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1. Real Number System

1.1. Introduction. Numbers are at the heart of mathematics. By now you must be fairly
familiar with them. Some basic sets of numbers are:

natural numbers, N =
{

0, 1, 2, · · ·
}

;

integers (die Zahlen), Z =
{

· · · ,−2,−1, 0, 1, 2, · · ·
}

;

rational numbers (quotients), Q =

{

p

q
: p, q ∈ Z, q 6= 0

}

;

real numbers, R = (−∞,∞) ;

complex numbers, C =
{

x + iy : x, y ∈ R
}

.

Each of these sets is endowed with natural algebraic operations (like ‘addition’ and ‘multi-
plication’) and order relations (like ‘less than’) by which their elements are manipulated and
compared. It is fairly clear how N, Z, and Q are related through an increasingly richer algebraic
structure. It is also fairly clear that R and C bear a similar relationship. What is less clear is
the relationship between Q and R. In particular, what are the properties that allow R and not
Q to be identified with a ‘line’? In this section we address some of these issues.

We begin by addressing the question of why the rational numbers are inadequate for math-
ematical analysis. Simply put, the rationals do not allow us to solve equations that we would
like to solve. This was also the reason behind the introduction of the negative integers and the
rational numbers. The negative integers allow us to solve equations like x + m = n, where m,
n ∈ N. The rationals allow us to solve equations like mx = n, where m, n ∈ Z with m 6= 0.
However, the rationals do not allow us to solve the rather simple equation x2 = 2.

Proposition 1.1. There esists no x ∈ Q such that x2 = 2.

Proof. We argue be assuming the contrary, and showing that it leads to a contradiction.
Suppose there is such an x ∈ Q. Then we can write it as x = p/q, where p and q are nonzero
integers with no common factors. Because x2 = 2, we see that p2 = 2q2. Hence, 2 is a factor
of p2, which implies that 2 must also be a factor of p. We can therefore set p = 2r for some
nonzero integer r. Because p2 = 2q2, we see that 22r2 = 2q2, which is the same as q2 = 2r2.
Hence, 2 is a factor of q2, which implies that 2 must also be a factor of q. It follows that 2 is a
factor of both p and q, which contradicts our assumption that p and q have no common factors.
Therefore no such x ∈ Q exists. �

There is nothing special about 2 in our argument. The same result is obtained for equations
like x2 = n where n is any positive integer that is not a perfect square. More generally, the
same result is obtained for equations like xm = n where m and n are positive integers such that
n 6= km for some integer k. The problem is that there are too many “holes” like this in Q. In
this section we will see how R fills these holes so as to allow the solution of such equations.
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1.2. Fields. The sets Q, R, and C endowed with their natural algebraic operations are each
an example of a general algebraic structure known as a field.

Definition 1.1. A field is a set X equipped with two distinguished binary operations, called
addition and multiplication, that satisfy the addition, multiplication, and distributive axioms
presented below. Taken together, these axioms constitute the so-called field axioms.

Addition axioms. Addition maps any two x, y ∈ X to their sum x + y ∈ X such that:

A1: x + y = y + x ∀x, y ∈ X, — commutativity;
A2: (x + y) + z = x + (y + z) ∀x, y, z ∈ X, — associativity;
A3: ∃0 ∈ X such that x + 0 = x ∀x ∈ X, — identity;
A4: ∀x ∈ X ∃ − x ∈ X, such that x + (−x) = 0, — inverse.

Multiplication axioms. Multiplication maps any two x, y ∈ X to their product xy ∈ X such
that:

M1: xy = yx ∀x, y ∈ X, — commutativity;
M2: (xy)z = x(yz) ∀x, y, z ∈ X, — associativity;
M3: ∃1 ∈ X such that 1 6= 0 and x1 = x ∀x ∈ X, — identity;
M4: ∀x ∈ X such that x 6= 0 ∃x−1 ∈ X such that xx−1 = 1, — inverse.

Distributive axiom. Addition and multiplication are related by:

D: x(y + z) = xy + xz ∀x, y, z ∈ X, — distributivity.

