
Energy and Work10 
A greyhound can rapidly go from a standstill 
to a very speedy run—meaning a very rapid 
increase in kinetic energy, the energy of 
motion. How does the greyhound’s ability 
to convert energy from one form to 
another compare to that of other 
animals?

LOOKING AHEAD ▶▶

Forms of Energy
This dolphin has lots of kinetic energy  
as it leaves the water. At its highest  
point its energy is mostly potential 
energy.

Work and Energy
The woman does work on the jack, applying 
a force to the handle and pushing it down. This 
is a transfer of energy into the system, increas-
ing the potential energy as the car is lifted.

Conservation of Energy
As they slide, their potential energy  
decreases and their kinetic energy increases, 
but their total energy is unchanged: It is 
conserved.

You’ll learn about several of the most 
important forms of energy—kinetic, potential, 
and thermal.

You’ll learn how to calculate the work done 
by a force, and how this work is related to the 
change in a system’s energy.

How fast will they be moving when they 
reach the bottom? You’ll use a new before-
and-after analysis to find out.

 GOAL	 To introduce the concept of energy and to learn a new problem-solving strategy based on conservation of energy.

LOOKING BACK ◀◀

Motion with Constant Acceleration
In Chapter 2 you learned how to  
describe the motion of a particle  
that has a constant acceleration.  
In this chapter, you’ll use the  
constant-acceleration equations  
to connect work and energy.

STOP TO THINK

A car pulls away from a stop sign with a constant acceleration. After 
traveling 10 m, its speed is 5 m/s. What will its speed be after traveling 
40 m?

A. 10 m/s B. 20 m/s
C. 30 m/s D. 40 m/s

au

vu

A particle’s final velocity is 
related to its initial velocity, 
its acceleration, and its 
displacement by

1vx  2f 

2 = 1vx2i 

2 + 2ax ∆x
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10.1  The Basic Energy Model
Energy. It’s a word you hear all the time. We use chemical energy to heat our homes 
and bodies, electric energy to run our lights and computers, and solar energy to grow 
our crops and forests. We’re told to use energy wisely and not to waste it. Athletes 
and weary students consume “energy bars” and “energy drinks.”

But just what is energy? The concept of energy has grown and changed over time, 
and it is not easy to define in a general way just what energy is. Rather than starting 
with a formal definition, we’ll let the concept of energy expand slowly over the course 
of several chapters. In this chapter we introduce several fundamental forms of energy, 
including kinetic energy, potential energy, and thermal energy. Our goal is to under-
stand the characteristics of energy, how energy is used, and, especially important, how 
energy is transformed from one form into another. Understanding these transforma-
tions will allow us to understand and explore a wide variety of physical phenomena. 
Anything that happens involves a transformation of energy from one form to another, 
so the range of topics we’ll consider in this chapter is extensive.

In solving problems, we’ll use a key fact about energy: Energy is neither created 
nor destroyed: If one form of energy in a system decreases, it must appear in an 
equal amount in another form. Many scientists consider this law of conservation of 
energy to be the most important of all the laws of nature.

Systems and Forms of Energy
In Chapter 9 we introduced the idea of a system of interacting objects. A system can 
be as simple as a falling acorn or as complex as a city. But whether simple or com-
plex, every system in nature has associated with it a quantity we call its total energy E. 
The total energy is the sum of the different kinds of energies present in the system. 
In the table below, we give a brief overview of some of the more important forms of 
energy; in the rest of the chapter, we’ll look at several of these forms of energy in 
greater detail.

A system may have many of these kinds of energy at one time. For instance, a 
moving car has kinetic energy of motion, chemical energy stored in its gasoline, 
thermal energy in its hot engine, and many other forms of energy. FIGURE 10.1 illus-
trates the idea that the total energy of the system, E, is the sum of all the different 
energies present in the system:

E = K + Ug + Us + Eth + Echem + g (10.1)

The energies shown in this sum are the forms of energy in which we’ll be most inter-
ested in this and the next chapter. The ellipses (g) stand for other forms of energy,
such as nuclear or electric, that also might be present. We’ll treat these and others in 
later chapters.

K,  Ug,  Us,  Eth,  Echem, c

System

E  =  K  +  Ug  + Us  + Eth  +  Echem  +  c

A system can have many
di�erent kinds of energy.

The total energy E is the sum of
the energies present in the system.

System boundary

FIGURE 10.1  A system and its energies.

Continued

Some important forms of energy

Kinetic energy K Gravitational potential energy Ug Elastic or spring potential energy Us

Kinetic energy is the energy of motion. All 
moving objects have kinetic energy. The 
heavier an object and the faster it moves,  
the more kinetic energy it has. The wreck-
ing ball in this picture is effective in part 
because of its large kinetic energy.

Gravitational potential energy is stored 
energy associated with an object’s height 
above the ground. As this coaster ascends, 
energy is stored as gravitational potential 
energy. As it descends, this stored energy  
is converted into kinetic energy.

Elastic potential energy is energy stored 
when a spring or other elastic object, such as 
this archer’s bow, is stretched. This energy 
can later be transformed into the kinetic 
energy of the arrow.
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Thermal energy Eth Chemical energy Echem Nuclear energy Enuclear

Hot objects have more thermal energy  
than cold ones because the molecules in a 
hot object jiggle around more than those in 
a cold object. Thermal energy is the sum  
of the microscopic kinetic and potential 
energies of all the molecules in an object.

Electric forces cause atoms to bind 
together to make molecules. Energy can 
be stored in these bonds, energy that can 
later be released as the bonds are rear-
ranged during chemical reactions. All 
animals eat, taking in chemical energy to 
provide energy to move muscles and fuel 
processes of the body.

The forces that hold together the particles in 
the nucleus of the atom are much stronger 
than the electric forces that hold together 
molecules, so they store a great deal more 
energy. Certain nuclei break apart into 
smaller fragments, releasing some of this 
nuclear energy. The energy is transformed 
into the kinetic energy of the fragments and 
then into thermal energy.

Energy Transformations
If the amounts of each form of energy never changed, the world would be a very dull 
place. What makes the world interesting is that energy of one kind can be trans-
formed into energy of another kind. The following table illustrates a few common 
energy transformations. In this table, we use an arrow S  as a shorthand way of 
representing an energy transformation.

Some energy transformations

A weightlifter lifts a barbell over her head
The barbell has much more gravitational potential energy when high above her head than 
when on the floor. To lift the barbell, she transforms chemical energy in her body into 
gravitational potential energy of the barbell.

Echem S Ug

A base runner slides into the base
When running, he has lots of kinetic energy. After sliding, he has none. His kinetic energy 
is transformed mainly into thermal energy: The ground and his legs are slightly warmer.

K S Eth

A burning campfire
The wood contains considerable chemical energy. When the carbon in the wood combines 
chemically with oxygen in the air, this chemical energy is transformed largely into thermal 
energy of the hot gases and embers.

Echem S Eth

A springboard diver
Here’s a two-step energy transformation. At the instant shown, the board is flexed to its 
maximum extent, so that elastic potential energy is stored in the board. Soon this energy 
will begin to be transformed into kinetic energy; then, as the diver rises into the air and 
slows, this kinetic energy will be transformed into gravitational potential energy.

Us S K S Ug
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FIGURE 10.2 reinforces the idea that energy transformations are changes of 
energy within the system from one form to another. (The U in this figure is a 
generic potential energy; it could be gravitational potential energy Ug, spring poten-
tial energy Us, or some other form of potential energy.) There are two types of 
arrows in the figure. The arrow between K and U is a two-way arrow; it’s easy to 
transform energy back and forth between these forms. When the springboard diver 
goes up in the air, his kinetic energy is transformed into gravitational potential 
energy; when he comes back down, this process is reversed. But the arrow between 
K and Eth is a one-way arrow pointing toward Eth. When the runner slides into the 
base, his kinetic energy is transformed into thermal energy. This process doesn’t 
spontaneously reverse, although this would certainly make baseball a more exciting 
game. In Chapter 11, we’ll see that it is possible to transform thermal energy into 
other forms, but it’s not easy, and there are real limitations.

Energy Transfers and Work
We’ve just seen that energy transformations occur between forms of energy within a 
system. But every physical system also interacts with the world around it—that is, 
with its environment. In the course of these interactions, the system can exchange 
energy with the environment. An exchange of energy between system and envi-
ronment is called an energy transfer. There are two primary energy-transfer pro-
cesses: work, the mechanical transfer of energy to or from a system by pushing or 
pulling on it, and heat, the nonmechanical transfer of energy from the environment 
to the system (or vice versa) because of a temperature difference between the two.

FIGURE 10.3, which we call the basic energy model, shows how our energy model 
is modified to include energy transfers into and out of the system as well as energy 
transformations within the system. In this chapter we’ll consider energy transfers by 
means of work; the concept of heat will be developed in Chapters 11 and 12.

“Work” is a common word in the English language, with many meanings. When 
you first think of work, you probably think of physical effort or the job you do to 
make a living. In physics, “work” is the process of transferring energy from the 
environment to a system, or from a system to the environment, by the application of 
mechanical forces—pushes and pulls—to the system. Once the energy has been 
transferred to the system, it can appear in many forms. Exactly what form it takes 
depends on the details of the system and how the forces are applied. The table below 
gives three examples of energy transfers due to work. We use W as the symbol 
for work.

Echem

Eth

E  =  K  +  U  +  Eth  +  Echem  +  c

K U

System

FIGURE 10.2  Energy transformations 
within the system.

Echem

Eth

K U

Work,
heat

System
Energy is transferred 
from the environment 
to the system.

Energy is transferred 
from the system to 
the environment.

Environment

The environment is everything
that is not part of the system.

FIGURE 10.3  Work and heat are energy 
transfers into and out of the system.

Energy transfers: work

Putting a shot

The system: The shot

The environment: The athlete

As the athlete pushes on the shot to get it 
moving, he is doing work on the system;  
that is, he is transferring energy from  
himself to the shot. The energy transferred  
to the system appears as kinetic energy.

The transfer: W S K

Striking a match

The system: The match and matchbox

The environment: The hand

As the hand quickly pulls the match across 
the box, the hand does work on the system, 
increasing its thermal energy. The match  
head becomes hot enough to ignite.

The transfer: W S Eth

Firing a slingshot

The system: The slingshot

The environment: The boy

As the boy pulls back on the elastic 
bands, he does work on the system, 
increasing its elastic potential energy.

The transfer: W S Us

A video to support a section’s topic  
is embedded in the eText.

Video Demo The Basic Energy Model

eText
2.0
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Notice that in each example on the preceding page, the environment applies a 
force while the system undergoes a displacement. Energy is transferred as work only 
when the system moves while the force acts. A force applied to a stationary object, 
such as when you push against a wall, transfers no energy to the object and thus does 
no work.

NOTE   ▶ In the table on the preceding page, energy is being transferred from the 
athlete to the shot by the force of his hand. We say he “does work” on the shot. 
We speak similarly for the other examples. The hand does work on the match and 
matchbox, and the boy does work on the slingshot. ◀

The Law of Conservation of Energy
Work done on a system represents energy that is transferred into or out of the sys-
tem. This transferred energy changes the system’s energy by exactly the amount of 
work W that was done. Writing the change in the system’s energy as ∆E, we can 
represent this idea mathematically as

∆E = W (10.2)

Now the total energy E of a system is, according to Equation 10.1, the sum of the 
different energies present in the system. Thus the change in E is the sum of the 
changes in the different energies present. Then Equation 10.2 gives what is called 
the work-energy equation:

The work-energy equation  The total energy of a system changes by the 
amount of work done on it:

∆E = ∆K + ∆Ug + ∆Us + ∆Eth + ∆Echem + g = W (10.3)

NOTE   ▶ Equation 10.3, the work-energy equation, is the mathematical represen-
tation of the basic energy model of Figure 10.3. Together, they are the heart of 
what the subject of energy is all about. ◀

Suppose we have an isolated system, one that is separated from its surrounding 
environment in such a way that no energy is transferred into or out of the system. 
This means that no work is done on the system. The energy within the system may 
be transformed from one form into another, but it is a deep and remarkable fact of 
nature that, during these transformations, the total energy of an isolated system—the 
sum of all the individual kinds of energy—remains constant, as shown in FIGURE 10.4. 
We say that the total energy of an isolated system is conserved.

For an isolated system, we must set W = 0 in Equation 10.3, leading to the fol-
lowing statement of the law of conservation of energy:

Echem

Eth

E  =  K  +  U  +  Eth  +  Echem  +  c
  =  constant

K U

Environment

System

The system is 
isolated from the 
environment.

Energy can still be 
transformed within 
the system.

The system’s total 
energy E is conserved. 

FIGURE 10.4  An isolated system.

Law of conservation of energy  The total energy of an isolated system 
remains constant:

∆E = ∆K + ∆Ug + ∆Us + ∆Eth + ∆Echem + g = 0 (10.4)

The law of conservation of energy is similar to the law of conservation of momen-
tum. A system’s momentum changes when an external force acts on it, but the total 
momentum of an isolated system doesn’t change. Similarly, a system’s energy 
changes when external forces do work on it, but the total energy of an isolated sys-
tem doesn’t change.

In solving momentum problems, we adopted a new before-and-after perspective: 
The momentum after an interaction was the same as the momentum before the 
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10.2  Work
We’ve seen that work is the transfer of energy to or from a system by the application 
of forces exerted on the system by the environment. Thus work is done on a system 
by forces outside the system; we call such forces external forces. Only external 
forces can change the energy of a system. Internal forces—forces between objects 
within the system—cause energy transformations within the system but don’t change 
the system’s total energy. In order for energy to be transferred as work, the system 
must undergo a displacement—it must move—during the time that the force is 
applied.

Consider a system consisting of a windsurfer at rest, as shown on the left in 
FIGURE 10.5. Let’s assume that there is no friction or drag force acting on the board. 
Initially the system has no kinetic energy. But if a force from outside the system, 
such as the force due to the wind, begins to act on the system, the surfer will begin to 
speed up, and his kinetic energy will increase. In terms of energy transfers, we 
would say that the energy of the system has increased because of the work done on 
the system by the force of the wind.

What determines how much work is done by the force of the wind? First, we note 
that the greater the distance over which the wind pushes the surfer, the faster the 
surfer goes, and the more his kinetic energy increases. This implies a greater transfer 
of energy. So, the larger the displacement, the greater the work done. Second, if 
the wind pushes with a stronger force, the surfer speeds up more rapidly, and the 
change in his kinetic energy is greater than with a weaker force. The stronger the 
force, the greater the work done.

This suggests that the amount of energy transferred to a system by a force F
u
—

that is, the amount of work done by F
u
—depends on both the magnitude F of the 

force and the displacement d of the system. Many experiments of this kind have 
established that the amount of work done by F

u
 is proportional to both F and d. For 

the simplest case described above, where the force F
u
 is constant and points in the 

direction of the object’s displacement, the expression for the work done is found 
to be

STOP TO THINK 10.1	 A roller coaster slows as it goes up a hill. The energy transfor-
mation is

A. Ug S K B.  Ug S Eth C.  K S Ug D.  K S Eth

v  =  0

d
u

The system’s kinetic 
energy increases 

and the surfer 
speeds up.

The force of the wind F 
does work on the system.

F
u

u

u

vu

u

FIGURE 10.5  The force of the wind does 
work on the system, increasing its kinetic 
energy K.

W = Fd (10.5)

Work done by a constant force  F
u

 in the direction of a displacement  d
u

The unit of work, that of force multiplied by distance, is N # m. This unit is so
important that it has been given its own name, the joule (rhymes with cool). We 
define:

1 joule = 1 J = 1 N # m

Because work is simply energy being transferred, the joule is the unit of all forms 
of energy. Note that work, unlike momentum, is a scalar quantity—it has a magni-
tude but not a direction.

interaction. We will introduce a similar before-and-after perspective for energy that 
will lead to an extremely powerful problem-solving strategy.



10.2  Work	 323

Work by Forces at an Angle to the Displacement
A force does the greatest possible amount of work on an object when the force 
points in the same direction as the object’s displacement. Less work is done when 
the force acts at an angle to the displacement. To see this, consider the kite buggy of 
FIGURE 10.7a, pulled along a horizontal path by the angled force of the kite string F

u
. 

As shown in FIGURE 10.7b, we can divide F
u
 into a component F# perpendicular to the 

motion, and a component FŒ parallel to the motion. Only the parallel component acts 
to accelerate the rider and increase her kinetic energy, so only the parallel compo-
nent does work on the rider. From Figure 10.7b, we see that if the angle between F

u

and the displacement is u, then the parallel component is FŒ = F cos u. So, when the 
force acts at an angle u to the direction of the displacement, we have

A dog in a weight-pulling competition tugs a sled 4.9 m across a 
snowy track at a constant speed. The force needed to keep the 
sled moving is 350 N. How much work does the dog do? Where 
does this energy go?

Working like a dog

PREPARE  We’ll continue, as we did with momentum problems 
in Chapter 9, with a before-and-after visual overview, shown in 
FIGURE 10.6. The tension force is in the direction of the sled’s 
motion, so we can use Equation 10.5 to calculate the work that 
the dog does on the sled.

SOLVE  The work done is

W = Fd = 1350 N214.9 m2 = 1700 J

The dog does work on the system, but the kinetic energy doesn’t 
increase (the sled doesn’t speed up) and the gravitational poten-
tial energy doesn’t increase (the track is level). The energy the 
dog puts into the system goes to increasing the system’s thermal 
energy as friction warms up the runners and the snow.

ASSESS  1700 J is a decent amount of energy, as we’ll see, but 
pulling with a 350 N force (about 80 pounds) for a distance of 
4.9  m (about 16 feet) sounds like a lot of work, so our result 
makes sense.

EXAMPLE 10.1 

STRATEGIZE  Let’s take the system to be the sled + snow. The 
friction force between the runners and the snow is thus an internal 
force, so it won’t change the total energy of the system, just the 
form of the energy. But the rope extends outside the system; this is 
an external interaction, so the tension force of the rope does work 
on the sled as it moves. Since the dog pulls on the end of the rope, 
we can say, informally, that the dog does work on the system.

vu

Known
  =  350 N
  =  4.9 m
  =  constant

Find
Wd

u

Before After

T
u

T 
d 
v 

FIGURE 10.6  A dog pulling a loaded sled.

W = FŒ d = Fd cos u (10.6)

Work done by a constant force F
u
 at an angle u to the displacement d

u

Notice that this more general definition of work agrees with Equation 10.5 if u = 0°.
Tactics Box 10.1 shows how to calculate the work done by a force at any angle to 

the direction of motion. The system illustrated is a block sliding on a frictionless, 
horizontal surface, so that only the kinetic energy is changing. However, the same 
relationships hold for any object undergoing a displacement.

The quantities F and d are always positive, so the sign of W is determined 
entirely by the angle u between the force and the displacement. Note that Equa-
tion 10.6, W = Fd cos u, is valid for any angle u. In three special cases, 
u = 0°, u = 90°, and u = 180°, however, there are simple versions of Equation 10.6
that you can use. These are noted in Tactics Box 10.1.

(a)

F
u

d
u

u

F
uF

u
F#

u

The rider undergoes a 
displacement d.

The component of F parallel to the 
displacement accelerates the rider.

