not to be equal. There are many
cases, however, in which the author has no idea whether two expressions for the same entry are
equal, but therein lies the opportunity for much research by author and reader alike.

. o 2
sink = zsm k :ﬂT_l led me to an

As a final example, seeing with some surprise that z k e
k=1 k=1

investigation of the conditions under which the sum of an infinite series equals the sum of the
squares of its individual terms. (We may call such series “element-squaring.”) Element-
squaring series rarely occur naturally but are in fact highly abundant:

Theorem 3. Every convergent series of reals B=)_b, such that B* =) b’ <o can
k=1 k=1

be transformed into an element-squaring real series B’ = Z b, by prepending to B a single real
k=0

term b, iff B¥ — B S% . Proof: see the end of the chapter.

I hope that these examples show that the list offers both information and challenges to the
reader. It is a reference work, but also a storehouse of questions. Anyone who is fascinated by
mathematics will be able to scan through the pages here and wonder if, how and why the
entries for a given number are related.

The selection of entries in this book necessarily reflect the interests and prejudices of the
author. This will explain the relatively large number of expressions involving the C-function.
For this I make no apology; there are more interesting real numbers than would fit in any book,
even listing only their first 20 digits. The reader is encouraged to develop his own
supplements to this catalog by using Mathematica to develop a list of numbers useful in his or
her own field of study.
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Professor George Hardy once related the now-famous story of his visit to an ailing
Ramanujan in which Ramanujan asked him the number of the taxicab that brought him. Hardy
thought the number, 1729, was a dull one, but Ramanujan instantly answered that it was the
smallest integer that can be written as the sum of two cubes in two different ways, as 1° +12°
and 9°+10°. Hardy marveled that Ramanujan seemed to be on intimate terms with the
integers and regarded them as his personal friends!. It is hoped that this book will help make
the real numbers the reader’s personal friends.

Proofs of Theorems 1-3

Theorem 1. For a>1 an integer, b an integer such that a+ b >2 and c a positive real
b .
number, then z ACAL) z k‘”b R A proof'is given at the end of the chapter.
¢’
1
T Reversing the

1k

Proof: The left-hand sum may be written as the double sum ZZ
l
1

Jj=1 c k=1

Jj=
. 0 00 o0 1 o0 0 1 00 .
order of summation, 2:1: kz:: g ;k_bz Py Zk—b Z (ck“ ), , which equals

0
k=1

1 0
Z kb cka _1 Z Cka+b * ED

Theorem 2. For ¢ > 1 real and p prime, Z— = —Z Hllp i where (n) is the Moebius

function.

Proof: ZM Zz it (kp ) . Note that every term of ZL appears at least once in

-1 5 =] o

the double sum, certainly in the case when k=1 and j = p’. We will show that the sum of all
coefficients of CLP in the double sum is zero except when k£ =1 and j is a power of p, in which
case u(kp)=—1, and the result follows.

Suppose that jk is a power of p. Then if k> 1, u(kp) =0 since kp has a repeated factor.
Therefore, only the terms with £ =1 contribute to the sum and p(kp)=—1 each j a power of p.

Now consider all pairs j, k with jk =i not a power of p. Suppose that i has the factorization
p"...p, " , with each of the q,>0. If plk or if k has any repeated prime factors, then
w(kp)=0. Since ki, it suffices to consider only those k whose factors are products of subsets
P, of distinct primes taken from the set P = {pl Dy, }— {p} , a set having cardinality ¢ —1 or ¢,
depending on whether P contains p. If P, has an odd number of elements, then u(kp)=1;
otherwise, if P, has an even number of elements, then u(kp)=—-1. w(kp)=0 cannot be zero
since p does not divide k. But the number of subsets of £, having an odd number of elements

I'This incident is partially related in Kanigel, R. The Man Who Knew Infinity. New York: Washington Square Press
(1991). ISBN 0-671-75061-5. The book is a fascinating biography of Srinivasa Ramanujan.



PREFACE viii

is the same as the number of subsets having an even number of elements. Therefore, the terms
cancel each other and terms with jk not a power of p do not contribute to the double sum.
QED.

Theorem 3. Every convergent series of reals B=)_b, such that B* =) b’ <o can
k=1 k=1

be transformed into an element-squaring series B’ = Z b, by appending to B a single real term
k=0

: 1
bolffB(z)—BSZ.
Proof: For B’ to be element-squaring, it 1is necessary that

> b7 =b’+Y b’ =b+B?=b+B. Solving this quadratic equation for b, yields
k=0

k=1

+ 1—a(B® —
[30:1 1 42(B B), which is real iff B(z)—BSi. Since b, is finite, B'=b,+ B

. . 1 :
converges. It is also elementary to show that if B — B> 7 then there is no real element that

can be prepended to B to make it element-squaring. QED.