The component of F perpendicular to 
the displacement only pulls up on the 
rider. It doesn’t accelerate her.

u

FŒ  =  F cos u

(b)

u

u

FIGURE 10.7  The force on the kite buggy 
is at an angle to the displacement.

USTEEMA
Callout
A new STRATEGIZE step in examples shows students the “big picture” view before we delve into the details. Classroom testing of this addition has shown it to be quite popular with students, and quite effective in teaching problem-solving skills.
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Direction of force  
relative to displacement

Angles and  
work done Sign of W Energy transfer

d
u

F
u

u =  0°

vi vf

Before: After:
u u

u = 0°
cosu = 1

W = Fd

+ The force is in the direction of motion. The
block has its greatest positive acceleration. K
increases the most:

Maximum energy transfer into the system.

d
u

F
u

u 6  90°

u 6 90°
W = Fd cos u

+ The component of force parallel to the
displacement is less than F. The block has a
smaller positive acceleration. K increases less:

Decreased energy transfer into the system.

d
u

F
u

u =  90°

u = 90°
cos u = 0

W = 0

0 There is no component of force in the direction 
of motion. The block moves at constant speed. 
No change in K:

No energy transferred.

d
u

F
u

u 7  90°

u 7 90°
W = Fd  cos u

- The component of force parallel to the
displacement is opposite the motion. The
block slows down, and K decreases:

Decreased energy transfer out of the
system.

d
uF

u

u =  180°
u = 180°
cos u = -1

W = -Fd

- The force is directly opposite the motion. The
block has its greatest deceleration. K decreases
the most:

Maximum energy transfer out of the system.

Exercises 5–6

TACTICS 
BOX 10.1 Calculating the work done by a constant force

It’s 120 m from one gate to another in the airport. You use a strap 
inclined upward at a 45° angle to pull your suitcase through the air-
port. The tension in the strap is 20 N. How much work do you do?

STRATEGIZE  Let’s take the system to be the suitcase + floor. As 
with the dog sled, friction forces (in the wheels or between the 
wheels and the floor) are internal forces. Both the strap and you 
are forces outside the system. The tension force of the strap does 
work on the suitcase as it rolls. Since you are the one pulling the 
strap, this is, ultimately, energy provided by you.

PREPARE  FIGURE 10.8 is a before-and-after visual overview 
showing the suitcase and the strap. The force is at an angle to 
the displacement, so we must use Equation 10.6 to calculate the 
work.

SOLVE  The tension force does work

W = Td cos u = 120 N21120 m2cos145°2 = 1700 J

Work done in pulling a suitcase

ASSESS  This is the same amount of work that the dog did pull-
ing the sled. The force is much less, but the distance is much 
greater, so this result makes sense.

EXAMPLE 10.2

FIGURE 10.8  A suitcase pulled by a strap.
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If several forces act on an object that undergoes a displacement, each does work 
on the object. The total (or net) work Wtotal is the sum of the work done by each 
force. The total work represents the total energy transfer to the system from the envi-
ronment (if Wtotal 7 0) or from the system to the environment (if Wtotal 6 0).

Forces That Do No Work
The fact that a force acts on an object doesn’t mean that the force will do work on 
the object. The table below shows three common cases where a force does no work.

A drag racer is slowed by a 
parachute. What is the sign 
of the work done?

REASON  The drag force 
on the drag racer is shown 
in FIGURE 10.9, along with 
the dragster’s displace-
ment as it slows. The force 
points in the direction opposite the displacement, so the angle 
u in Equation 10.6 is 180°. Then cosu = cos(180°) = -1.
Because F and d in Equation 10.6 are magnitudes, and hence
positive, the work W = Fd  cosu = -Fd done by the drag
force is negative.

ASSESS  Applying Equation 10.3 to this situation, we have

∆K = W

because the only system energy that changes is the racer’s kinetic 
energy K. Because the kinetic energy is decreasing, its change 
∆K is negative. This agrees with the sign of W. This example 
illustrates the general principle that negative work represents a 
transfer of energy out of the system.

CONCEPTUAL EXAMPLE 10.3 Work done by a parachute

d
u

F
u F

u

u =  180°

FIGURE 10.9  The force acting on a drag racer.

Forces that do no work

F
u

d  =  0
u u

If the object undergoes no displacement 
while the force acts, no work is done.

This can sometimes seem counterintuitive. 
The weightlifter struggles mightily to hold 
the barbell over his head. But during the 
time the barbell remains stationary, he  
does no work on it because its displace-
ment is zero. Why then is it so hard for him 
to hold it there? Your muscles use energy to 
apply a force even if there is no displace-
ment and thus no work. We’ll talk about 
the energy that you use to perform a task  
in Chapter 11.

d
u

F
u

A force perpendicular to the displacement 
does no work.

The woman exerts only a vertical force on 
the briefcase she’s carrying. This force has 
no component in the direction of the dis-
placement, so the briefcase moves at a con-
stant velocity and its kinetic energy remains 
constant. Since the energy of the briefcase 
doesn’t change, it must be that no energy is 
being transferred to it as work.

(This is the case where u = 90° in Tactics 
Box 10.1.)

d
u

Before: After:

nu

If the part of the object on which the 
force acts undergoes no displacement, 
no work is done.

Even though the wall pushes on the 
skater with a normal force nu and she 
undergoes a displacement d

u
, the wall 

does no work on her, because the point 
of her body on which nu acts—her 
hands—undergoes no displacement. 
This makes sense: How could energy 
be transferred as work from an inert, 
stationary object? The energy to get 
the skater moving comes, as you know, 
from her muscles. This is an internal 
transformation; chemical energy in her 
muscles is converted to kinetic energy of 
her motion.
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10.3  Kinetic Energy
Kinetic energy is an object’s energy of motion. We can use what we’ve learned about 
work, and some simple kinematics, to find quantitative expressions for kinetic 
energy.

We’ll start with the case of an object in motion along a line. Such an object has 
translational kinetic energy. In Chapter 7, we introduced the idea of rotational 
motion: Objects can be in motion even if they aren’t going anywhere. An object, like 
the blade of a wind turbine, rotating about a fixed axis has rotational kinetic energy, 
the kinetic energy of the rotational motion.

Translational Kinetic Energy
Consider a car being pulled by a tow rope, as in FIGURE 10.10. The rope pulls with a 
constant force F

u
 while the car undergoes a displacement d

u
, so the force does work 

W = Fd on the car. If we ignore friction and drag, the work done by F
u
 is trans-

ferred entirely into the car’s energy of motion—its kinetic energy. In this case, the 
change in the car’s kinetic energy is given by the work-energy equation, 
Equation 10.3, as

W = ∆K = Kf - Ki (10.7)

Using kinematics, we can find another expression for the work done, in terms of 
the car’s initial and final speeds. Recall from ◀◀ SECTION 2.5 the kinematic equation

v  2
f = v  2

i + 2a ∆x

Applied to the motion of our car, ∆x = d is the car’s displacement and, from New-
ton’s second law, the acceleration is a = F /  m. Thus we can write

v  2
f = v  2

i +
2Fd
m

= v  2
i +

2W
m

where we have replaced Fd with the work W. If we now solve for the work, we find

W =
1
2

m1v  2
f - v  2

i 2 = 1
2

mv  2
f -

1
2

 mv  2
i

If we compare this result with Equation 10.7, we see that

Kf =
1
2

 mv  2
f   and  Ki =

1
2

 mv  2
i

In general, then, an object of mass m moving with speed v has kinetic energy

STOP TO THINK 10.2	 Which force does the most work?

A. The 10 N force
B. The 8 N force
C. The 6 N force
D. They all do the same

amount of work. d
u

d
u

d
u

60°

10 N

6 N
8 N

d
u

F
u

vi vf

Before: After:
u u

FIGURE 10.10  The work done by the tow 
rope increases the car’s kinetic energy.
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From Equation 10.8, the units of kinetic energy are those of mass times speed
squared, or kg # 1m /  s22. But

1 kg # 1m /  s22 = 1 kg # 1m /  s22 # m = 1 N # m = 1 J
5

1 N

We see that the units of kinetic energy are the same as those of work, as they must 
be. TABLE 10.1 gives some approximate kinetic energies.

K =
1
2

 mv2 (10.8)

Kinetic energy of an object of mass m moving with speed v
v

K

p.50

QUADRATIC

TABLE 10.1  Some approximate kinetic 
energies

Object Kinetic energy

Ant walking 1 * 10-8 J
Coin dropped 1 m 5 * 10-3 J
Person walking 70 J
Fastball, 100 mph 150 J
Bullet 5000 J
Car, 60 mph 5 * 105 J
Supertanker, 20 mph 2 * 1010 J

At a history center, an old canal boat is pulled by two draft 
horses. It doesn’t take much force to keep the boat moving; the 
drag force is quite small. But it takes some work to get the 
55,000 kg boat up to speed! The horses can pull with a steady 
force and put a 1400 N tension in the rope that connects to the 
boat. The rope is straight and level. The boat starts from rest, and 
the horses pull steadily as they begin their walk down the tow-
path. How much distance do the horses cover as they bring the 
boat up to its final speed of 0.70 m/s?

STRATEGIZE  Let’s take the system to be the boat. We could 
include the water, but since we can ignore the drag force (we’re 
told that it’s small), it’s not important to do so. The rope is not 
part of the system, so the tension force does work on the boat. 
It’s this work, which comes from energy provided by the horses, 
that increases the kinetic energy, and thus the speed, of the boat. 
We’ll consider the initial state to be the boat at rest, the final state 
to be the boat in motion at its final speed.

PREPARE  FIGURE 10.11 is a before-and-after visual overview of 
the situation. The work that is done by the rope will change the 
energy of the system, so we can use Equation 10.3, the work-
energy equation. Because the only thing that changes is the 
speed, the only form of energy that changes is the kinetic energy, 
so we can simplify the equation to

∆K = W

This makes sense—the work done changes the kinetic energy of 
the boat. The tension force is in the direction of the motion, so 

Finding the work to set a boat in motion

the work done is W = Td. The boat starts at rest, with kinetic 
energy equal to zero, so the change in kinetic energy is just the 
final kinetic energy: ∆K = 1

2mvf 

2.

SOLVE  With the details noted, the work-energy equation 
reduces to

1
2

mv  2
f = Td

We are looking for the distance the horses pull the boat:

d =
mv  2

f

2T
=

155,000 kg210.70 m/s22

211400 N2 = 9.6 m

ASSESS  This distance is about 30 feet. This seems a reasonable 
distance; the horses would be pulling for several strides as they 
get the boat up to speed.

EXAMPLE 10.4

T
u

vf
Before: After:

Known
m  =  55,000 kg vi  =  0 m/s 

vf  =  0.70 m/s 

vi  =  0

Find: d

T   =  1400 N 

u

d
u

u u

FIGURE 10.11  Getting the canal boat up to speed.

STOP TO THINK 10.3	 Rank in order, from greatest to least, the kinetic energies of 
the sliding pucks.

1 kg 2 kg1 kg-2 m/s2 m/s 2 m/s3 m/s1 kg

A. B. C. D.
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Rotational Kinetic Energy
FIGURE 10.12 shows the rotating blades of a wind turbine. Although the blades have 
no overall translational motion, each particle in the blades is moving and hence has 
kinetic energy. Adding up the kinetic energy of all the particles that make up the 
blades, we find that the blades have rotational kinetic energy, the kinetic energy due 
to rotation.

In Figure 10.12, we focus on the motion of two particles in the wind turbine 
blades. The blade assembly rotates with angular velocity v. Recall from ◀◀ SECTION 7.1 
that a particle moving with angular velocity v in a circle of radius r has a speed 
v = vr. Thus particle 1, which rotates in a circle of radius r1, moves with speed 
v1 = r1v and so has kinetic energy 1

2m1v
 2
1 = 1

2m1r
 2
1 v

2. Similarly, particle 2, which
rotates in a circle with a larger radius r2, has kinetic energy 1

2m2r
 2
2 v

2. The object’s 
rotational kinetic energy is the sum of the kinetic energies of all the particles:

Krot =
1
2

m1r
 2
1 v

2 +
1
2

m2r
 2
2 v

2 + g =
1
2
aamr2bv2

You will recognize the term in parentheses as our old friend, the moment of inertia I. 
Thus the rotational kinetic energy is

Each particle in the object 
has kinetic energy as the 
object rotates.

v2  =  vr2

r2

Rotation axisr1

m2

m1

vv1  =  vr1

FIGURE 10.12  Rotational kinetic energy of 
a spinning wind turbine.

Krot =
1
2

Iv2 (10.9)

Rotational kinetic energy of an object with  
moment of inertia I and angular velocity v

v

K

p.50

QUADRATIC

NOTE   ▶ Rotational kinetic energy is not a new form of energy. It is the ordinary 
kinetic energy of motion, only now expressed in a form that is especially conve-
nient for rotational motion. Comparison with the familiar 1

2mv2 shows again that 
the moment of inertia I is the rotational equivalent of mass. ◀

A rolling object, such as a wheel, is undergoing both rotational and translational 
motions. Consequently, its total kinetic energy is the sum of its rotational and trans-
lational kinetic energies:

K = Ktrans + Krot =
1
2

mv2 +
1
2

 Iv2 (10.10)

This illustrates an important fact: The kinetic energy of a rolling object is always 
greater than that of a nonrotating object moving at the same speed.

◀ Rotational recharge  A promising new technology would replace spacecraft batteries
that need periodic and costly replacement with a flywheel—a cylinder rotating at a very
high angular speed. Energy from solar panels is used to speed up the flywheel, which stores
energy as rotational kinetic energy that can then be converted back into electric energy as
needed.

Any time a cyclist stops, it will take energy to get moving again. 
Using less energy to get going means more energy is available 
to go farther or go faster, so racing cyclists want their bikes to 
be as light as possible. It’s particularly important to have light-
weight wheels, as this example will show. Consider two bikes 
that have the same total mass but different mass wheels. Bike 1 

Where should you trim the weight?

has a 10.0 kg frame and two 1.00 kg wheels; bike 2 has a 
9.00 kg frame and two 1.50 kg wheels. Both bikes thus have the 
same 12.0 kg total mass. What is the kinetic energy of each bike 
when they are moving at 12.0 m/s? Most of the weight of the 
tire and wheel is at the rim, so we can model each wheel as  
a hoop.

EXAMPLE 10.5 

Video Demo  Canned Food Race

eText
2.0
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10.4  Potential Energy
When two or more objects in a system interact, it is sometimes possible to store 
energy in the system in a way that the energy can be easily recovered. For instance, 
the earth and a ball interact by the gravitational force between them. If the ball is 
lifted up into the air, energy is stored in the ball + earth system, energy that can later 
be recovered as kinetic energy when the ball is released and falls. Similarly, a spring 
is a system made up of countless atoms that interact via their atomic “springs.” If we 
push a box against a spring, energy is stored that can be recovered when the spring 
later pushes the box across the table. This sort of stored energy is called potential 
energy, since it has the potential to be converted into other forms of energy, such as 
kinetic or thermal energy.

NOTE   ▶ Potential energy is really a property of a system, but we often speak 
informally of the potential energy of an object. We might say, for instance, that 
raising a ball increases its potential energy. This is fine as long as we remember 
that this energy is really stored in the ball + earth system. ◀

The forces due to gravity and springs are special in that they allow for the storage 
of energy. Other interaction forces do not. When a dog pulls a sled, the sled interacts 
with the ground via the force of friction, and the work that the dog does on the sled 
is converted into thermal energy. The energy is not stored up for later recovery—it 
slowly diffuses into the environment and cannot be recovered.

STRATEGIZE  As the bike moves, the wheels rotate. The bike 
has translational kinetic energy, but the wheels have both transla-
tional and rotational kinetic energy. If the bike is moving at speed 
v, we know from Chapter 7 that the wheels rotate at v = v/R, 
where R is the radius of a wheel.

PREPARE  Each bike’s frame has only translational kinetic 
energy Kframe =

1
2mv2, where m is the mass of the frame. The

kinetic energy of each rolling wheel is given by Equation 10.10. 
From Table 7.1, we find that I for a hoop is MR2, where M is the 
mass of one wheel.

SOLVE  From Equation 10.10 the kinetic energy of each rolling 
wheel is

Kwheel =
1
2

 Mv2 +
1
2

Iv2 =
1
2

Mv2 +
1
2
1MR22a v

R
b

2

= Mv2

()* ()*
I v2

Then the total kinetic energy of a bike is

K = Kframe + 2Kwheel =
1
2

mv2 + 2Mv2

The factor of 2 in the second term occurs because each bike has 
two wheels. Thus the kinetic energies of the two bikes are

 K1 =
1
2
110.0 kg2112.0 m /  s22 + 211.00 kg2112.0 m /  s22

= 1010 J

 K2 =
1
2
19.00 kg2112.0 m /  s22 + 211.50 kg2112.0 m /  s22

= 1080 J

The kinetic energy of bike 2 is about 7% higher than that of bike 
1. Note that the radius of the wheels was not needed in this
calculation.

ASSESS  We were told that it’s particularly important for cyclists 
to have lightweight wheels, so this result makes sense. Both of 
the bikes in the example have the same total mass, but the one 
with lighter wheels takes less energy to get moving. Shaving a 
little extra weight off your bike’s wheels is more useful than tak-
ing that same weight off the bike’s frame.
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Gravitational Potential Energy
To find an expression for gravitational potential energy Ug, let’s consider the sys-
tem of the book and the earth shown in FIGURE 10.13a. The book is lifted at a constant 
speed from its initial position at yi to a final height yf. The lifting force of the hand is 
external to the system and so does work W on the system, increasing its energy. The 
book is lifted at a constant speed, so its kinetic energy doesn’t change. Because 
there’s no friction, the book’s thermal energy doesn’t change either. Thus the work 
done goes entirely into increasing the gravitational potential energy of the system. 
According to Equation 10.3, the work-energy equation, this can be written as 
∆Ug = W. Because ∆Ug = 1Ug2f - 1Ug2i, Equation 10.3 can be written

1Ug2f = 1Ug2i + W (10.11)

The work done is W = Fd, where d = ∆y = yf - yi is the vertical distance that the 
book is lifted. From the free-body diagram of FIGURE 10.13b, we see that F = mg. 
Thus W = mg  ∆y, and so

1Ug2f = 1Ug2i + mg∆y (10.12)

Because our final height was greater than our initial height, ∆y is positive and 
1Ug2f 7 1Ug2i. The higher the object is lifted, the greater the gravitational poten-
tial energy in the object ∙ earth system.

We can express Equation 10.12 in terms of the change in potential energy, 
∆Ug = 1Ug2f - 1Ug2i:

∆Ug = mg∆y (10.13)

If we lift a 1.5 kg book up by ∆y = 2.0 m, we increase the system’s gravitational 
potential energy by ∆Ug = 11.5 kg219.8 m /  s2212.0 m2 = 29.4 J. This increase is
independent of the book’s starting height: The gravitational potential energy increases 
by 29.4 J whether we lift the book 2.0 m starting at sea level or starting at the top of 
the Washington Monument. This illustrates an important general fact about every 
form of potential energy: Only changes in potential energy are significant.

Because of this fact, we are free to choose a reference level where we define Ug 
to be zero. Our expression for Ug is particularly simple if we choose this reference 
level to be at y = 0. We then have

F
u

F
u

This work increases the 
system’s gravitational 
potential energy.

The book and 
the earth are 
the system. System

boundary

Earth

After

Before

The external force F 
from the hand does 
work on the system.

∆y

yf , (Ug)f

yi , (Ug)i

(a)

y  =  0
Ug  =  0

u

wu

F
u

(b) Because the book is being lifted at 
a constant speed, it is in dynamic 
equilibrium with Fnet  =  0. Thus
F  =  w  =  mg.

u u

FIGURE 10.13  Lifting a book increases the 
system’s gravitational potential energy.

Ug = mgy (10.14)

Gravitational potential energy of an object of mass m at height y  
(assuming Ug = 0 when the object is at y = 0)

In the Empire State 
Building Run-Up, 
competitors race up 
the 1576 steps of the 
Empire State Build-
ing, climbing a total 
vertical distance of 
320 m. How much 
gravitational poten-
tial energy does a 
70  kg racer gain 
during this race?

STRATEGIZE  We’ll take the system to be the racer + earth so 
that we can consider gravitational potential energy.

Racing up a skyscraper

PREPARE  We are asked for the change in gravitational potential 
energy as the racer goes up the stairs, so we need only consider 
the change in height, which is given. We can use Equation 10.13 
to compute the change in potential energy during the run.

SOLVE  As the racer goes up the stairs, her change in gravita-
tional potential energy is

∆Ug = mg∆y = 170 kg219.8 m/s221320 m2 = 2.2 * 105 J

ASSESS  This is a lot of energy. According to Table 10.1, it’s 
comparable to the energy of a speeding car. But the difference 
in height is pretty great, so this seems reasonable. In Chapter 11, 
we’ll consider how much food energy you’d need to consume to 
fuel this climb.

EXAMPLE 10.6 

Racers head up the staircase in the 
Empire State Building Run-Up.
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An important conclusion from Equation 10.14 is that gravitational potential 
energy depends only on the height of the object above the reference level y = 0, not 
on the object’s horizontal position. To understand why, consider carrying a briefcase 
while walking on level ground at a constant speed. As shown in the table on 
page 325, the vertical force of your hand on the briefcase is perpendicular to the 
displacement. No work is done on the briefcase, so its gravitational potential energy 
remains constant as long as its height above the ground doesn’t change.

This idea can be applied to more complicated cases, such as the 82 kg hiker in 
FIGURE 10.14. His gravitational potential energy depends only on his height y above 
the reference level. Along path A, it’s the same value Ug = mgy = 80 kJ at any point 
where he is at height y = 100 m above the reference level. If he had instead taken 
path B, his gravitational potential energy at y = 100 m would be the same 80 kJ. It 
doesn’t matter how he gets to the 100 m elevation; his potential energy at that height 
is always the same. Gravitational potential energy depends only on the height of 
an object and not on the path the object took to get to that position. This fact will 
allow us to use the law of conservation of energy to easily solve a variety of prob-
lems that would be very difficult to solve using Newton’s laws alone.

Path
 B

 

His potential energy is the 
same at any point where 
his elevation is 100 m.

The reference level y  =  0 m 
is where Ug  =  0 J. 

Ug  =  160 kJ

100 m

200 m

0 m
Ug  =  80 kJPa

th
 A

The hiker’s potential 
energy at the top is 160 kJ 
regardless of whether he 
took path A or path B.

FIGURE 10.14  The hiker’s gravitational 
potential energy depends only on his 
height above the y = 0 m reference level.

Elastic Potential Energy
Energy can also be stored in a compressed or extended spring as elastic (or spring) 
potential energy Us. We can find out how much energy is stored in a spring by 
using an external force to slowly compress the spring. This external force does work 
on the spring, transferring energy to the spring. Since only the elastic potential 
energy of the spring is changing, Equation 10.3 becomes

∆Us = W (10.15)

That is, we can find out how much elastic potential energy is stored in the spring by 
calculating the amount of work needed to compress the spring.

FIGURE 10.15 shows a spring being compressed by a hand. In ◀◀ SECTION 8.3 we 
found that the force the spring exerts on the hand is Fs = -k ∆x (Hooke’s law), 
where ∆x is the displacement of the end of the spring from its equilibrium position 
and k is the spring constant. In Figure 10.15 we have set the origin of our coordinate 
system at the equilibrium position. The displacement from equilibrium ∆x is there-
fore equal to x, and the spring force is then -kx. By Newton’s third law, the force 
that the hand exerts on the spring is thus F = +kx.

As the hand pushes the end of the spring from its equilibrium position to a final 
position x, the applied force increases from 0 to kx. This is not a constant force, so 
we can’t use Equation 10.5, W = Fd, to find the work done. However, it seems rea-
sonable to calculate the work by using the average force in Equation 10.5. Because 
the force varies from Fi = 0 to Ff = kx, the average force used to compress the spring 
is Favg =

1
2 kx. Thus the work done by the hand is

W = Favgd = Favgx = a1
2

kxbx =
1
2

kx2

This work is stored as potential energy in the spring, so we can use Equation 10.15 
to find that as the spring is compressed, the elastic potential energy increases by

∆Us =
1
2

kx2

STOP TO THINK 10.4	 Rank in order, from largest  
to smallest, the gravitational potential energies of 
identical balls 1 through 4.

1

2

3

4

v  =  0

vu

F
u

x  =  0

x

x

Spring in equilibrium

As x increases, 
so does F.

FIGURE 10.15  The force required to 
compress a spring is not constant.
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Just as in the case of gravitational potential energy, we have found an expression for 
the change in Us, not Us itself. Again, we are free to set Us = 0 at any convenient 
spring extension. An obvious choice is to set Us = 0 at the point where the spring is 
in equilibrium, neither compressed nor stretched—that is, at x = 0. With this choice 
we have

On each stride, the tendon 
stretches, storing energy.

Calf muscle

Achilles tendon

Spring in your step  When you run, 
your feet repeatedly stop and start; when 
your foot strikes the ground, it comes to rest, 
losing kinetic energy. About 35% of this 
decrease in kinetic energy is stored as elastic 
potential energy in the stretchable Achilles 
tendon of the lower leg. On each plant of the 
foot, the tendon is stretched, storing some 
energy. The tendon springs back as you 
push off the ground again, helping to propel 
you forward and returning the stored elas-
tic potential energy back to kinetic energy. 
Recovering this energy that would otherwise 
be lost and thus increases your efficiency.

Us =
1
2

kx2 (10.16)

Elastic potential energy of a spring displaced a distance x from 
equilibrium (assuming Us = 0 when the end of the spring is at x = 0)

x

Us

p.50

QUADRATIC

NOTE   ▶ Because Us depends on the square of the displacement x, Us is the same 
whether x is positive (the spring is compressed as in Figure 10.15) or negative 
(the spring is stretched). ◀

EXAMPLE 10.7 

We noted that your Achilles tendon stretches when you run, and this stores some 
energy—energy that is returned to you when you push off the ground with your foot. 
FIGURE 10.16 shows smoothed data for restoring force versus extension for the Achilles 
tendon and attached muscle in a female sub-
ject. When she runs, at one point in her stride 
the stretch reaches a maximum of 0.50 cm. 
What energy is stored for this stretch?

STRATEGIZE  The force increases linearly 
with extension, so we can model the tendon 
as a spring. If we find the spring constant, we 
can compute the stored energy using Equation 
10.16.

PREPARE  The spring constant k is the slope of 
the graph in Figure 10.16. At the top right, the 
line goes through a point that is easy to read off the axes. Using this point, we deter-
mine the slope to be

k = slope =
400 N

0.0024 m
= 1.67 * 105 N/m

SOLVE  With this spring constant, the energy stored for a 0.50 cm (0.0050 m) stretch is

Us =
1
2

kx2 =
1
2
11.67 * 105 N/m210.0050 m22 = 2.1 J

ASSESS  Table 10.1 gives 70 J as the kinetic energy for a person walking; 2.1 J is 
a few percent of that value. This is reasonable: When you run, the only part of your 
body that stops and starts is your feet; it’s a fraction of this energy that is recovered, 
and we expect this to be a small fraction of the kinetic energy of your body. How-
ever, even this small amount of energy is useful; over a long run of many steps, it will  
add saving up!

Finding the energy stored in a stretched tendon 

Restoring force (N)

0

400

200

0
0.06 0.12

Extension (cm)
0.240.18

FIGURE 10.16  Force data for the 
stretch of the Achilles tendon.

STOP TO THINK 10.5	 When a spring is stretched by 5 cm, its elastic potential energy 
is 1 J. What will its elastic potential energy be if it is compressed by 10 cm?

A. -4 J B.  -2 J C. 2 J D. 4 J

USTEEMA
Callout
Larger BIO icon to make bio content easier to find
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10.5  Thermal Energy
We noted earlier that thermal energy is related to the microscopic motion of the 
atoms of an object. As FIGURE 10.17 shows, the atoms in a hot object jiggle around 
their average positions more than the atoms in a cold object. This has two conse-
quences. First, each atom is on average moving faster in the hot object. This means 
that each atom has a higher kinetic energy. Second, each atom in the hot object tends 
to stray farther from its equilibrium position, leading to a greater stretching or com-
pressing of the spring-like molecular bonds. This means that each atom has on aver-
age a higher potential energy. The potential energy stored in any one bond and the 
kinetic energy of any one atom are both exceedingly small, but there are incredibly 
many bonds and atoms. The sum of all these microscopic potential and kinetic ener-
gies is what we call thermal energy Eth. Increasing an object’s thermal energy cor-
responds to increasing its temperature.

Hot object: Fast-moving atoms have lots of 
kinetic and elastic potential energy.

Cold object: Slow-moving atoms have little 
kinetic and elastic potential energy.

FIGURE 10.17  An atomic view of thermal energy.

Trail along which
box was dragged

FIGURE 10.18  A thermograph of a box 
that’s been dragged across the floor.

FIGURE 10.18 shows a thermograph of a heavy box and the floor across which it 
has just been dragged. In this image, cool areas appear in shades of blue and green, 
warm areas in shades of red. You can clearly see that the patch of floor that the box 
has been dragged across is much warmer than the box or the rest of the floor. Drag-
ging the box across the floor caused the thermal energy of the system to increase.

This increase in thermal energy is a general feature of any system in which there 
is friction between sliding objects. An atomic-level explanation is illustrated in 
FIGURE 10.19. The interaction between the surfaces that leads to the force of friction 
also leads to increased thermal energy of the sliding surfaces.

We can find a quantitative expression for the change in thermal energy by consid-
ering the case of the box pulled by a rope at a constant speed. Let’s consider the sys-
tem to be the box + floor. As the box is pulled across the floor, the rope exerts a 
constant forward force F

u
 on the box, while the friction force f

u

k exerts a constant
force on the box that is directed backward. Because the box moves at a constant 
speed, the magnitudes of these two forces are equal: F = fk. As the box moves 
through a displacement d = ∆x, the rope does work W = F∆x = fk∆x on the box. 
This work represents energy transferred into the system, so the system’s energy must 
increase. The box’s kinetic energy and gravitational potential energy don’t change, so 
the increased energy must be in the form of thermal energy Eth. Because all of the 
work into the system shows up as increased thermal energy, we can say that

∆Eth =  fk∆x (10.17)

The increased thermal energy is distributed between the two surfaces, the box and 
the floor, the two elements of the system. Although we arrived at Equation 10.17 by 
considering energy transferred into the system via work done by an external force, 
the equation is equally valid for the transformation of energy into thermal energy 
when, for instance, an object slides to a halt on a rough surface.

vu

Atoms at the interface push 
and pull on each other as the 
upper object slides past.

The spring-like molecular bonds 
stretch and store elastic potential 
energy.

When the bonds break, the elastic 
potential energy is converted into 
kinetic and potential energy of the 
atoms—that is, into thermal energy.

FIGURE 10.19  How friction causes an 
increase in thermal energy.

Video Demo  Figure 10.19

eText
2.0
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We can do a similar analysis for the drag force. For the case of an object moving 
through air, water, or another fluid that exerts a drag force, we’ll consider the 
object + fluid to be the system. As the object moves, the drag force D transforms 
energy into thermal energy:

∆Eth = D∆x (10.18)

The change in thermal energy is mostly a change in the air or the water: Collisions 
between the object and particles of the fluid cause the particles to move more 
quickly, thus increasing thermal energy. 

The work-energy equation, Equation 10.3, states that the change in the total 
energy of a system equals the energy transferred to or from the system as work. If 
we consider only those forms of energy that are typically transformed during the 
motion of ordinary objects—kinetic energy K, gravitational and elastic potential 
energies Ug and Us, and thermal energy Eth—then the work-energy equation can be 
written as

∆K + ∆U + ∆Eth = W (10.19)

NOTE   ▶ We’ve written the change in potential energy as a single potential energy 
change ∆U. Depending on the situation, we can interpret this as a change in 
gravitational potential energy, a change in elastic potential energy, or a combina-
tion of the two. In later chapters, we’ll add additional forms of potential energy, 
and this equation can be adapted accordingly. ◀

STOP TO THINK 10.6	 A block with an initial kinetic energy of 4.0 J comes to rest 
after sliding 1.0 m. How far would the block slide if it had 8.0 J of initial kinetic 
energy?

A. 1.4 m B. 2.0 m C. 3.0 m D. 4.0 m

How much energy is required for a 70 kg swimmer to complete a 
1.0 km swim at a steady 1.4 m/s? We can assume typical data for 
a swimmer moving through the water: frontal area 0.080 m2, 
drag coefficient 0.45, density of water 1000 kg/m3.

STRATEGIZE  Moving through the water at a constant speed 
means continuously replacing the energy that drag trans-
forms into thermal energy. We can compute the change in ther-
mal energy during the swim to find energy that the swimmer 
must supply. We can find the change in thermal energy using 
Equation 10.18.

PREPARE  We’ll need to compute the drag force before we can 
find the necessary energy. A swimmer moving through the water 
has a very large Reynold’s number, so we can use Equation 5.b to 
compute the drag force, as shown in the next column:

How much energy does it take to swim a kilometer?

 D =
1
2

CDrAv2

=
1
2
10.45211000 kg/m3210.080 m2211.4 m/s22 = 35 N

SOLVE  With the drag force in hand, we can find the energy con-
verted to thermal energy:

∆Eth = D∆x = 135 N211000 m2 = 3.5 * 104 J

This is the energy that the swimmer must supply, which is all 
converted to thermal energy. The net effect of swimming laps is 
to warm up the water in the pool!

ASSESS  This is a lot of energy, about one-sixth of the energy 
needed to climb the Empire State Building, which seems 
reasonable.

EXAMPLE 10.8

We’ve done a few calculations of the energy required for certain tasks. But there’s 
another factor to consider—efficiency. How much energy would your body actually 
use in completing these tasks? The swimmer needs to supply 3.5 * 104 J to move
through the water. But how much metabolic energy will it cost the swimmer to pro-
vide this energy? Swimming is, for humans, a reasonably inefficient form of loco-
motion, so the energy used by the swimmer is quite a bit greater than the value we 
found. We’ll return to this issue in Chapter 11.
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10.6  Conservation of Energy
Just as for momentum conservation, we will develop a before-and-after perspective 
for energy conservation. We’ll limit our consideration for now to kinetic energy, 
potential energy (both gravitational and elastic), thermal energy, and work. We then 
note that ∆K = Kf - Ki and ∆U = Uf - Ui. Now we can rewrite Equation 10.19 as a 
rule that we can use to solve problems:

Kf + Uf + ∆Eth = Ki + Ui + W (10.20)
Before-and-after work-energy equation

Equation 10.20 states that a system’s final energy, including any change in the sys-
tem’s thermal energy, equals its initial energy plus any energy added to the system as 
work. This equation is the basis for a powerful problem-solving approach.

NOTE   ▶ We don’t write ∆Eth as 1Eth2f - 1Eth2i in Equation 10.20 because the 
initial and final values of the thermal energy are typically unknown; only their 
difference ∆Eth can be measured. ◀

In Section 10.1 we introduced the idea of an isolated system—one in which no 
work is done on the system and no energy is transferred into or out of the system. In 
that case, W = 0 in Equation 10.20, so the final energy, including any change in 
thermal energy, equals the initial energy:

Kf + Uf + ∆Eth = Ki + Ui

The following table shows how to choose an isolated system for common situations.

Video Demo  Breaking Boards

eText
2.0

Video Demo  Chin Basher?

eText
2.0

Using the Law of Conservation of Energy
Now that we have mathematical expressions for different forms of energy and a gen-
eral before-and-after equation expressing the law of conservation of energy, we have 
all the tools we need to formulate a problem-solving approach. We’ll sketch out the 
details and then use it to solve a range of problems.

KEY CONCEPT

An object in free fall
An object sliding down a  

frictionless ramp
An object compressing  

a spring
An object sliding along a  

surface with friction 

Earth

Fball on earth

w  =  Fearth on ball
u u

u

We choose the ball and the  
earth as the system, so that  
the forces between them are  
internal forces. There are no 
external forces to do work,  
so the system is isolated.

nu

Earth

The external force the ramp  
exerts on the object is  
perpendicular to the motion,  
and so does no work. The object  
and the earth together form an  
isolated system.

vu

We choose the object  
and the spring to be the 
system. The forces  
between them are internal 
forces, so no work is  
done.

Surface

Earth

The block and the surface 
interact via kinetic friction 
forces, but these forces are 
internal to the system. There 
are no external forces to do 
work, so the system is isolated.

Choosing an isolated system

STOP TO THINK 10.7	 A student is sliding down a rope, using friction to keep her moving at a 
constant speed. How do you choose the system so that it is isolated?

USTEEMA
Callout
Key Concept figures encourage students to actively engage with key or complex figures by asking them to reason with a related Stop To Think question.
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PROBLEM-SOLVING 
A P P R O A C H  1 0 . 1 

The work-energy equation and the law of conservation of energy relate a 
system’s final energy to its initial energy. We can solve for initial and final 
heights, speeds, and displacements from these energies.

STRATEGIZE  The first step in a conservation of energy problem is to choose the 
system. This means thinking about the forces and the energies involved. We’ll 
consider the situation before and after a process or an interaction, so we must 
also decide on the initial and final states.

PREPARE  As we did for momentum problems, we’ll start with a before-and-
after visual overview, as outlined in Tactics Box 9.1. Note the known quanti-
ties, and identify what you’re trying to find.

SOLVE  Apply Equation 10.20:

Kf + Uf + ∆Eth = Ki + Ui + W

Start with this general equation, then specialize to the case at hand:
■■ Use the appropriate form or forms of potential energy.
■■ If the system is isolated, no work is done. Set W = 0.
■■ If there is no friction, drag, or similar force, set ∆Eth = 0.

Depending on the problem, you’ll need to calculate the initial and/or final val-
ues of these energies. You can then solve for the unknown energies, and from 
these any unknown speeds (from K), heights and distances (from Ug and Us), 
or displacements, friction, or drag forces.

ASSESS  Check the signs of your energies. Kinetic energy is always positive, 
as is the change in thermal energy. Check that your result has the correct units, 
is reasonable, and answers the question.