_1\f
Note that B<oo does not necessarily imply that B* <. For example, let b, =%.
Then B=¢ (%,%) , which is finite, but B = Z%, which diverges. Likewise, B <o does
k=1

not imply that B<oo. If b, = %, then B = % but B diverges.



Using This Book

This book is a catalog of over 10,000 real numbers. A typical entry looks like:

log3—1log2 1
.20273255405408219099... = # = arctanh— AS 4.5.64,J941, K148
_ i z( 1)k+1
— 52k+1(2k+1) pa 2k+1k
- J~ log xdx
f (2x+1)*

dx GR 1.513.7

j~ w(x)sin rxsinSzx
X

Each entry begins with a real number at the left, with its integer and fractional parts
separated. Entries are aligned on the decimal point. Three dots are used to indicate either (1) a
non-terminating expansion, as above, or (2) a rational number whose period is greater than 18.
Three dots are always followed by the symbol =, which denotes “approximately equal to.”

The center portion of an entry contains a list of expressions whose numerical values match
the portion of the decimal expansion shown. The entries in the list are separated by the equal
sign =; however, it is not to be inferred that the entries are identically equal, merely that their
decimal expansions share the same prefix to the precision shown.

There is no precise ordering to the expressions in an entry. In general, closed forms are
given first, followed by sums, products and then integrals. At the right margin next to
expression may appear one or more citations to references relating the expression to the
numerical value given or another expression in the entry. When more than one expression
appears on a line containing a citation, it means that the citation refers to at least one
expression on that line. See also, “Citations,” below.

Format of Numbers

Numbers are given to 19 decimal places in most cases. Where fewer than 15 digits are
given, no more are known to the author. Rational numbers are specified by repeating the
periodic portion two or more times, with the digits of the last repetition underlined. For
example, 1/22 would be written as .04504545, which is an abbreviation for the non-terminating
decimal .0454545454545045... . Since rational numbers can be specified exactly, the = symbol
rather than ~ is used to the right of the decimal. Where space does not permit a repetition of
the periodic part, it is given once only. If the period is longer than 18 decimals, the ~ sign is
used to denote that the decimal has not been written exactly. No negative entries appear.

Ordering of Entries
Entries are in lexicographic order by decimal part. Entries having the same fractional part
but different integer parts are listed in increasing magnitude by integer part. Rational numbers
are treated as if their decimal expansions were fully elaborated. For example, these entries
would appear in the following order:
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.505002034457717739...
5050150501
.505015060150701508...
.5050
.505069928817260012...

e 1

Q

Arrangement of Expressions
In general, terms in a multiplicative expression are listed in decreasing order of magnitude
except that constants, including such factors as (—1)* appear at the left. For example, 4k!2" &’

is used in preference to 4k°2k!. Additive expressions are ordered to avoid initial minus
signs, where possible. For example, 3—2k is used instead of —2k+3. These principles are
applied separately in the numerators and denominators of fractions.

Citations
Abbreviations flushed against the right margin next to an expression denote a reference to
an equation, page or section of a reference work. Page numbers are prefixed by the letter p, as
in “p. 434.” A list of cited works appears at the end of the book.
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difficulty of performing the required calculations even with computer assistance. However,
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o 2 : . .
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E,(x)
Ei(x)
Erf(x)

Erfe(x)
f(n)

oFGa;x)

F (a;b;x)

Notation

greatest odd divisor of integer n.

Airy function, solution to "' —xy = 0. AS 10.4.1
z D"
“x+k
kth Bernoulli number, B, = B, (0). AS23.1.2
_ZB( ) AS 23.1.1
number of divisors of » that are primes or powers of primes.
coefficient of x* in the expansion of T"(x).
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-1 0 l)kx2k
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AS522,AS52.16

number of divisors of n, d(n) = o, (n)
kth derangement number, d, =0, d, =1, d, =2, d,

/2
complete elliptic integral E(x) = I\/l —xsin’*0d0.
0

1
nth Euler number, £ = 2XE . (Ej .

z k( )_

k=0

o ¢

exponential integral Ei(x) = —I e di =y+logx + z

* kel

—X

( l)k 2k+1 Z o (_l)kzkx2k+l

error function \/—jet dt= \/_z kl(2k+1)

complimentary error function = 1 — Erf(x).

2k +1)!