Conservation of energy problems

Exercise 23

Spring into action  A locust can jump 
as far as 1 meter, an impressive distance for 
such a small animal. To make such a jump, 
its legs must extend much more rapidly 
than muscles can ordinarily contract. Thus, 
instead of using its muscles to make the 
jump directly, the locust uses them to more 
slowly stretch an internal “spring” near its 
knee joint. This stores elastic potential energy 
in the spring. When the muscles relax, the 
spring is suddenly released, and its energy is 
rapidly converted into kinetic energy of the 
insect.

As we noted, a desert locust is an excellent jumper. Suppose a 
2.0 g locust leaps straight up, leaving the ground at 3.1 m/s, a 
speed that a desert locust can easily reach.

a. If we ignore the drag force, how high will the locust jump?
b. If 20% of the initial kinetic energy is lost to drag, how high

will the locust jump?

STRATEGIZE  We don’t know how much the locust extends its 
legs as it pushes off the ground, or other details of this phase of 
the motion. For us, the problem starts when the locust is leav-
ing the ground at its maximum speed. We’ll then consider the 
locust’s motion through the air, and take our final point to be 
when the locust is at its highest point. Once the locust leaves the 
ground, the locust + earth + air form an isolated system.

PREPARE  The before-and-after visual overview is shown in 
FIGURE 10.20. We’ll describe the situation using Equation 10.20 
with W = 0, because we’ve identified an isolated system. For the 
initial and final points we chose our working equation becomes

Kf + 1Ug2f + ∆Eth = Ki + 1Ug2i

How high can the locust jump? EXAMPLE 10.9 

After:
yf
vf  =  0 m/s

y

Find: yf

Before:
yi  =  0 m
vi  =  3.1 m/s

FIGURE 10.20  Visual overview of the locust’s jump.

USTEEMA
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Bio Example with real data

ltb
Line



10.6  Conservation of Energy	 337

SOLVE  a.  For this part, we ignore drag, so ∆Eth = 0. We then 
substitute expressions for the various forms of energy to find

1
2

mvf 

2 + mgyf =
1
2

mvi 

2 + mgyi

The mass appears in every term, so we can cancel out this factor. 
We’ll take our starting position to be yi = 0 and note that the final 
velocity vf = 0 to simplify further:

 gyf =
1
2

v  2
i

 yf =
v  2

i

2g
=

13.1 m /  s22

219.8 m /  s22 = 0.49 m

b. For this part of the problem, we assume that 20% of the initial
kinetic energy is lost to drag. The “lost” energy is transformed

into thermal energy, so ∆Eth = 10.202Ki. Our working equa-
tion then becomes

Kf + 1Ug2f + 10.202Ki = Ki + 1Ug2i

Kf + 1Ug2f = 10.802Ki + 1Ug2i

Simplifying as we did before, we find

 gyf = 10.8021
2

v  2
i

 yf = 10.802v  2
i

2g
= 10.802 13.1 m /  s22

219.8 m /  s22 = 0.39 m

ASSESS  We noted that the desert locust can jump a horizontal 
distance of 1 m, so a vertical leap of half a meter seems reason-
able. Notice that the locust’s mass didn’t enter into our calcula-
tion; this isn’t a surprise, given that the motion is free fall. This 
also gives us confidence in our solution.

The Summit Plummet is an extreme water slide—one of the 
steepest and fastest in the world. Riders drop 36 m from the start 
until they hit a run-out at the bottom. If you give yourself a good 
push at the start, so that you begin your plunge moving at 2.0 m/s, 
how fast are you moving when you get to the bottom? How fast 
would you be moving if you skipped the push? The slide is steep 
and slippery, so assume that you can ignore friction and drag 
forces.

STRATEGIZE  We’ll take the system to be the rider + earth. The 
initial state has the rider moving at 2.0 m/s at a height of 36 m 
above the bottom of the slide; the final state is at the bottom.

PREPARE  The visual overview in FIGURE 10.21 shows the initial 
and final states and the slide in between. The exact shape of the 
slide doesn’t matter; we care only about the difference in height. 
We’ll describe the situation using Equation 10.20 with W = 0, 
because this is an isolated system—once you start the ride, no 

To push or not to push?

one is giving you a push! There is no elastic potential energy, 
only gravitational, and we can ignore friction, so our working 
equation becomes

Kf + 1Ug2f = Ki + 1Ug2i

SOLVE  If we write our working equation in terms of the change 
in potential energy, we can express this in terms of the change in 
height using Equation 10.13:

Kf = Ki + 11Ug2i - 1Ug2f2 = Ki + ∆Ug = Ki + mg∆y

We rewrite the kinetic energy in terms of speed and then solve for 
the final speed:

1
2

mv  2
f =

1
2

mv  2
i + mg∆y

 vf = 3v  2
i + 2g∆y = 312.0 m/s22 + 219.8 m/s22136 m2

= 27 m/s

This is pretty speedy! Now, suppose you skip the initial push. 
How much does this change the final result? The calculation is 
the same but with vi = 0:

vf = 32g∆y = 3219.8 m/s22136 m2 = 27 m/s

We get exactly the same result to 2 significant figures: greater 
precision is not warranted given the approximations we’ve made. 
Push or not—the final result is about the same! Most of your 
energy at the end of the ride comes from the change in potential 
energy, not your initial push.

ASSESS  We weren’t given the mass of the rider, but the mass 
canceled along the way, which gives us confidence in the pro-
cess. The final result, 27 m/s (about 60 mph), is pretty fast. But 
this is an extreme slide, and a website for this slide claims that 
you can expect to reach 60 mph, so the result of the calculation is 
reasonable, even if actually riding the slide isn’t.

EXAMPLE 10.10 

y

0

After:
vf

Before:
vi  =  2.0 m/s

Find: vf

 ¢y  =  36 m

FIGURE 10.21  Visual overview of the trip down the water slide.
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This is not a problem that we could have easily solved with Newton’s laws. The 
acceleration is not constant, and we have not learned how to handle the kinematics 
of variable acceleration. But with conservation of energy, this was a straightforward 
problem.

A spring-loaded toy gun is used to launch a 10 g plastic ball. The 
spring, which has a spring constant of 10 N /  m, is compressed by 
10 cm as the ball is pushed into the barrel. When the trigger is 
pulled, the spring is released and shoots the ball back out hori-
zontally. What is the ball’s speed as it leaves the barrel? Assume 
that friction is negligible.

STRATEGIZE  Let’s take the system to be the ball + spring. The 
initial state has the compressed spring touching the stationary 
ball; the final state is the expanded spring and the ball in motion.

PREPARE  The visual overview is shown in FIGURE 10.22. 
We have chosen the origin of the coordinate system to be the 

Speed of a spring-launched ball

equilibrium position of the free end of the spring, making 
xi = -10 cm and xf = 0 cm. Work is done on the spring during 
the compression, but during the time the spring is expanding, 
the ball + spring is an isolated system, so W = 0. We are ignor-
ing friction, so ∆Eth = 0. Because the launch is horizontal, we 
can ignore changes in gravitational potential energy. With these 
assumptions, the work-energy equation becomes

Kf + 1Us2f = Ki + 1Us2i

SOLVE  We can use expressions for kinetic energy and elastic 
potential energy to rewrite this equation as

1
2 mv  2

f + 1
2 kx 2

f = 1
2 mv  2

i + 1
2 kx 2

i

We know that xf = 0 m and vi = 0 m /  s, so this simplifies to

1
2 mv  2

f = 1
2 kx 2

i

It is now straightforward to solve for the ball’s speed:

vf = Bkx 2
i

m
= B110 N /  m21-0.10 m22

0.010 kg
= 3.2 m /  s

ASSESS  The ball moves pretty slowly, which we expect for a 
toy gun. Our result seems reasonable.

EXAMPLE 10.11

After:

Find: vf

Before:

vf

v i  =  0 m/s

x  =  0

x f  =  0 cm

x
x i  =  -10 cm

FIGURE 10.22  Before-and-after visual overview of a ball being 
shot out of a spring-loaded toy gun.

Quinn is at rest at the top of a playground slide. The main part of 
the slide is 5.0 m long, and it is tipped at a 30° angle. Quinn starts 
sliding, moving down the tipped section, and then the slide levels 
out so that he leaves the slide at 2.0 m/s, moving horizontally. If 
Quinn’s mass is 24 kg, how much thermal energy is deposited in 
his trousers and in the slide?

STRATEGIZE  We’ll choose Quinn + earth + slide to be the sys-
tem. The initial point will be when Quinn is motionless at the top 
of the slide; the final point will be when Quinn has descended the 
slide and is moving off the end. As Quinn goes down the slide, 
potential energy decreases and kinetic energy increases. But 
there is clearly friction, so that his speed is slower than it would 
be otherwise. Some of the energy is transformed into thermal 
energy of his trousers and the slide, internal to the system. It’s 
this change in thermal energy that we’ll solve for.

PREPARE  The visual overview in FIGURE 10.23 shows the ini-
tial and final points of the motion. We’ve chosen an isolated sys-
tem, so W = 0. The only form of potential energy is gravitational 
potential energy, so the work-energy equation reduces to

Kf + 1Ug2f + ∆Eth = Ki + 1Ug2i

The thermal energy of a trip down a slide

We can find the difference in the vertical position h from the 
geometry of the slide:

h = 15.0 m2sin30° = 2.5 m

We’ll take the initial height as yi = h, the final height as yf = 0, 
so 1Ug2f = 0. Quinn starts at rest, so Ki = 0.

EXAMPLE 10.12 

h After:
vf  =  2.0 m/s5.0 m

30°

Before:
vi  =  0

Find: ∆Eth

FIGURE 10.23  Visual overview for motion down the slide.
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10.7  Energy Diagrams
Energy is a central concept in physics, but it’s also crucial for understanding chemis-
try, biology, and other sciences. In this section and the following one, we’ll develop 
different means of describing energy that connect to these other subjects that you are 
likely studying or have studied. It’s not that energy is different in chemistry, but the 
way it is treated, the language used to describe it, may be.

SOLVE  With all of these parts in hand we can simplify the work-
energy equation further and then solve for ∆Eth:

 ∆Eth = 1Ug2i - Kf

= mgy -
1
2

 mvf
 2

= 588 J - 48 J = 540 J

We’ve found values for the change in potential energy and the 
final kinetic energy so that you can see the relative magnitudes. 

The values in the problem are typical values for a slide—about 
an 8 foot drop, kids launched off the end at a slow jogging pace. 
During the slide, the most important energy transformation that 
takes place is the increase in thermal energy. The slide is mostly 
about warming things up rather than getting kids up to speed!

ASSESS  If you remember going down the slide as a child, you 
no doubt remember the appreciable warming during the motion, 
so our result makes sense.

SYNTHESIS 10.1   Energy and its conservation

The energies present in an isolated system can transform from one kind into another, but the total energy is conserved. 
The unit of all types of energy is the joule (J).

Ug  =  mgy

Gravitational potential energy is stored
energy associated with an object’s height
above the ground.

Work is the transfer of energy into or out of a system
by an external force:

The before-and-after work-energy equation captures the
law of conservation of energy:

W  =  F�d Kf  +  Uf  +   ∆Eth  =  Ki  + Ui  +  W

Elastic potential energy is stored energy
associated with a stretched or compressed
spring.

Mass (kg)

Displacement
Final kinetic and potential
energy plus change in
thermal energy

Initial kinetic and potential
energy plus energy
transferred by work

Work into (1)
or out of (2) a
system 

Force
parallel to
motion

Mass (kg)Velocity (m/s)

Free-fall acceleration Spring constant (N/m)

Displacement of end of spring
from equilibrium (m)

Height (m) above a
reference level y  =  0

K  =     mv21
2 Us  =     kx21

2

Kinetic energy is the
energy of motion.

STOP TO THINK 10.8	 At the water park, Katie slides down each of the frictionless 
slides shown. At the top, she is given a push so that she has the same initial speed 
each time. At the bottom of which slide is she moving the fastest?

A. B. C.

A. Slide A B.	 Slide B
C. Slide C D. Her speed is the same at the bottom of all three slides. Video Demo  Rotational Motion: 

Loop-the-Loop

eText
2.0
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There is now a greater emphasis on the connections between Physics and the other sciences (namely life sciences but this is an example of Chemistry).
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In this section, we’ll consider isolated systems for which there is no friction or 
drag. In this case, there is no work and there is no change in thermal energy, so the 
work-energy equation becomes

Kf + Uf = Ki + Ui

In other words, the sum of the kinetic and potential energy is constant. We’ll define 
the total energy E as the sum of these two quantities. For the systems we consider in 
this section,

E = K + U = constant

Kinetic energy depends on an object’s speed, but potential energy depends on its 
position. A tossed ball’s gravitational potential energy depends on its height y, while 
the elastic potential energy of a compressed spring depends on the displacement x. 
Other potential energies also depend in some way on position. A graph showing a 
system’s potential energy and total energy as a function of position is called an 
energy diagram. We’ll spend some time learning about energy diagrams so that we 
can use them to think about bonds and chemical reactions in the next section.

FIGURE 10.24 is the energy diagram of a ball in free fall. This is a bit different from 
most graphs we’ve seen. It doesn’t include time; the horizontal axis is the vertical 
position y, and the vertical axis represents energy. The lines on the graph show dif-
ferent energies as a function of the vertical position. The gravitational potential 
energy increases with the vertical position; the mathematical relationship is 
Ug = mgy, and a graph of mgy versus y is a straight line through the origin with 
slope mg. The resulting blue potential-energy curve is labeled PE. The tan line 
labeled E is the system’s total energy. This line is always horizontal because the sum 
of kinetic and potential energy is the same at every point.

Suppose we consider a ball that is at a vertical position y1 and is moving upward. 
When the ball is at height y1, the distance from the axis up to the potential-energy 
curve is the potential energy 1Ug21 at that position. Because K1 = E - 1Ug21, the 
kinetic energy is represented graphically as the distance between the potential-energy 
curve and the total energy line. Now, the ball continues to rise. Some time later it is at 
height y2. The energy diagram shows that the potential energy 1Ug22 has increased 
while the ball’s kinetic energy K2 has decreased, as we know must be the case. Kinetic 
energy has been transformed into potential energy, but their sum has not changed.

NOTE   ▶ In graphs like this, the potential-energy curve PE is determined by the 
physical properties of the system—for example, the mass or the spring constant. 
But the total energy line E is under your control. If you change the initial condi-
tions, such as throwing the ball upward with a different speed or compressing a 
spring by a different amount, the total energy line will appear at a different posi-
tion. We can thus use an energy diagram to see how changing the initial condi-
tions affects the subsequent motion. ◀

FIGURE 10.25 is the energy diagram of a mass on a horizontal spring. In this case,

the blue potential-energy curve Us =
1
2

kx2 is a parabola centered at x = 0, the

equilibrium position of the end of the spring. The blue PE curve is determined by the 
spring constant; we can’t change it. But we can set the tan E line to any height we 
wish by stretching or compressing the spring to different lengths. The figure shows 
one possible E line.

Suppose you pull the mass out to position xR and release it from rest. FIGURE 10.26 
shows a five-frame “movie” of the subsequent motion. Initially, in frame a, the 
energy is entirely potential—the energy of a stretched spring—so the E line has been 
drawn to cross the PE line at xa = xR. This is the graphical statement that initially 
E = Us and K = 0.

The restoring force pulls the mass toward the origin. In frame b, where the mass 
has reached xb, the potential energy has decreased while the kinetic energy—the 

y

Energy

PE
E

Total energy line

Potential-energy
curve

E 5 K 1 Ug

Ug 5 mgy

y1 y2

K and Ug change as the
particle moves from y1 to y2,
but their sum is always E.

(Ug)1

(Ug)2

K1

K2

FIGURE 10.24  The energy diagram of a 
ball in free fall.

The height of the E line
is determined by how far
you stretch or compress
the spring.

The PE curve is
a parabola 
determined by 
the spring
constant.

Energy

PE

E

x
0

FIGURE 10.25  The energy diagram of a 
mass on a horizontal spring.
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distance above the PE curve—has increased. Notice that the total energy—the 
brown dot—hasn’t changed. The mass continues to speed up until it reaches maxi-
mum speed at xc = 0, where the PE curve is at a minimum and the distance above 
the PE curve is maximum. At position xd, the mass has started to slow down as it 
begins to transform kinetic energy back into elastic potential energy.

The mass continues moving to the left until, in frame e, it reaches position xL, 
where the total energy line crosses the potential-energy curve. This point, where 
K = 0 and the energy is entirely potential, is a turning point where the mass reverses 
direction. A mass would need negative kinetic energy to be to the left of xL, and 
that’s not physically possible. You should be able to see, from the energy diagram, 
that the mass will oscillate back and forth between positions xL and xR, having maxi-
mum kinetic energy (and thus maximum speed) each time it passes through x = 0.

Now, let’s consider a different initial condition. Suppose you pull the mass out to 
a greater initial distance. You’ve increased the potential energy in the system, and 
thus the total energy. The tan E line is now at a greater height, and it will intersect 
the PE graph at two points that are farther from the equilibrium point. With this new 
initial condition, the mass will oscillate back and forth between two points at a 
greater distance from equilibrium.

Interpreting Energy Diagrams
The lessons we learn from Figure 10.26 are true for any energy diagram:

■■ At any position, the distance from the axis to the PE curve is the object’s poten-
tial energy. The distance from the PE curve to the E line is its kinetic energy.

■■ The object cannot be at a position where the PE curve is above the E line.
■■ A position where the E line crosses the PE curve is a turning point where the

object reverses direction.
■■ If the E line crosses the PE curve at two positions, the object will oscillate

between those two positions. Its speed will be maximum at the position where the
PE curve is a minimum.

Energy
PE

E

Energy
PE

E

Energy
PE

E

Energy
PE

E

Energy
PE

E

xa 5 xR

x x
xc 5 0 xe 5 xL

x x x
xL xL xb xR xL xR xL xRxd0 0 0 xR0

va 5 0 ve 5 0vb vc vd

The mass is released 
from rest. The energy 
is entirely potential.

The particle has 
gained kinetic energy 
as the spring loses 
potential energy.

This is the point of 
maximum speed.
The energy is 
entirely kinetic.

The particle loses 
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FIGURE 10.26  A five-frame movie of a mass oscillating on a spring.

FIGURE 10.27 is a more general energy diagram. We don’t know 
how this potential energy was created, but we can still use the 
energy diagram to understand how a particle with this potential 
energy will move. Suppose a particle begins at rest at the position 
shown in the figure and is then released. Describe its subsequent 
motion.

REASON  We’ve added details to the graph and sketched out 
details of the motion in FIGURE 10.28. The particle is at rest at 
the starting point, so K = 0 and the total energy is equal to the 
potential energy. We can draw the E line through this point. The 
PE curve tells us the particle’s potential energy at each position. 

CONCEPTUAL EXAMPLE 10.13 Interpreting an energy diagram

Continued
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Equilibrium Positions
Positions x2, x3, and x4 in Figure 10.28, where the potential energy has a local mini-
mum or maximum, are special positions. Consider the particle at position x3 with 
energy E3 in FIGURE 10.29a. Its energy is entirely potential energy and its kinetic 
energy is zero. It must be at rest—in equilibrium.

But suppose this particle is slightly disturbed—a tiny push to the right or left—
giving it a very small amount of kinetic energy. The particle will begin to move 
away from x3, moving away faster and faster because the potential energy 
decreases—and thus kinetic energy increases—on both sides of x3. The situation is 
analogous to trying to balance a marble on the top of a hill; we can do so if the posi-
tioning is absolutely perfect, but any small displacement or disturbance will cause the 
marble to roll down the hill. An equilibrium position for which any small disturbance 
drives the particle away from equilibrium is called a point of unstable equilibrium. 
Any local maximum in the PE curve is a point of unstable equilibrium.

In contrast, consider a particle at position x2 with energy E2 in FIGURE 10.29b. Its 
kinetic energy is zero and, as we just discussed, the particle must be at rest. Position 
x2 is also an equilibrium position, this time for a particle with energy E2. What hap-
pens if this particle is slightly disturbed, raising the E line by a very small amount? 
Now the E line will intersect the PE curve just slightly to either side of x2. These 

The distance between the PE curve and the E line is the particle’s 
kinetic energy. The particle cannot move to the left because that 
would require the PE curve to go above the E line, so it begins 
moving to the right. The particle speeds up from x1 to x2 because 
U decreases and thus K must increase. It then slows down (but 
doesn’t stop) from x2 to x3 as it goes over the “potential-energy 
hill.” It speeds up after x3 until it reaches maximum speed at 
x4, where the PE curve is a minimum. The particle then steadily 
slows from x4 to x5 as kinetic energy is transformed into an 
increasing potential energy. Position x5 is a turning point, a 
position where the E line crosses the PE curve. The particle is 

instantaneously at rest and then reverses direction. Because the E 
line crosses the PE curve at both x1 and x5 the particle will oscil-
late back and forth between these two points, speeding up and 
slowing down as described.

ASSESS  Our results make sense. The particle is moving fastest 
where the PE line is lowest, as it must, and it turns around where 
the E and PE lines cross, meaning K = 0 and the particle is at rest.

Energy

PE

x

The particle is released
from rest.

x1

FIGURE 10.27  A more general energy diagram.
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FIGURE 10.28  The motion of the particle in the potential of 
Figure 10.27.
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FIGURE 10.29  Positions of (a) unstable and (b) stable equilibrium.
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intersections are turning points, so the particle will undergo a very small oscillation 
centered on x2, rather like a marble in the bottom of a bowl. An equilibrium for 
which a small disturbance causes only a small oscillation around the equilibrium 
position is called a point of stable equilibrium. You should recognize that any local 
minimum in the PE curve is a point of stable equilibrium. Position x4 is also a 
point of stable equilibrium—in this case for a particle with E4 = 0.

In the next section, we’ll see how ideas about stable and unstable equilibrium 
help us understand molecular bonds and chemical reactions.

10.8  Molecular Bonds and Chemical Energy
With few exceptions, the materials of everyday life are made of atoms bound 
together into larger molecules. The molecular bond that holds two atoms together is 
an electric interaction between the atoms’ negative electrons and positive nuclei. The 
electric force, like the gravitational force, is a force that can store energy. Fortu-
nately, we don’t need to know any details about electric potential energy—a topic 
we’ll take up in Chapter 21—to deduce the energy diagram of a molecular bond.

We’ve noted that molecular bonds are somewhat analogous to springs: The nor-
mal force when an object rests on a table arises from the compression of spring-like 
bonds, and thermal energy is due, in part, to spring-like vibrations of atoms around 
an equilibrium position. This suggests that the energy diagram of two atoms con-
nected by a molecular bond should look similar to the Figure 10.25 energy diagram 
of a mass on a spring.

FIGURE 10.30 shows the experimentally determined energy diagram of the diatomic 
molecule HCl (hydrogen chloride). Distance x is the atomic separation, the distance 
between the hydrogen and chlorine atoms. Note the very small distances: 
1 nm = 10-9 m. The left side of the PE curve looks very much like the PE curve of a
spring; the right side starts out similar to the PE curve of a spring and then levels off. 
We can interpret and understand this potential-energy diagram by using what we 
learned in Section 10.7.

There is a clear minimum of the potential energy curve, a position of stable equi-
librium. We’ve set the potential energy equal to zero at this position. If the total 
energy is zero as well, as is the case for the total energy line E1, the atoms will rest at 
this separation. They will have no kinetic energy—no molecular vibration—and will 
form a molecule with an atomic separation of 0.13 nm. This is the bond length 
of HCl.

If we try to push the atoms closer together, the potential energy rises very rapidly. 
Physically, this is an electric repulsion between the negative electrons orbiting each 
atom, but it’s analogous to the increasingly strong repulsive force we get when we 
compress a spring. Thus the PE curve to the left of the equilibrium position looks 
very much like the PE curve of a spring.

There are also attractive forces between two atoms. These can be the attractive 
force between two oppositely charged ions, as is the case for HCl; the attractive 
forces of covalent bonds when electrons are shared; or even weak polarization 
forces that are related to the static electricity force by which a comb that has been 

STOP TO THINK 10.9	 The figures below show blue PE curves and tan E lines for four identical particles. Which particle has the 
highest maximum speed?
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FIGURE 10.30  The energy diagram of the 
diatomic molecule HCl.
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brushed through your hair attracts small pieces of paper. For any of these, the attrac-
tive force resists if we try to pull the atoms apart—analogous to stretching a spring—
and thus potential energy increases to the right. The equilibrium position, with 
minimum potential energy, is the separation at which the repulsive force between 
electrons and the attractive force are exactly balanced.

The repulsive force gets stronger as we push the atoms closer together, but the 
attractive force gets weaker as we pull them farther apart. If we pull too hard, the 
bond breaks and the atoms come apart. Consequently, the PE curve becomes less 
steep as x increases, eventually leveling off when the atoms are so far apart that they 
cease interacting with each other. This difference between the attractive and repul-
sive forces explains the asymmetric PE curve in Figure 10.30.

It turns out, for quantum physics reasons, that a molecule cannot have E = 0 and 
thus cannot simply rest at the equilibrium position. By requiring the molecule to 
have some energy, as for the total energy line E2 in Figure 10.30, we see that the 
atoms will oscillate back and forth between two turning points where the total 
energy line crosses the PE curve. This is a molecular vibration, and atoms held 
together by a molecular bond are constantly vibrating. For an HCl molecule with 
energy as E2 = 3.5 * 10-19 J, illustrated, the distance between the atoms oscillates
between roughly 0.10 nm and 0.18 nm.

As we’ve seen, an object’s thermal energy is the sum of the energies of all the 
moving and vibrating atoms and molecules. Increasing a system’s thermal energy 
increases the energy of each molecule. If we imagine the line E2 in Figure 10.30 
being raised, we can see that increased thermal energy, and thus increased tempera-
ture, corresponds to molecules vibrating more vigorously, with larger amplitude and 
more kinetic energy.

Suppose the molecule’s energy is increased to E3 = 12.5 * 10-19 J. This could
happen, for example, if the molecule absorbs some light. We can see from the energy 
diagram that the molecules will keep moving apart. By raising the molecule’s energy 
to E3, we’ve broken the molecular bond. The breaking of molecular bonds by the 
absorption of light is called photodissociation. Light-mediated reactions, from sun 
tanning to photosynthesis to vision, are very similar to photodissociation but involve 
conformational changes in macromolecules—which require energy—rather than the 
actual breaking of bonds.

The bond energy is the minimum energy required to break a bond when the mol-
ecule’s energy corresponds to a “room temperature” of 25°C. Bond energy is shown 
on an energy diagram as the vertical distance from the total energy line to the 
potential-energy “plateau” on the right side of the diagram. HCl molecules at room 
temperature have energy E ≃ 0.04 * 10-19 J, barely distinguishable from zero
energy. We can see in Figure 10.30 that the bond energy of HCl is approximately 
7.5 * 10-19 J.

NOTE   ▶ Chemists and biologists usually quote molecular energies in kJ/mol 
or kcal/mol. Physicists prefer to work directly with the energy per molecule 
or energy per bond in J. To find energies in kJ/mol, simply multiply the bond 
energy by Avogadro’s number. For example, the 7.5 * 10-19 J bond energy of
HCl becomes 450 kJ/mol. ◀

An energy diagram for molecular oxygen, O2, is shown in 
FIGURE 10.31. A germicidal lamp for sterilizing equipment uses 
short-wavelength ultraviolet radiation at 185 nm. At this wave-
length, each photon, or quantum, of ultraviolet light has 

Does the photon have enough energy?

10.7 * 10-19 J of energy. If a molecule of O2 at room temperature
absorbs one photon of light from the lamp, does this provide 
enough energy to split the molecule? If so, what will be the 
kinetic energy of the atoms after they have separated?

EXAMPLE 10.14 
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Chemical Reactions
Energy ideas are key to understanding what happens during a chemical reaction. 
The basic idea of any chemical reaction—involving simple diatomic molecules or 
large biological macromolecules—is that some molecular bonds are broken and new 
molecular bonds are formed. For example, a simple reaction that we can symbolize 
as AB + CD S AC + BD requires the bonds of molecules AB and CD to be broken
and then new bonds to form between atoms A and C and between atoms B and D. 
And, as we’ve just seen, it takes energy to break molecular bonds.

FIGURE 10.33 is the energy diagram of a chemical reaction. It’s very much like the 
energy diagrams we’ve been using, but with one important difference: The position 
coordinate of the horizontal axis has been replaced with an abstract reaction 
coordinate. The reaction coordinate is not a physical quantity that could be mea-
sured; instead, it shows in a general sense the progress of bond breaking and bond 
formation as a reaction moves from reactants, on the left, to products, on the right.

All reaction energy diagrams have a large hump, or energy barrier, in the middle. 
This represents the energy required to break the bonds of the reactant molecules. For 
the reaction to take place, the reactants must increase their potential energy by the 
amount Ea, called the activation energy. Graphically, the activation energy is the 
height of the energy barrier above the initial potential energy of the reactants.

How does this happen? The reactant molecules have thermal energy, which 
means that the individual molecules are moving around and vibrating. When mole-
cules collide, this energy can be transformed into the increased potential energy of 
stretched bonds. If the thermal energy is too low, the increased potential energy is 
less than the activation energy, meaning that the bonds don’t break and the reaction 
doesn’t occur. Wood and oxygen don’t react at room temperature, even though the 
reaction—combustion—is energetically favorable, because the reactants don’t have 
enough thermal energy to allow bond breaking during collisions. In essence, the total 
energy line is lower than the energy barrier, so there’s a turning point in the reaction 
coordinate.

STRATEGIZE  We can use the molecular energy diagram in 
Figure 10.31 to determine what happens at different energies.

PREPARE  We’ll assume that the room-temperature energy is 
similar to that for HCl, very close to zero. After the molecule 
absorbs the photon, the energy of the molecule will be nearly 
equal to the photon energy.

SOLVE  FIGURE 10.32 is the O2 energy diagram with a total 
energy line added that corresponds to the photon energy. The 
total energy is much greater than the maximum of the potential 
energy on the right side of the graph. After absorbing the photon, 

the two oxygen molecules will separate. The residual kinetic 
energy will be equal to the difference between the total energy 
and the maximum of the potential energy, which we estimate to 
be 2.5 * 10-19 J.

ASSESS  Germicidal lamps at this wavelength are known to pro-
duce O3, ozone, a very reactive form of oxygen—so it’s clear 
that the photons have enough energy to break apart the normally 
stable O2 molecules. Therefore, our answer makes sense.

x (nm)

20

0

4

8

12

16

Energy (310219 J)

0.0 0.2 0.40.1 0.3

PE

FIGURE 10.31  The energy diagram for molecular oxygen, O2.
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To burn wood, you must substantially increase the thermal energy of at least a 
portion of the fuel. You can do this with the high-temperature flame from a match. 
Some of the reactant molecules can then, via collisions, transform their large kinetic 
energy into potential energy that reaches or exceeds the activation energy—the mol-
ecules collide with enough kinetic energy to break molecular bonds. The reaction 
begins, and the energy subsequently released can trigger further reactions. Once you 
light a wood splint, the flame will work its way along the wood.

For combustion, the potential energy of the products is lower than that of the 
reactants, as is the case in Figure 10.33. More energy is released in the formation of 
new bonds than was required to initiate the reaction. The increase in thermal energy 
causes the final temperature of the products to be higher than the initial temperature 
of the reactants. Such reactions are called exothermic reactions. In contrast, an 
endothermic reaction releases less energy than was required to initiate it. Such 
reactions require a continuous input of energy to keep going.

NOTE   ▶ Chemists and biologists often describe reactions in terms of what is 
called free energy. Free energy is a more appropriate description when some or 
all of the energy released in a reaction is used to do work rather than increasing 
the thermal energy. This is often the case in biology, where the energy released 
by a reaction does work by moving molecules around or changing the configu-
ration of macromolecules instead of simply heating up the cell. We’ll leave the 
definition and use of free energy to your chemistry and biology classes, simply 
noting that the analysis of a reaction in terms of free energy is exactly the same as 
the analysis presented here. ◀

Reaction Rates and Catalysts
The reaction energy diagram tells us nothing about the rate of reaction—how fast a 
reaction proceeds. A more detailed theory, which you will study in chemistry, finds 
that the rate of reaction increases exponentially as the activation energy decreases. 
An exponential change means that even a small decrease in activation energy can 
produce a large increase in the rate of reaction.

The role of a catalyst is to provide an alternate reaction pathway with a lower 
activation energy, thus dramatically speeding up the rate of reaction. FIGURE 10.34 
shows an exothermic reaction, one that is energetically favorable but where the 
energy barrier is so high that this reaction will not happen at room temperature 
because the reaction rate is essentially zero. In Figure 10.34, we see that a catalyst 
offers an alternate pathway whose activation energy is easily exceeded by room-
temperature molecules. A catalyst can dramatically increase reaction rates.

Most of biochemistry is mediated by catalysts in the form of enzymes. Processes 
such as respiration, photosynthesis, and protein synthesis involve energetically 
favorable exothermic (also called exergonic) reactions, but the activation energy is 
so high that the reactants, on their own, would react barely, if at all, at normal tem-
peratures. Enzymes catalyze these reactions, allowing them to proceed at a rate suf-
ficient for cellular functions.

Chemical Energy
The law of conservation of energy includes the term △Echem, the change in chemical 
energy. Physics usually focuses on systems in which chemical energy is not impor-
tant, but energy conservation also has to apply to chemistry and biology. Chemical 
energy is simply a name for the total electric potential energy stored in all the molec-
ular bonds of a system. If there are no reactions, the chemical energy doesn’t change 
and we can ignore it, because only energy changes enter into the law of energy 
conservation.

If there are chemical reactions, then the breaking and creation of molecular bonds 
change the system’s chemical energy. In Figure 10.33 the energy of the products is 
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FIGURE 10.34  A reaction energy diagram 
for a chemical reaction with and without 
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lower than the energy of the reactants. To make the reaction go, potential energy 
must be increased by the activation energy Ea—the energy of breaking bonds. Once 
the reaction is over the energy barrier, the formation of new bonds releases energy 
Er; that is, potential energy is transformed into thermal energy. The difference, 
∆Ereaction =  Er - Ea, is the net energy released in one reaction due to the change in 
bonds.

Any realistic system has a vast number of chemical reactions taking place. The 
change in chemical energy is simply the total energy released by all these reactions. 
If N reactions take place, then

∆Echem = N∆Ereaction (10.21)

In biological systems, the production of chemical energy via the catalyzed reactions 
of respiration powers the cellular machinery and maintains body temperature.This 
change in energy will be an important part of the story in Chapter 11.

10.9  Energy in Collisions
In Chapter 9 we studied collisions between two objects. We found that if no external 
forces are acting on the objects, the total momentum of the objects will be conserved. 
Now we wish to study what happens to energy in collisions.

Let’s first re-examine a perfectly inelastic collision. We studied just such a colli-
sion in Example 9.8. Recall that in such a collision the two objects stick together and 
then move with a common final velocity. What happens to the energy?

FIGURE 10.35 shows two train cars that move toward each other, 
collide, and couple together. In Example 9.8, we used conserva-
tion of momentum to find the final velocity shown in Figure 10.35 
from the given initial velocities. How much thermal energy is 
created in this collision?

How much energy is transformed in a collision between railroad cars?

Energy is conserved, but kinetic energy is not; it will be lower 
after the collision than before.

SOLVE  The initial kinetic energy is

 Ki =
1
2

m11v1x2 2
i +

1
2

m21v2x2 2
i

=
1
2
12.0 * 104 kg211.5 m /  s22 +

1
2
14.0 * 104 kg21-1.1 m /  s22

= 4.7 * 104 J

Because the cars stick together and move as a single object with 
mass m1 + m2, the final kinetic energy is

 Kf =
1
2
1m1 + m221vx2 2

f

=
1
2
16.0 * 104 kg21-0.25 m /  s22 = 1900 J

From the conservation of energy equation above, we find that the 
thermal energy increases by

∆Eth = Ki - Kf = 4.7 * 104 J - 1900 J = 4.5 * 104 J

This amount of the initial kinetic energy is transformed into ther-
mal energy during the impact of the collision.

ASSESS  The cars are moving much more slowly after the 
collision than before, so we expect that most of the kinetic energy 
is transformed into thermal energy, just as we observed.

EXAMPLE 10.15 

(v1x)i  =  1.5 m/s

(vx)f  =  -0.25 m/s

(v2x)i  =  -1.1 m/s

m1  +  m2

Before:

After:

x

m1  =  2.0  *  104 kg m2  =  4.0  *  104 kg

1 2

1 2

FIGURE 10.35  Before-and-after visual overview of a collision 
between two train cars.

STRATEGIZE  We’ll choose our system to be the two cars. The 
initial state is the instant before the collision; the final state is the 
instant just after.

PREPARE  This is an isolated system, so W = 0. Because the 
track is horizontal, there is no change in potential energy. Thus 
the work-energy equation reduces to

Kf + ∆Eth = Ki
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Elastic Collisions
FIGURE 10.36 shows a collision of a tennis ball with a racket. The ball is compressed 
and the racket strings stretch as the two collide, then the ball expands and the strings 
rebound as the two are pushed apart. In the language of energy, the kinetic energy of 
the objects is transformed into the elastic potential energy of the ball and strings, 
then back into kinetic energy as the two objects spring apart. If all of the kinetic 
energy is stored as elastic potential energy, and all of the elastic potential energy is 
transformed back into the post-collision kinetic energy of the objects, then mechani-
cal energy is conserved. A collision in which mechanical energy is conserved is 
called a perfectly elastic collision.

Needless to say, most real collisions fall somewhere between perfectly elastic and 
perfectly inelastic. A rubber ball bouncing on the floor might “lose” 20% of its 
kinetic energy on each bounce and return to only 80% of the height of the preceding 
bounce. But collisions between two very hard objects, such as two pool balls or two 
steel balls, come close to being perfectly elastic. And collisions between micro-
scopic particles, such as atoms or electrons, can be perfectly elastic.

FIGURE 10.37 shows a head-on, perfectly elastic collision of a ball of mass m1, hav-
ing initial velocity 1v1x2i, with a ball of mass m2 that is initially at rest. The balls’ 
velocities after the collision are 1v1x2f and 1v2x2f. These are velocities, not speeds, 
and have signs. Ball 1, in particular, might bounce backward and have a negative 
value for 1v1x2f.