7Z'ko

number of representations of # as an ordered product of factors
nth Fibonacci number, F, = F, =1; F, = F_ +F,_,
© xk

hypergeometric function z
k=0 K-

, where @, = a(a—1)...(a—k).

) . X ka(k)
Kummer confluent hypergeometric function Z b
k=0 %O

>

=9, nearest integer to k!/ e. Riordan 3.5

AS 23.1.2

AS 23.1.1

AS5.5.1

AS7.1.5

AS7.1.2

Wolfram A.3.9
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,F (a;b;c;x) hypergeometric function

&n

gd(2)

hg(x)
1,(x)

j)‘l

J,(x)

K(x)

K, (x)

I(x)

599
where a,, = a(a—1)...(a—k). Wolfram A.3.9
& X agyby
Z— , where a ) = a(a—1)...(a—k). Wolfram A.3.9
k=0 K-Cp
& (D
Catalan’s constant Z—z ~ 0.91596559417721901505...
= 2k+1)
- 1 1
+> +
o\ Gk+1)"  GBk-1)"
= 1 1
1+ -
o\ GBk+1)"  (Bk-1)
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Gudermannian, gd (z) = 2arctane” — 5
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. e - 1
even harmonic sum: H, = ) —
i1 2k
) o n 1
odd harmonic sum: H, = ) ——
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4 =1 DMy (n+1
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> D" D
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Z(logk _ log(k + x)jzz logk , when x is an integer n.
~\ k k+x k=1



NOTATION

li(x)

Li (x)

logx
P

pd(n)

pf(n)
pfac(n)

pq(n)
pr(n)
r(n)

s(n)
sd(n)

S(x)

S,(n,m)

S, (n,m)

Si(x)

T(s)

z,(x)

L . [ dt
logarithmic integral /i(x) = —| ——
, logt
ok
polylog function Li (x) = Z W

natural logarithm log, x

a prime number. Z denotes a sum over all primes.
P
product of divisors pd(n) = H d

dn
n 1
partial factorial pf(n) = ZF
k=0

product of primes not exceeding n, pfac(n) = H p
p<n
product of quadratfrei divisors of n, pg(n) = 27"
number of prime factors of n
4% d)
din
smallest prime factor of n

sum of the divisors of n, sd(n) = o,(n)

_x- 7”_2 _ S (_l)k(ﬂ/z)Zk 4k+3
S =] Sm( 2 jdt _Z(2k+1)!(4k+3)x '

0 k=1
Stirling number of the first kind, defined by the recurrence relation:

x(x=1)...(x—-n+1)= Zn:Sl(n,m)x'".

m=0

Stirling number of the first kind, S, (n,m) = Z( D™ k{ Jk" .

. k| 2k+1
sine integral, Si(x) = j sin‘ —dt= z (=D~
0 = QRk+DIQRk+1)

ZL& , where £ has an odd number of prime factors
k
3+
—(1-i3 )( q +iV3 ){ ’I]

= (i)

kz(;r(k/2+1)
S (=D D"
%{(61{—1)” 6k +5) J

7 (x) = Z(C(k)—l)x Z—x—X(7+ y(1-x))

w(x) = e_xze;jfc(—lx

600

HW 17.9

AS7.3.2,AS 7.3.13

AS24.13

AS24.14

AS52.1,AS5.2.14
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B(s)

g(s)
&"(s)
n(s)

A(s)

p(n)
Un)

o, (n)

#(n)
w(n)

y(x)

®(n)

<(s)
Q(n)
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( 1)k+1
Bs) = Z e
Euler's constant ¥ = lim zz —logn ~0.57721566490153286 AS6.1.3

,{gn}n[Zf(k)— ] f(x)dxj

Riemann zeta function LA
k=1
derivative of the Riemann zeta function z%
k=1
0 (_1)k+1 .
ns) =, PE (1-277)c(s)
k=1
- 1
As) =) ——=10-27)(s
(s) ;(2k+1)f ( )¢(s)

Moebius function, £2(1) =1, z4(n) = (=1)* if n has exactly k distinct prime factors, 0 otherwise.
number of different prime factors of ».

sum of kth powers of divisors of n, Z d*

din
1445 ~ 1.61803397498948482...

golden ratio,

Euler totient function, the number of positive interegs less than and relatively prime to 7.

n—1

polygamma function y(n) = — 7/...2_

ik
d* y(x
kth derivative of the polygamma function /¥ (x) = de)
X
®(n) = ) #(k)
k=1

/2
s(s)=I] 1+ (s=Dz™7°C(s)
overcounting function Q(n) = -1 + the number of divisors of the g.c.d of the exponents of the

prime factorization of n.
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