The collision must obey two conservation laws: conservation of momentum 
(obeyed in any collision) and conservation of mechanical energy (because the colli-
sion is perfectly elastic). Although the energy is transformed into potential energy 
during the collision, the mechanical energy before and after the collision is purely 
kinetic energy. Thus,

momentum conservation:	 m11v1x2i = m11v1x2f + m21v2x2f

energy conservation:	
1
2

m11v1x2i 

2 =
1
2

m11v1x2f 

2 +
1
2

 m21v2x2f 

2

Momentum conservation alone is not sufficient to analyze the collision because 
there are two unknowns: the two final velocities. That is why we did not consider 
perfectly elastic collisions in Chapter 9. Energy conservation gives us another condi-
tion. The complete solution of these two equations involves straightforward but 
rather lengthy algebra. We’ll just give the solution here:

FIGURE 10.36  A tennis ball collides with a 
racket. Notice that the ball is compressed 
and the strings are stretched.

1 KiBefore: 2

1During: 2

1After: 2 Kf  =  Ki
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compressed
molecular bonds, 
then released as the 
bonds re-expand.

v1i

v1f v2f

u
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FIGURE 10.37  A perfectly elastic collision.

1v1x2f =
m1 - m2

m1 + m2
 1v1x2i   1v2x2f =

2m1

m1 + m2
 1v1x2i	 (10.22)

Perfectly elastic collision with object 2 initially at rest

Equations 10.22 allow us to compute the final velocity of each object. Let’s look at a 
common and important example: a perfectly elastic collision between two objects of 
equal mass.

On an air hockey table, a moving puck, traveling to the right at 
2.3 m /  s, makes a head-on collision with an identical puck at rest. 
What is the final velocity of each puck?

PREPARE  The before-and-after visual overview is shown in FIG-

URE 10.38. We’ve shown the final velocities in the picture, but we 
don’t really know yet which way the pucks will move. Because 
one puck was initially at rest, we can use Equations 10.22 to find 

Finding the aftermath of a collision between air hockey pucks

the final velocities of the pucks. The pucks are identical, so we 
have m1 = m2 = m.

SOLVE  We use Equations 10.22 with m1 = m2 = m to get

1v1x2f =
m - m
m + m

 1v1x2i = 0 m /  s

1v2x2f =
2m

m + m
 1v1x2i = 1v1x2i = 2.3 m /  s

EXAMPLE 10.16 

Video Demo  Happy/Sad Pendulums

eText
2.0
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10.10  Power
We’ve now studied how energy can be transformed from one kind into another and 
how it can be transferred between the environment and the system as work. In many 
situations we would like to know how quickly the energy is transformed or trans-
ferred. Is a transfer of energy very rapid, or does it take place over a long time? In 
passing a truck, your car needs to transform a certain amount of the chemical energy 
in its fuel into kinetic energy. It makes a big difference whether your engine can do 
this in 20 s or 60 s!

The question How quickly? implies that we are talking about a rate. For example, 
the velocity of an object—how fast it is going—is the rate of change of position. So, 
when we raise the issue of how fast the energy is transformed, we are talking about 
the rate of transformation of energy. Suppose in a time interval ∆t an amount of 
energy ∆E is transformed from one form into another. The rate at which this energy 
is transformed is called the power P and is defined as

The incoming puck stops dead, and the initially stationary puck 
goes off with the same velocity that the incoming one had.

ASSESS  You can see that momentum and energy are conserved: 
The incoming puck’s momentum and energy are completely 
transferred to the outgoing puck. If you’ve ever played pool, 
you’ve probably seen this sort of collision when you hit a ball 
head-on with the cue ball. The cue ball stops and the other ball 
picks up the cue ball’s velocity.

Before:  (v1x)i  =  2.3 m/s    (v2x)i  =  0 m/s

After: Find:  (vlx)f and (v2x)f

vli

v1f v2f

v2i  =  0u

u u

u u

FIGURE 10.38  A moving puck collides with a stationary puck.

STOP TO THINK 10.10	 A small ball with mass M is at rest. It is then struck by a ball 
with twice the mass, moving at speed v0. The situation after the collision is shown in 
the figure. Is this possible?

A. Yes
B. No, because momentum is not conserved
C. No, because energy is not conserved
D. No, because neither momentum nor

energy is conserved

2MBefore: M

After:

v  =  0v0

2v0

v  =  0

P =
∆E
∆t

(10.23)

Power when an amount of energy ∆E is transformed in a time interval ∆t

P =
W
∆t

(10.24)

Power when an amount of work W is done in a time interval ∆t

The unit of power is the watt, which is defined as 1 watt = 1 W = 1 J /  s.
Power also measures the rate at which energy is transferred into or out of a sys-

tem as work W. If work W is done in time interval ∆t, the rate of energy transfer is

Both these cars take about the same energy 
to reach 60 mph, but the race car gets there 
in a much shorter time, so its power is 
much greater.

If a person, animal, vehicle, or device is transforming or transferring energy at a rate 
of 3 J/s, we say that it has an output power of 3 W.

The English unit of power is the horsepower. 
The conversion factor to watts is

1 horsepower = 1 hp = 746 W

Many common appliances, such as motors, 
are rated in hp.
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We can express Equation 10.24 in a different form. If in the time interval ∆t an 
object undergoes a displacement ∆x, the work done by a force acting on the object is 
W = F∆x. Then Equation 10.24 can be written as

P =
W
∆t

=
F∆x
∆t

= F
∆x
∆t

= Fv

The rate at which energy is transferred to an object as work—the power—is the 
product of the force that does the work and the velocity of the object:

P = Fv (10.25)

Rate of energy transfer due to a force F acting on an object moving at velocity v

A 100 kg weightlifter performs a lift called a clean and jerk, rais-
ing a 190 kg bar from the ground to a height of 1.9 m in a time of 
1.8 s. What is his output power?

STRATEGIZE  We’ll take the system to be the weightlifter +  
bar +  earth. We’ll assume that the bar is stationary before and 
after the lift, so the relevant energy change is the increase in 
gravitational potential energy of the bar. This is an isolated 
system, so the change is an internal transformation. We’ll use 
Equation 10.23 to compute the power.

PREPARE  The change in potential energy depends on the change 
in height:

∆Ug = mg∆y = 1190 kg219.8 m/s2211.9 m2 = 3540 J

Finding the output power for a weightlifter 

SOLVE  The power of the transformation is

P =
∆E
∆t

=
3540 J
1.8 s

= 2000 W

ASSESS  This is a lot of power—about 2.7 horsepower! But 
we’d expect such a large output power for a large weightlifter.

EXAMPLE 10.17 

A 50 kg sprinter accelerates from 0 to 11 m/s in 3.0 s. What is the 
output power for this rapid start?

STRATEGIZE  We can take the system to be the runner +  earth. 
Let’s assume that the track is level, so there is no change in 
potential energy, only a change in kinetic energy. We can safely 
ignore drag and other forces, so this is isolated system and the 
change is an internal transformation.

PREPARE  The initial kinetic energy is zero, so the change in 
kinetic energy is equal to the final kinetic energy:

∆K = Kf =
1
2

mvf 

2 =
1
2
150 kg2111 m/s22 = 3000 J

Finding the output power for a sprinter 
SOLVE  The power of the transformation is

P =
∆E
∆t

=
3000 J
3.0s

= 1000 W

ASSESS  This is a lot of power—about 1.3 horsepower—but less 
than for the weightlifter, which makes sense. In this case, as for 
the weightlifter, the power came from the athlete’s muscles.

EXAMPLE 10.18 

The 100 kg weightlifter has a very large output power, which isn’t surprising. 
How about someone smaller?

A 100 kg weightlifter can produce more output power than a 50 kg sprinter, 
which makes sense. It’s worthwhile to consider what we’ll call the specific power—
the output power divided by the mass of the person (or animal, device, or machine) 
doing the transformation or the work:

specific power =
power of a transformation or a transfer

mass of agent causing the transformation or transfer
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Let’s compute the specific power for the weightlifter and the sprinter:

sprinter: specific power =
1000 W
50 kg

= 20 W/kg

weightlifter: specific power =
2000 W
100 kg

= 20 W/kg

The numbers for the sprinter and the weightlifter are at the extreme end of what 
humans are capable of; these are numbers typical of world-class athletes. It’s inter-
esting to note that the specific power for both cases is about the same. Humans in 
peak condition who are skilled at athletic pursuits are capable of short bursts of 
about 20 W/kg. Larger athletes can produce more output power, but the power per 
kilogram is about the same. As we’ll see in the next chapter, humans can’t sustain 
this level of power output; this number applies for only short bursts that use the large 
muscles of the body. Sustained activities such as cycling or swimming correspond to 
specific powers of perhaps 5 W/kg for elite athletes.

Smaller animals are generally capable of higher specific powers. A bushbaby, a 
200 g primate that gets around by executing rapid leaps in the trees it calls home, is 
able to push off with its legs with sufficient force to accelerate to 6.7 m/s in 0.16 s, 
corresponding to a specific power of 140 W/kg. This is the upper end of what can 
be  accomplished with muscle power alone. The leap of the 2.0 g desert locust 
that we considered earlier has an even higher specific power, but this power comes 
from springs in the legs; muscles alone could not get the locust to such a high 
speed in such a short time. Many of the impressive jumpers of the insect world, from 
fleas to springtails, use energy storage systems corresponding to springs to power 
their leaps.

Of course, the notion of specific power can be applied to other systems as well. 
We can do a similar calculation for a passenger car, either starting from rest or 
climbing a hill, to find a specific power in the range of 90 W/kg. This is an interest-
ing measure of a vehicle.

STOP TO THINK 10.11	 Four students run up the stairs in the times shown. Rank in 
order, from largest to smallest, their power outputs PA through PD.

10 m

∆t  =  10 s

80 kg 80 kg

∆t  =  8 s

64 kg 80 kg

D.C.B.A.

∆t  =  8 s

20 m

∆t  =  25 s
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INTEGRATED EXAMPLE 10.19

We’ve dealt with this by labeling the free-body diagram axis the 
y′-axis.

SOLVE  a.  The work-energy equation for the motion of the truck, 
from the moment its brakes fail to when it finally stops, is

Kf + 1Ug2f + ∆Eth = Ki + 1Ug2i

Because friction is present only along the ramp, thermal 
energy will increase only as the truck moves up the ramp. 
This thermal energy is then given by ∆Eth = fr ∆x2, because 
∆x2 is the length of the ramp. The conservation of energy 
equation then is

1
2

mv  2
f + mgyf + fr  ∆x2 =

1
2

mv  2
i + mgyi

From Figure 10.39 we have yi = ∆x1 sin u1, yf = ∆x2 sin u2, 
and vf = 0, so the equation becomes

mg ∆x2 sin u2 + fr  ∆x2 =
1
2

mv  2
i + mg ∆x1 sin u1

To find fr = mr n we need to find the normal force n. The free-
body diagram shows that

aFy′ = n - mg cos u2 = ay′ = 0

from which fr = mr n = mr mg cos u2. With this result for fr, 
our conservation of energy equation is

mg ∆x2 sin u2 + mr mg cos u2  ∆x2 =
1
2

mv  2
i + mg ∆x1 sin u1

which, after we divide both sides by mg, simplifies to

∆x2 sin u2 + mr cos u2 ∆x2 =
v  2

i

2g
+ ∆x1 sin u1

Solving this for ∆x2 gives

 ∆x2 =

v  2
i

2g
+ ∆x1sin u1

sin u2 + mrcos u2

 =

120 m/s22

219.8 m/s22 + 1600 m21sin 3.5°2

sin 10° + 0.401cos10°2 = 100 m

	b. We know that ∆Eth = fr ∆x2 = 1mr mg cos u22∆x2, so that

 ∆Eth = 10.402122,000 kg219.8 m/s221cos10°21100 m2
= 8.5 * 106 J

ASSESS  It seems reasonable that a truck that speeds up as it 
rolls 600 m downhill takes only 100 m to stop on a steeper, high-
friction ramp. At the top of the hill the truck’s kinetic energy is 
Ki =

1
2mv  2

i  =  12122,000 kg2120 m/s22 = 4.4 * 106 J, which is of
the same order of magnitude as ∆Eth. Our answer is reasonable.

Stopping a runaway truck

A truck’s brakes can overheat and fail while descending mountain 
highways, leading to an extremely dangerous runaway truck. Some 
highways have runaway-truck ramps to safely bring out-of-control 
trucks to a stop. These uphill ramps are covered with a deep bed of 
gravel. The uphill slope and the large coefficient of rolling friction 
as the tires sink into the gravel bring the truck to a safe halt.

A 22,000 kg truck heading down a 3.5° slope at 20 m/s 
1≈45 mph2 suddenly has its brakes fail. Fortunately, there’s a 
runaway-truck ramp 600 m ahead. The ramp slopes upward at an 
angle of 10°, and the coefficient of rolling friction between the 
truck’s tires and the loose gravel is mr = 0.40. Ignore air resis-
tance and rolling friction as the truck rolls down the highway.

a. Use conservation of energy to find how far along the ramp
the truck travels before stopping.

b. By how much does the thermal energy of the truck and ramp
increase as the truck stops?

STRATEGIZE  We’ll follow the steps of Problem-Solving 
Approach 10.1. We start by defining the system as the truck + 
ramp + earth. Gravitational potential energy will be part of the 
solution, and the change in thermal energy will be an internal 
transformation.

PREPARE  FIGURE 10.39 shows a before-and-after visual over-
view. Because we’re going to need to determine friction forces to 
calculate the increase in thermal energy, we’ve also drawn a free-
body diagram for the truck as it moves up the ramp. One slight 
complication is that the y-axis of free-body diagrams is drawn 
perpendicular to the slope, whereas the calculation of gravita-
tional potential energy needs a vertical y-axis to measure height. 

u
nu

wu

Before:
yi  =  ∆x1 sin u1
vi  =  20 m/s

u1  =  3.5° u2  =  10°

u2

mr  =  0.40

∆x1  =  600 m

After:
yf  =  ∆x2 sin u2
vf  =  0 m/s

∆x2

Find: ∆x2

0

y

fr x

y′

FIGURE 10.39 Visual overview of the runaway truck.
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Solving Energy Transfer and Energy 
Conservation Problems
STRATEGIZE  Choose the system. Determine the initial and final 
states.

PREPARE  Draw a before-and-after visual overview.

SOLVE  Use the before-and-after version of the work-energy equation:

Kf + Uf + ∆Eth = Ki + Ui + W

Start with this general equation, then specialize to the case at hand:

• Use the appropriate form or forms of potential energy.

• If the system is isolated, set W = 0.

• If there is no friction or drag, set ∆Eth = 0.

ASSESS  See if the numbers make sense—and if the numbers add 
up. Energy is conserved, and kinetic energy and the change in 
thermal energy are always positive.

Basic Energy Model
Within a system, energy can be 
transformed between various forms.

Energy can be transferred into or 
out of a system in two basic ways:

• Work: The transfer of energy by
mechanical forces

• Heat: The nonmechanical trans-
fer of energy from a hotter to a
colder object

S U M M A R Y

	GOAL	 To introduce the concept of energy and to learn a new problem-solving strategy based on conservation of energy.

GENERAL PRINCIPLES

Echem

Eth

K U

Environment

System

Work,
heat

Energy is 
transformed 
within the 
system.

Energy is transferred to 
or from the system from 
or to the environment.

Conservation of Energy
When work W is done on a system, the system’s total energy 
changes by the amount of work done. In mathematical form, this 
is the work-energy equation:

∆E = ∆K + ∆Ug + ∆Us + ∆Eth + ∆Echem + g = W

A system is isolated when no energy is transferred into or out 
of the system. This means the work is zero, giving the law of 
conservation of energy:

∆K + ∆Ug + ∆Us + ∆Eth + ∆Echem + g = 0

Kinetic energy  is an energy of motion: Thermal energy  is the sum of the microscopic kinetic and potential 
energies of all the molecules in an object. The hotter an object, the more 
thermal energy it has. When kinetic (sliding) friction is present, the 
increase in the thermal energy is ∆Eth = fk ∆x. When the drag force is 
present, the increase in the thermal energy is ∆Eth = D∆x.

Work  is the process by which energy is transferred 
to or from a system by the application of mechanical 
forces.

If a particle moves through a displacement d
u
 while 

acted upon by a constant force F
u
, the force does work

W = FŒd  

= Fd cos u       

IMPORTANT CONCEPTS

K  =    mv2  +     Iv21_
2

1_
2

Translational Rotational

Potential energy  is energy stored in a system of 
interacting objects.

• Gravitational potential energy: Ug = mgy

• Elastic potential energy: Us =
1
2

 kx2

d
u

F
u

F# u

FŒ  =  F cos u

Only the component of
the force parallel to the
displacement does work.

APPLICATIONS

Energy diagrams  are a useful way to 
analyze physical systems.

This curve shows the potential energy of 
a two-atom molecule as a function of the 
atomic separation.

Perfectly elastic collisions  Both 
mechanical energy and momentum are 
conserved.

Power  is the rate at which energy is 
transformed . . .

. . . or at which work is done.

Amount of work done
Time required to do work

P  =  W___
∆t

Amount of energy transformed
Time required to transform it

P  =  ∆E___
∆t

(v1x )i

(v1x )f (v2x )f

1 KiBefore:

After:

2

1 2Kf  =  Ki

Object 2 initially at rest

 1v1x2f =
m1 - m2

m1 + m2
 1v1x2i

 1v2x2f =
2m1

m1 + m2
 1v1x2i 

The minimum of
potential energy occurs
at the equilibrium
separation of the atoms.

Energy

x
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Learning Objectives  After studying this chapter, you should be able to:

■■ Draw and interpret energy diagrams. Conceptual Question
10.24; Problems 10.51, 10.52

■■ Interpret and use molecular bond energies. Problems 10.53,
10.54

■■ Apply energy and momentum conservation to elastic collisions.
Problems 10.55, 10.56, 10.58

■■ Understand and calculate power. Problems 10.60, 10.61, 10.62,
10.65, 10.68

■■ Calculate the work done on an object. Problems 10.1, 10.2, 10.3,
10.4, 10.5, 10.6, 10.7

■■ Calculate an object’s kinetic and potential energy. Conceptual
Questions 10.17, 10.18; Problems 10.14, 10.17, 10.20, 10.23, 10.25

■■ Understand and calculate the change in thermal energy. Conceptual
Question 10.12; Problems 10.29, 10.30, 10.31, 10.32, 10.34

■■ Use the problem-solving approach to solve conservation of
energy problems. Conceptual Questions 10.20, 10.22; Problems
10.36, 10.37, 10.39, 10.41, 10.48

STOP TO THINK ANSWERS

Chapter Preview Stop to Think: A. Because the car starts from 
rest, vi = 0 and the kinematic equation is 1vx2 2

f = 2ax∆x, so that
1vx2f = 12ax∆x. Thus the speed is proportional to the square root of 
the displacement. If, as in this question, the displacement increases 
by a factor of 4, the speed only doubles. So the speed will increase 
from 5 m/s to 10 m/s.

Stop to Think 10.1: C. The coaster slows. Its kinetic energy is 
decreasing because kinetic energy is transformed into gravitational 
potential energy as the coaster climbs the hill.

Stop to Think 10.2: C. W = Fd cos u. The 10 N force at 90° does 
no work at all. cos 60° = 1

2, so the 8 N force does less work than the 
6 N force.

Stop to Think 10.3: B + D + A ∙ C. K = 1
2mv2. Using the given

masses and velocities, we find KA = 2.0 J, KB = 4.5 J, KC = 2.0 J, 
KD = 4.0 J.

Stop to Think 10.4: 1Ug23 7 1Ug22 = 1Ug24 7 1Ug21 . Gravitational 
potential energy depends only on height, not speed.

Stop to Think 10.5: D. The potential energy of a spring depends on 
the square of the displacement x, so the energy is positive whether 
the spring is compressed or extended. If the spring is compressed by 
twice the amount it had been stretched, the energy will increase by a 
factor of 22 = 4. So the energy will be 4 * 1 J = 4 J .

Stop to Think 10.6: B. We can use conservation of energy to write 
∆K + ∆Eth = 0. Now if the initial kinetic energy doubles, so does 
∆K, so ∆Eth must double as well. But ∆Eth = fk ∆x, so if ∆Eth dou-
bles, then ∆x doubles to 2.0 m. 

Stop to Think 10.7: We define the system as the student, the rope, 
and the earth. The friction force and the weight force are internal to 
the system, so it is an isolated system.

Stop to Think 10.8: D. In all three cases, Katie has the same ini-
tial kinetic energy and potential energy. Thus her energy must be the 
same at the bottom of the slide in all three cases. Because she has 
only kinetic energy at the bottom, her speed there must be the same 
in all three cases as well.

Stop to Think 10.9: B. The kinetic energy is the difference between 
the total energy and the potential energy. This is highest at the bot-
tom of the right well in B.

Stop to Think 10.10: C. The initial momentum is 12M2v0 + 0, and 
the final momentum is 0 + M12v02. These are equal, so momentum 
is conserved. The initial kinetic energy is 1

212M2v0 

2 = Mv0 

2, and the
final kinetic energy is 1

2M12v022 = 2Mv0 

2. The final kinetic energy
is greater than the initial kinetic energy, so this collision is not pos-
sible. (If the final kinetic energy had been less than the initial kinetic 
energy, the collision could be possible because the difference in 
energy could be converted into thermal energy.)

Stop to Think 10.11: PB + PA ∙ PC + PD . The power here is the
rate at which each runner’s internal chemical energy is converted 
into gravitational potential energy. The change in gravitational 
potential energy is mg∆y, so the power is mg∆y/ ∆t. For runner A,
the ratio m∆y/ ∆t equals 180 kg2110 m2/110 s2 = 80 kg # m/s. For
C, the ratio is also 80 kg # m/s. For B, it’s 100 kg # m/s, while for D
the ratio is 64 kg # m/s.

Video Tutor Solution  Chapter 10eText
2.0

Q U E S T I O N S

Conceptual Questions

1. The brake shoes of your car are made of a material that can
tolerate very high temperatures without being damaged. Why is
this so?

For Questions 2 through 9, give a specific example of a system with 
the energy transformation shown. In these questions, W is the work 
done on the system, and K, U, and Eth are the kinetic, potential, 
and thermal energies of the system, respectively. Any energy not 

mentioned in the transformation is assumed to remain constant; if 
work is not mentioned, it is assumed to be zero.

2. W S K 3. W S U
4. K S U 5. K S W
6. U S K 7.  W S ∆Eth

8. U S ∆Eth 9.  K S ∆Eth

10. A ball of putty is dropped from a height of 2 m onto a hard
floor, where it sticks. What object or objects need to be
included within the system if the system is to be isolated during
this process?

USTEEMA
Callout
Additional Stop To Think questions provide students with more crucial practice and concept checks as they go through the chapters. The solutions to these questions have been moved to a more prominent location. 

USTEEMA
Callout
We now provide Learning Objectives keyed to relevant end of chapter problems to help students check their understanding and guide them in choosing appropriate problems to optimize their study time.
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Problem difficulty is labeled as | (straightforward) to ||||| (challenging). 
 Problems labeled integrate significant material from earlier 

chapters;  are of biological or medical interest.

 The eText icon indicates when there is a video tutor solution 
available for the chapter or for a specific problem. To launch 

these videos, log into your eText through  or log 
into the Study Area.

eText
2.0

11. A diver leaps from a high platform, speeds up as she falls, and
then slows to a stop in the water. How do you define the system
so that the energy changes are all transformations internal to an
isolated system?

12. When your hands are cold, you can rub them together to
warm them. Explain the energy transformations that make this
possible.

13. Puck B has twice the mass of puck A. Starting from rest, both
pucks are pulled the same distance across frictionless ice by
strings with the same tension.
a. Compare the final kinetic energies of pucks A and B.
b. Compare the final speeds of pucks A and B.

14. To change a tire, you need to use a jack to raise one corner of
your car. While doing so, you happen to notice that pushing the
jack handle down 20 cm raises the car only 0.2 cm. Use energy
concepts to explain why the handle must be moved so far to
raise the car by such a small amount.

15.	 You drop two balls from a tower, one of mass m and the other of 
mass 2m. Just before they hit the ground, which ball, if either,
has the larger kinetic energy? Explain.

16. If you fall and skid to a stop on a carpeted floor, you can get
a rug burn. Much of this discomfort comes from abrasion, but
there can also be a real burn where the skin was too hot. How
does this happen?

17. A roller coaster car rolls down a frictionless track, reaching
speed v at the bottom.
a. If you want the car to go twice as fast at the bottom, by what

factor must you increase the height of the track?
b. Does your answer to part a depend on whether the track is

straight or not? Explain.
18. A spring gun shoots out a plastic ball at speed v. The spring is

then compressed twice the distance it was on the first shot.
a. By what factor is the spring’s potential energy increased?
b. By what factor is the ball’s speed increased? Explain.

19. A baseball pitcher can throw a baseball (mass 0.14 kg) much
faster than a football quarterback can throw a football (mass
0.42 kg). Use energy concepts to explain why you would expect
this to be true.

20. Sandy and Chris stand on the edge of a cliff and throw identi-
cal mass rocks at the same speed. Sandy throws her rock hori-
zontally while Chris throws his upward at an angle of 45° to
the horizontal. Are the rocks mov-
ing at the same speed when they hit
the ground, or is one moving faster
than the other? If one is moving 
faster, which one? Explain.

21. A solid cylinder and a hollow cylin-
der have the same mass, same radius, and turn on frictionless,
horizontal axles. (The hollow cylinder has lightweight spokes
connecting it to the axle.) A rope is wrapped around each cyl-
inder and tied to a block. The blocks have the same mass and
are held the same height above the ground as shown in Figure
Q10.21. Both blocks are released simultaneously. The ropes
do not slip. Which block hits the ground first? Or is it a tie?
Explain.

22. A bowler tosses a ball without spin. The ball slides down the
alley. At some point, friction with the alley makes the ball start
to roll; eventually, it rolls without sliding. When the ball reaches 
this point, it is moving at a lower speed than the original toss.
Use energy concepts to give two reasons for this change.

23. Ferns that eject spores generally do so in pairs, with two spores
flying off in opposite directions. The structure from which the
spores are launched is quite lightweight. If it takes a certain
amount of energy to eject each spore, explain how launching
the spores in pairs provides for the greatest initial launch speed
for each spore.

	24.	 Figure Q10.24 shows a
potential-energy diagram for
a particle. The particle is at
rest at point A and is then
given a slight nudge to the
right. Describe the subsequent
motion.

Multiple-Choice Questions

25. ||	 A roller coaster starts from rest at its highest point and then
descends on its (frictionless) track. Its speed is 30 m/s when it
reaches ground level. What was its speed when its height was
half that of its starting point?
A. 11 m/s	 B.	 15 m/s	 C.	 21 m/s	 D.	 25 m/s

26. |	 A woman uses a pulley and a rope to raise a 20 kg weight to
a height of 2 m. If it takes 4 s to do this, about how much power
is she supplying?
A. 100 W B.	 200 W C.	 300 W	 D.	 400 W

27. |	 A hockey puck sliding along frictionless ice with speed v to
the right collides with a horizontal spring and compresses it by
2.0 cm before coming to a momentary stop. What will be the
spring’s maximum compression if the same puck hits it at a
speed of 2v?
A. 2.0 cm	 B.	 2.8 cm	 C.	 4.0 cm
D. 5.6 cm E. 8.0 cm

28. ||	 A block slides down a smooth ramp, starting from rest at a
height h. When it reaches the bottom it’s moving at speed v.
It then continues to slide up a second smooth ramp. At what
height is its speed equal to v/2?
A.	 h/4 B.	 h/2 C.	 3h/4 D.	 2h

29. |	 A wrecking ball is suspended from a 5.0-m-long cable that
makes a 30° angle with the vertical. The ball is released and
swings down. What is the ball’s speed at the lowest point?
A. 7.7 m/s	 B.	 4.4 m/s	 C.	 3.6 m/s	 D.	 3.1 m/s

30. ||	 A dog can provide sufficient power to pull a sled with a 60 N
force at a steady 2.0 m/s. Suppose the dog is hitched to a differ-
ent sled that requires 120 N to move at a constant speed. How
fast can the dog pull this second sled?
A. 0.50 m/s	 B.	 1.0 m/s	 C.	 1.5 m/s	 D.	 2.0 m/s

31. |||	 Most of the energy you expend in cycling is dissipated by
the drag force. If you double your speed, you increase the drag
force by a factor of 4. This increases the power to cycle at this
greater speed by what factor?
A. 2 B. 4 C. 8 D. 16

1 2

FIGURE Q10.21 

Energy

A B C D E
x

FIGURE Q10.24 
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Section 10.2  Work

1. ||	 A 2.0 kg book is lying on a 0.75-m-high table. You pick it up
and place it on a bookshelf 2.3 m above the floor. During this
process,
a. How much work does gravity do on the book?
b. How much work does your hand do on the book?

2. ||	 The two ropes seen in Figure P10.2 are used to lower a
255 kg piano exactly 5 m from a second-story window to the
ground. How much work is done by each of the three forces?

12. ||	 The opposite of a wind turbine is an electric fan: The electric
energy that powers the fan is converted to the kinetic energy
of moving air. A fan is putting 1.0 J of kinetic energy into the
air every second. Then the fan speed is increased by a factor
of 2. Air moves through the fan faster, so the fan moves twice
as much air at twice the speed. How much kinetic energy goes
into the air every second?

13. |	 How fast would an 80 kg man need to run in order to have
the same kinetic energy as an 8.0 g bullet fired at 400 m/s?

14. |||	 A fielder tosses a 0.15 kg baseball at 32 m/s at a 30° angle to
the horizontal. What is the ball’s kinetic energy at the start of its
motion? What is the kinetic energy at the highest point of its arc?

15. |||	 Sam’s job at the amusement park is to slow down and bring
to a stop the boats in the log ride. If a boat and its riders have
a mass of 1200 kg and the boat drifts in at 1.2 m/s, how much
work does Sam do to stop it?

16. ||	 A school has installed a modestly-sized wind turbine. The
three blades are 4.6 m long; each blade has a mass of 45 kg.
You can assume that the blades are uniform along their lengths.
When the blades spin at 240 rpm, what is the kinetic energy of
the blade assembly?

17. |||	 The turntable in a microwave oven has a moment of inertia
of 0.040 kg # m2  and rotates continuously, making a complete
revolution every 4.0 s. What is its kinetic energy?

18. ||	 A typical meteor that hits the
earth’s upper atmosphere has a mass
of only 2.5 g, about the same as a
penny, but it is moving at an impres-
sive 40 km/s. As the meteor slows,
the resulting thermal energy makes a
glowing streak across the sky, a shoot-
ing star. The small mass packs a sur-
prising punch. At what speed would a
900 kg compact car need to move to
have the same kinetic energy?

19. ||||	 An energy storage system based
on a flywheel (a rotating disk) can store a maximum of 4.0 MJ
when the flywheel is rotating at 20,000 revolutions per minute.
What is the moment of inertia of the flywheel?

Section 10.4 Potential Energy

20. ||	 The lowest point in Death Valley is 85.0 m below sea level.
The summit of nearby Mt. Whitney has an elevation of 4420 m.
What is the change in gravitational potential energy of an ener-
getic 65.0 kg hiker who makes it from the floor of Death Valley
to the top of Mt. Whitney?

21. |	 The world’s fastest humans can reach speeds of about
11 m/s. In order to increase his gravitational potential energy
by an amount equal to his kinetic energy at full speed, how high
would such a sprinter need to climb?

22. |	 A 72 kg bike racer climbs a 1200-m-long section of road that
has a slope of 4.3°. By how much does his gravitational poten-
tial energy change during this climb?

23. ||	 A 1000 kg wrecking ball hangs from a 15-m-long cable.
The ball is pulled back until the cable makes an angle of 25°
with the vertical. By how much has the gravitational potential
energy of the ball changed?
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3. |	 The two ropes shown in the bird’s-eye view of Figure P10.3
are used to drag a crate exactly 3 m across the floor. How much
work is done by each of the ropes on the crate?

4. |	 You are pulling a child in a wagon. The rope handle is
inclined upward at a 60° angle. The tension in the handle is
20 N. How much work do you do if you pull the wagon 100 m
at a constant speed?

5. |	 A boy flies a kite with the string at a 30° angle to the hori-
zontal. The tension in the string is 4.5 N. How much work does
the string do on the boy if the boy
a. Stands still?
b. Walks a horizontal distance of 11 m away from the kite?
c. Walks a horizontal distance of 11 m toward the kite?

6. ||	 A typical muscle fiber is 2.0 cm long and has a cross-section
area of 3.1 * 10-9 m2. When the muscle fiber is stimulated, it
pulls with a force of 1.2 mN. What is the work done by the
muscle fiber as it contracts to a length of 1.6 cm?

7. ||	 A crate slides down a ramp that makes a 20° angle with the
ground. To keep the crate moving at a steady speed, Paige pushes
back on it with a 68 N horizontal force. How much work does
Paige do on the crate as it slides 3.5 m down the ramp?

Section 10.3 Kinetic Energy

8. ||	 A wind turbine works by slowing the air that passes its
blades and converting much of the extracted kinetic energy to
electric energy. A large wind turbine has 45-m-radius blades. In
typical conditions, 92,000 kg of air moves past the blades every
second. If the air is moving at 12 m/s before it passes the blades
and the wind turbine extracts 40% of this kinetic energy, how
much energy is extracted every second?

9. ||	 At what speed does a 1000 kg compact car have the same
kinetic energy as a 20,000 kg truck going 25 km/h?

10. |	 A 60 kg runner in a sprint moves at 11 m/s. A 60 kg cheetah
in a sprint moves at 33 m/s. By what factor does the kinetic
energy of the cheetah exceed that of the human runner?

11. |	 A car is traveling at 10 m/s.
a. How fast would the car need to go to double its kinetic energy?
b. By what factor does the car’s kinetic energy increase if its

speed is doubled to 20 m/s?

Watch Video Solution    Problem 10.5eText
2.0
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24. ||	 How far must you stretch a spring with k = 1000 N/m to
store 200 J of energy?

25. ||	 How much energy can be stored in a spring with a spring
constant of 500 N/m if its maximum possible stretch is 20 cm?

26. ||	 The spring in a retractable ballpoint pen is 1.8 cm long, with
a 300 N/m spring constant. When the pen is retracted, the spring 
is compressed by 1.0 mm. When you click the button to extend
the pen, you compress the spring by an additional 6.0  mm.
How much energy is required to extend the pen?

27. |||||	The elastic energy stored in your tendons can contribute up
to 35% of your energy needs when running. Sports scientists
have studied the change in length of the knee extensor tendon
in sprinters and nonathletes. They find (on average) that the
sprinters’ tendons stretch 41 mm, while nonathletes’ stretch
only 33 mm. The spring constant for the tendon is the same
for both groups, 33 N/mm. What is the difference in maximum
stored energy between the sprinters and the nonathletes?

28.	 ||	 Scallops use muscles 
to close their shells. 
Opening the shell is 
another story—muscles 
can only pull, they can’t 
push. Instead of mus-
cles, the shell is opened 
by a spring, a pad of a 
very elastic biological 
material called abduc-
tin. When the shell 
closes, the pad compresses; a restoring force then pushes the 
shell back open. The energy to open the shell comes from 
the elastic energy that was stored when the shell was closed. 
Figure P10.28 shows smoothed data for the restoring force of 
an abductin pad versus the compression. When the shell closes, 
the pad compresses by 0.15 mm. How much elastic potential 
energy is stored?

Section 10.5 Thermal Energy

29. ||	 Mark pushes his broken car 150 m down the block to his
friend’s house. He has to exert a 110 N horizontal force to push
the car at a constant speed. How much thermal energy is cre-
ated in the tires and road during this short trip?

30. ||	 When you skid to a stop on your bike, you can significantly
heat the small patch of tire that rubs against the road surface.
Suppose a person skids to a stop by hitting the brake on his
back tire, which supports half the 80 kg combined mass of the
bike and rider, leaving a skid mark that is 40 cm long. Assume
a coefficient of kinetic friction of 0.80. How much thermal
energy is deposited in the tire and the road surface?

31. |||	 A 900 N crate slides 12 m down a ramp that makes an angle
of 35° with the horizontal. If the crate slides at a constant speed,
how much thermal energy is created?

32. ||	 If you slide down a rope, it’s possible to create enough ther-
mal energy to burn your hands or your legs where they grip
the rope. Suppose a 40 kg child slides down a rope at a play-
ground, descending 2.0 m at a constant speed. How much ther-
mal energy is created as she slides down the rope?

33. |||	 A 25 kg child slides down a playground slide at a constant
speed. The slide has a height of 3.0 m and is 7.0 m long. Using
the law of conservation of energy, find the magnitude of the
kinetic friction force acting on the child.

34. ||	 Some runners train with parachutes that trail behind them
to provide a large drag force. These parachutes are designed
to have a large drag coefficient. One model expands to a
square 1.8 m on a side, with a drag coefficient of 1.4. A run-
ner completes a 200 m run at 5.0 m/s with this chute trailing
behind. How much thermal energy is added to the air by the
drag force?

Section 10.6 Conservation of Energy

35. ||	 A boy reaches out of a window and tosses a ball straight up
with a speed of 10 m/s. The ball is 20 m above the ground as he
releases it. Use conservation of energy to find
a. The ball’s maximum height above the ground.
b. The ball’s speed as it passes the window on its way down.
c. The speed of impact on the ground.

36. |	 The famous cliff divers of Acapulco leap from a perch 35 m
above the ocean. How fast are they moving when they reach
the water surface? What happens to their kinetic energy as they
slow to a stop in the water?

37. |||	 What minimum speed does a 100 g puck need to make it to
the top of a frictionless ramp that is 3.0 m long and inclined
at 20°?

38. |	 You can, in an emergency, start a manual transmission car by
putting it in neutral, letting the car roll down a hill to pick up
speed, then putting it in gear and quickly letting out the clutch.
If the car needs to be moving at 3.5 m/s for this to work, how
high a hill do you need? (You can ignore friction and drag.)

39. |||	 A 1500 kg car is approaching the hill shown in Figure P10.39 
at 10 m/s when it suddenly runs out of gas.
a. Can the car make it to the top of the hill by coasting?
b. If your answer to part a is yes, what is the car’s speed after

coasting down the other side?

Restoring force (N)

0
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40. |	 A 480 g peregrine
falcon reaches a speed
of 75 m/s in a vertical
dive called a stoop. If we
assume that the falcon
speeds up under the influ-
ence of gravity only, what
is the minimum height of
the dive needed to achieve
this speed?

41. ||	 A fireman of mass 80
kg slides down a pole.
When he reaches the bottom, 4.2 m below his starting point, his
speed is 2.2 m/s. By how much has thermal energy increased
during his slide?

42. ||	 A 20 kg child slides down a 3.0-m-high playground slide.
She starts from rest, and her speed at the bottom is 2.0 m/s.
a. What energy transfers and transformations occur during the

slide?
b. What is the total change in the thermal energy of the slide

and the seat of her pants?

Watch Video Solutions    Problems 10.33, 10.42eText
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c. Given your answers to parts a and b, how fast must she be
running when she grabs the rope in order to swing all the
way across the ravine?

50. |||	 The Special Olympics raises money through “plane pull”
events in which teams of 25 people compete to see who can
pull a 74,000 kg airplane 3.7 m across the tarmac. The inertia
of the plane is an issue—but so is the 14,000 N rolling fric-
tion force that works against the teams. If a team pulls with a
constant force and moves the plane 3.7 m in 6.1 s (an excellent
time), what fraction of the team’s work goes to kinetic energy
and what fraction goes to thermal energy?

Section 10.7 Energy Diagrams

51. ||	 Figure P10.51 is the potential-energy diagram for a 20 g
particle that is released from rest at x = 1.0 m.
a. Will the particle move to the right or to the left? How can

you tell?
b. What is the particle’s maximum speed? At what position

does it have this speed?
c. Where are the turning points of the motion?

43. ||	 A hockey puck is given an initial speed of 5.0 m/s. If the
coefficient of kinetic friction between the puck and the ice is
0.05, how far does the puck slide before coming to rest? Solve
this problem using conservation of energy.

44. |||	 Monica pulls her daughter Jessie in a bike trailer. The trailer
and Jessie together have a mass of 25 kg. Monica starts up a
100-m-long slope that’s 4.0 m high. On the slope, Monica’s
bike pulls on the trailer with a constant force of 8.0 N. They
start out at the bottom of the slope with a speed of 5.3 m/s.
What is their speed at the top of the slope?

45. ||	 In the winter activity of tubing, riders slide down snow-
covered slopes while sitting on large inflated rubber tubes. To
get to the top of the slope, a rider and his tube, with a total
mass of 80 kg, are pulled at a constant speed by a tow rope
that maintains a constant tension of 340 N. How much thermal
energy is created in the slope and the tube during the ascent of a
30-m-high, 120-m-long slope?

46. ||	 Mosses don’t spread by dispersing seeds; they disperse
tiny spores. The spores are so small that they will stay aloft
and move with the wind, but getting them to be windborne
requires the moss to shoot the spores upward. Some species
do this by using a spore-containing capsule that dries out and
shrinks. The pressure of the air trapped inside the capsule
increases. At a certain point, the capsule pops, and a stream
of spores is ejected upward at 3.6 m/s, reaching an ultimate
height of 20 cm. What fraction of the initial kinetic energy is
converted to the final potential energy? What happens to the
“lost” energy?

47. ||	 A cyclist is coasting at 12 m/s when she starts down a
450-m-long slope that is 30 m high. The cyclist and her bicycle
have a combined mass of 70 kg. A steady 12 N drag force due
to air resistance acts on her as she coasts all the way to the bot-
tom. What is her speed at the bottom of the slope?

48. ||	 When you stand on a
trampoline, the surface 
depresses below equi-
librium, and the surface 
pushes up on you, as 
the data for a real tram-
poline in Figure P10.48 
show. The linear varia-
tion of the force as a 
function of distance 
means that we can 
model the restoring force as that of a spring. A 72 kg gymnast 
jumps on the trampoline. At the lowest point of his motion, he 
is 0.80 m below equilibrium. If we assume that all of the energy 
stored in the trampoline goes into his motion, how high above 
this lowest point will he rise?

49. ||	 The 5.0-m-long rope in
Figure P10.49 hangs verti-
cally from a tree right at the
edge of a ravine. A woman
wants to use the rope to
swing to the other side of the
ravine. She runs as fast as
she can, grabs the rope, and
swings out over the ravine.
a.	 As she swings, what

energy conversion is taking place?
b. When she’s directly over the far edge of the ravine, how

much higher is she than when she started?

Restoring force (N)

0
0

800

1600

0.25

Distance below equilibrium (m)

0.50

FIGURE P10.48  

53. |	 How far apart are the individual atoms in a molecule of H2?
54. ||	 What energy photon is needed to dissociate a molecule of H2?

Section 10.9 Energy in Collisions

55. ||	 A 50 g marble moving at 2.0 m/s strikes a 20 g marble at
rest. What is the speed of each marble immediately after the
collision? Assume the collision is perfectly elastic and the mar-
bles collide head-on.

56. ||	 Ball 1, with a mass of 100 g and traveling at 10 m/s, collides
head-on with ball 2, which has a mass of 300 g and is initially
at rest. What are the final velocities of each ball if the collision
is (a) perfectly elastic? (b) perfectly inelastic?
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Section 10.8 Molecular Bonds and Chemical Energy

At normal temperatures and pressures, hydrogen gas is composed of 
H2 molecules. An energy diagram for a hydrogen molecule appears 
in Figure P10.53. Use this information to answer Problems 10.53 
and 10.54.
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52. ||	 For the potential-energy diagram in Figure P10.52, what is
the maximum speed of a 2.0 g particle that oscillates between
x = 2.0 mm and x = 8.0 mm?

5.0 m

3.0 m

FIGURE P10.49 
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69. |||	 An elevator weighing 2500 N
ascends at a constant speed of
8.0 m/s. How much power must
the motor supply to do this?

70. ||	 Humans can produce an out-
put power as great as 20 W/kg
during extreme exercise. Sloths
are not so energetic. At its maxi-
mum speed, a 4.0 kg sloth can
climb a height of 6.0 m in 2.0
min. What’s the specific power
for this climb?

General Problems

71. ||	 A 550 kg elevator accelerates upward at 1.2 m/s2 for the first
15 m of its motion. How much work is done during this part of
its motion by the cable that lifts the elevator?

72. ||	 The energy yield of a nuclear weapon is often defined in
terms of the equivalent mass of a conventional explosive. 1 ton
of a conventional explosive releases 4.2 GJ. A typical nuclear
warhead releases 250,000 times more, so the yield is expressed
as 250 kilotons. That is a staggering explosion, but the asteroid
impact that wiped out the dinosaurs was significantly greater.
Assume that the asteroid was a sphere 10 km in diameter, with
a density of 2500 kg/m3 and moving at 30 km/s. What energy
was released at impact, in joules and in kilotons?

73. ||	 A 2.3 kg box, starting from rest, is pushed up a ramp by a
10 N force parallel to the ramp. The ramp is 2.0 m long and
tilted at 17°. The speed of the box at the top of the ramp is
0.80 m/s. Consider the system to be the box + ramp + earth.
a. How much work W does the force do on the system?
b. What is the change ∆K in the kinetic energy of the system?
c. What is the change ∆Ug  in the gravitational potential energy 

of the system?
d. What is the change ∆Eth  in the thermal energy of the system?

74. |||	 A 55 kg skateboarder
wants to just make it to the
upper edge of a “half-pipe”
with a radius of 3.0 m, as
shown in Figure P10.74.
What speed does he need
at the bottom if he will
coast all the way up? The skateboarder isn’t a simple particle: 
Assume that his mass in a deep crouch is concentrated 0.75 m 
from the half-pipe. If he remains in that position all the way up, 
what initial speed does he need to reach the upper edge?

75. |||	 Fleas have remarkable jumping ability. A 0.50 mg flea,
jumping straight up, would reach a height of 40 cm if there
were no air resistance. In reality, air resistance limits the height
to 20 cm.
a. What is the flea’s kinetic energy as it leaves the ground?
b. At its highest point, what fraction of the initial kinetic energy 

has been converted to potential energy?
76. |||	 You are driving your 1500 kg car at 20 m/s down a hill with

a 5.0° slope when a deer suddenly jumps out onto the roadway.
You slam on your brakes, skidding to a stop. How far do you
skid before stopping if the kinetic friction force between your
tires and the road is 1.2 * 104 N? Solve this problem using con-
servation of energy.

77. ||	 A 20 kg child is on a swing that hangs from 3.0-m-long
chains, as shown in Figure P10.77. What is her speed vi at the

57. |	 An air-track glider undergoes a perfectly inelastic collision
with an identical glider that is initially at rest. What fraction of
the first glider’s initial kinetic energy is transformed into ther-
mal energy in this collision?

58. |	 Two balls undergo a perfectly elastic head-on collision, with
one ball initially at rest. If the incoming ball has a speed of
200 m/s, what are the final speed and direction of each ball if
a. The incoming ball is much more massive than the stationary

ball?
b. The stationary ball is much more massive than the incoming

ball?

Section 10.10 Power

59. ||	 a.	� How much work must you do to push a 10 kg block of
steel across a steel table at a steady speed of 1.0 m/s for 
3.0 s? The coefficient of kinetic friction for steel on steel 
is 0.60.

b. 	What is your power output while doing so?
60. ||	 A shooting star is actually the track of a meteor, typically

a small chunk of debris from a comet that has entered the
earth’s atmosphere. As the drag force slows the meteor down,
its kinetic energy is converted to thermal energy, leaving a
glowing trail across the sky. A typical meteor has a surprisingly
small mass, but what it lacks in size it makes up for in speed.
Assume that a meteor has a mass of 1.5 g and is moving at an
impressive 50 km/s, both typical values. What power is gener-
ated if the meteor slows down over a typical 2.1 s? Can you see
how this tiny object can make a glowing trail that can be seen
hundreds of kilometers away?

61. |	 a.	� How much work does an elevator motor do to lift a
1000 kg elevator a height of 100 m at a constant speed?

b. �	How much power must the motor supply to do this in
50 s at constant speed?

62. ||	 A 500 kg horse can provide a steady output power of 750 W
(that is, 1 horsepower) when pulling a load. How about a 38 kg
sled dog? Data show that a 38 kg dog can pull a sled that
requires a pulling force of 60 N at a steady 2.2 m/s. What are
the specific power values for the dog and the horse? What is the
minimum number of dogs needed to provide the same power as
one horse?

63. |||	 A 1000 kg sports car accelerates from 0 to 30 m/s in 10 s.
What is the average power of the engine?

64. ||	 A world-class sprinter running a 100 m dash was clocked at
5.4 m/s 1.0 s after starting running and at 9.8 m/s 1.5 s later. In
which of these time intervals, 0 to 1.0 s or 1.0 s to 2.5 s, was his
output power greater?

65. ||	 An elite Tour de France cyclist can maintain an output power of 
450 W during a sustained climb. At this output power, how long
would it take an 85 kg cyclist (including the mass of his bike) to
climb the famed 1100-m-high Alpe d’Huez mountain stage?

66. ||	 A 70 kg human sprinter can accelerate from rest to 10 m/s
in 3.0 s. During the same time interval, a 30 kg greyhound can
accelerate from rest to 20 m/s. What is the specific power for
each of these athletes?

67. ||	 A 710 kg car drives at a constant speed of 23 m/s. It is sub-
ject to a drag force of 500 N. What power is required from the
car’s engine to drive the car
a. On level ground?
b. Up a hill with a slope of 2.0°?

68. ||	 A 95 kg quarterback accelerates a 0.42 kg ball from rest to
24 m/s in 0.083 s. What is the specific power for this toss?

3.0 mvi

FIGURE P10.74 
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85. ||	 Two coupled boxcars are rolling along at 2.5 m/s when they
collide with and couple to a third, stationary boxcar.
a. What is the final speed of the three coupled boxcars?
b. What fraction of the cars’ initial kinetic energy is trans-

formed into thermal energy?
86. |||	 A 50 g ball of clay traveling at 6.5 m/s hits and sticks to a

1.0 kg block sitting at rest on a frictionless surface.
a. What is the speed of the block after the collision?
b. Show that the mechanical energy is not conserved in this

collision. What percentage of the ball’s initial kinetic energy
is “lost”? Where did this kinetic energy go?

87. ||	 A package of mass m is
released from rest at a ware-
house loading dock and
slides down a 3.0-m-high
frictionless chute to a wait-
ing truck. Unfortunately,
the truck driver went on a break without having removed the 
previous package, of mass 2m, from the bottom of the chute as 
shown in Figure P10.87.
a. Suppose the packages stick together. What is their common

speed after the collision?
b. Suppose the collision between the packages is perfectly elas-

tic. To what height does the package of mass m rebound?
88. |||	 Swordfish are capable of stunning output power for short

bursts. A 650 kg swordfish has a cross-section area of 0.92 m2

and a drag coefficient of 0.0091—exceptionally low due to a
number of adaptations. Such a fish can sustain a speed of 30 m/s
for a few seconds. Assume seawater has a density of 1026 kg/m3.
What is the specific power for motion at this high speed?

80. |||||	In a physics lab experiment, a spring clamped to the table
shoots a 20 g ball horizontally. When the spring is compressed
20 cm, the ball travels horizontally 5.0 m and lands on the floor
1.5 m below the point at which it left the spring. What is the
spring constant?

81. |||||	The maximum energy a bone can absorb without breaking is
surprisingly small. For a healthy human of mass 60 kg, experi-
mental data show that the leg bones of both legs can absorb
about 200 J.
a. From what maximum height could a person jump and land

rigidly upright on both feet without breaking his legs?
Assume that all the energy is absorbed in the leg bones in a
rigid landing.

b. People jump from much greater heights than this; explain
how this is possible.

Hint: Think about how people land when they jump from 
greater heights.

82. ||	 In an amusement park water slide, people slide down an
essentially frictionless tube. The top of the slide is 3.0 m above
the bottom where they exit the slide, moving horizontally,
1.2  m above a swimming pool. What horizontal distance do
they travel from the exit point before hitting the water? Does
the mass of the person make any difference?

83. |||	 You have been asked to design a “ballistic spring system” to
measure the speed of bullets. A bullet of mass m is fired into
a block of mass M. The block, with the embedded bullet, then

bottom of the arc if she swings out to a 45° angle before revers-
ing direction?

3.0 m

45°

vi

FIGURE P10.77 
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30°
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78. ||	 Suppose you lift a 20 kg box by a height of 1.0 m.
a. How much work do you do in lifting the box?

Instead of lifting the box straight up, suppose you push it
up a 1.0-m-high ramp that makes a 30° degree angle with
the horizontal, as shown in Figure P10.78. Being clever, you
choose a ramp with no friction.

b. How much force F is required to push the box straight up the
slope at a constant speed?

c. How long is the ramp?
d. Use your force and distance results to calculate the work you

do in pushing the box up the ramp. How does this compare
to your answer to part a?

79. |	 The sledder shown in Figure P10.79 starts from the top of
a frictionless hill and slides down into the valley. What initial
speed vi  does the sledder need to just make it over the next hill?

vi

5.9 m
4.2 m

FIGURE P10.79 

slides across a frictionless table and collides with a horizon-
tal spring whose spring constant is k. The opposite end of the 
spring is anchored to a wall. The spring’s maximum compres-
sion d is measured.
a. Find an expression for the bullet’s initial speed vB  in terms

of m, M, k, and d.
Hint: This is a two-part problem. The bullet’s collision with 
the block is an inelastic collision. What quantity is conserved 
in an inelastic collision? Subsequently the block hits a spring 
on a frictionless surface. What quantity is conserved in this col-
lision?
b. What was the speed of a 5.0 g bullet if the block’s mass is

2.0 kg and if the spring, with k = 50 N/m, was compressed
by 10 cm?

c. What fraction of the bullet’s initial kinetic energy is “lost”?
Where did it go?

84. ||	 Boxes A and B in Figure P10.84 have masses of 12.0 kg and
4.0 kg, respectively. The two boxes are released from rest. Use
conservation of energy to find the boxes’ speed when box B has
fallen a distance of 0.50 m. Assume a frictionless upper surface.

A

B

FIGURE P10.84 
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2m
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93. |	 By approximately what percent does the kinetic energy
decrease?
A. 35% B. 45% C. 55% D. 65%

94. |	 When a tennis ball bounces from a racket, the ball loses
approximately 30% of its kinetic energy to thermal energy. A
ball that hits a racket at a speed of 10 m/s will rebound with
approximately what speed?
A. 8.5 m/s B.  7.0 m/s C.  4.5 m/s D.  3.0 m/s

Work and Power in Cycling

When you ride a bicycle at constant speed, almost all of the energy 
you expend goes into the work you do against the drag force of the 
air. In this problem, assume that all of the energy expended goes into 
working against drag. As we saw in Section 5.6, the drag force on an 
object is approximately proportional to the square of its speed with 
respect to the air. For this problem, assume that F ∝ v2  exactly and 
that the air is motionless with respect to the ground unless noted 
otherwise. Suppose a cyclist and her bicycle have a combined mass 
of 60 kg and she is cycling along at a speed of 5 m/s.
95. |	 If the drag force on the cyclist is 10 N, how much energy

does she use in cycling 1 km?
A. 6 kJ B. 10 kJ C. 50 kJ D. 100 kJ

96. |	 Under these conditions, how much power does she expend as
she cycles?
A. 10 W B. 50 W C. 100 W D. 200 W

97. |	 If she doubles her speed to 10 m/s, how much energy does
she use in cycling 1 km?
A. 20 kJ B. 40 kJ C. 200 kJ D. 400 kJ

98. |	 How much power does she expend when cycling at that
speed?
A. 100 W B. 200 W C. 400 W D. 1000 W

99. |	 Upon reducing her speed back down to 5 m/s, she hits a
headwind of 5 m/s. How much power is she expending now?
A. 100 W B. 200 W C. 500 W D. 1000 W

89. ||	 The mass of an elevator and its occupants is 1200 kg. The
electric motor that lifts the elevator can provide a maximum
power of 15 kW. What is the maximum constant speed at which
this motor can lift the elevator?

MCAT-Style Passage Problems

Tennis Ball Testing

A tennis ball bouncing on a hard surface compresses and then 
rebounds. The details of the rebound are specified in tennis regu-
lations. Tennis balls, to be acceptable for tournament play, must 
have a mass of 57.5 g. When dropped from a height of 2.5 m onto a 
concrete surface, a ball must rebound to a height of 1.4 m. During 
impact, the ball compresses by approximately 6 mm.
90. |	 How fast is the ball moving when it hits the concrete sur-

face? (Ignore air resistance.)
A. 5 m/s B.  7 m/s C.  25 m/s D.  50 m/s

91. |	 If the ball accelerates uniformly when it hits the floor,
what is its approximate acceleration as it comes to rest before
rebounding?
A.	1000 m/s2 	 B.  2000 m/s2 	 C.  3000 m/s2 	 D.  4000 m/s2

92. |	 The ball’s kinetic energy just after the bounce is less than
just before the bounce. In what form does this lost energy end
up?
A. Elastic potential energy
B. Gravitational potential energy
C. Thermal energy
D. Rotational kinetic energy