Examples. When addition and multiplication have their usual meaning, the field axioms
clearly hold in Q, R, and C, but not in N or Z. They also hold in Zn ≡ Z/(nZ) (the integers
mod n) when n is prime. If you do not know this last example, do not worry. It is not critical
in this course. You will see it in a basic algebra course.

All of the usual rules for algebraic manipulations involving addition, subtraction, multiplica-
tion, and division can be developed from the field axioms. This is not as easy as it sounds!

1.2.1. Consequences of the Addition Axioms. We begin by isolating the addition axioms.

Definition 1.2. A set X equipped with a distinguished binary operation that satisfies the ad-
dition axioms is called an Abelian group or a commutative group.

Examples. When addition has its usual meaning, the axioms for an Abelian groups clearly
hold in Z, Q, R, and C, but not in N. (As defined here, N satisfies all these axioms but A4.)
They also hold in Zn for every positive integer n.

The addition axioms immediately imply the following.

Proposition 1.2. Let X be an Abelian group.

(a) If x, y, z ∈ X and x + y = x + z then y = z.
(b) If x, y ∈ X and x + y = x then y = 0.
(c) If x, y ∈ X and x + y = 0 then y = −x.
(d) If x, y ∈ X then −(x + y) = (−x) + (−y).
(e) If x ∈ X then −(−x) = x.

Proof. Exercise.

Assertion (a) states that addition enjoys a so-called cancellation law. Assertion (b) states that
there is a unique additive identity of the type assumed in A3. This unique additive identity
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is called zero. All other elements of X are said to be nonzero. Assertion (c) states that for
every x ∈ X there is a unique additive inverse of the type assumed in A4. This unique additive
inverse is called the negative of x. The map defined for every x ∈ X by x 7→ −x is called
negation. Assertion (d) states that the negative of a sum is the sum of the negatives. Assertion
(e) states that for every x ∈ X the negative of the negative of x is again x.

When working with Abelian groups, it is both convenient and common to write

x − y , x + y + z , 2x , 3x , · · · ,

rather than
x + (−y) , x + (y + z) , x + x , x + x + x , · · · .

More precisely, the symbol nx is can be defined for every group element x and every natural
number n by induction. We set 0x = 0, where the second 0 is the additive identity, and define
(n + 1)x = nx + x for every n ∈ N. This notation satisfies the following properties.

Proposition 1.3. Let X be an Abelian group.

(a) If x ∈ X and m, n ∈ N then (m + n)x = mx + nx and (mn)x = n(mx).
(b) If x, y ∈ X and n ∈ N then n(x + y) = nx + ny.
(c) If x ∈ X and n ∈ N then n(−x) = −(nx).

Proof. Exercise.

Motivated by these facts, for every group element x the definition of the symbol nx can be
extended to every integer n by setting nx = (−n)(−x) when n is negative.

1.2.2. Consequences of the Multiplcation Axioms. The only connection of the multiplication
axioms to addition is through the references to zero in M3 and M4. An immediate consequence
of M3 is that every field has at least two elements — 0 and 1. It is also clear that the nonzero
elements of a field considered with the operation of multiplication form an Abelian group.

Examples. When addition and multiplication have their usual meaning, the addition and
multiplication axioms clearly hold in Q, R, and C, but not in N or Z. They also hold in Zn

when n is prime.

The multiplication axioms immediately imply the following.

Proposition 1.4. Let X be a field.

(a) If x, y, z ∈ X, x 6= 0, and xy = xz then y = z.
(b) If x, y ∈ X, x 6= 0, and xy = x then y = 1.
(c) If x, y ∈ X, x 6= 0, and xy = 1 then y = x−1.
(d) If x, y ∈ X, x 6= 0 and y 6= 0 then xy 6= 0 and (xy)−1 = x−1y−1.
(e) If x ∈ X and x 6= 0 then (x−1)−1 = x.

Proof. Exercise.

Assertion (a) states that multiplication enjoys a so-called cancellation law. Assertion (b) states
that there is a unique multiplicative identity of the type assumed in M3. This unique multi-
plicative identity is called one. Assertion (c) states that for every nonzero x ∈ X there is a
unique multiplicative inverse of the type assumed in M4. This unique multiplicative inverse is
called the reciprocal of x. The map defined for every nonzero x ∈ X by x 7→ x−1 is called recip-
rocation. Assertion (d) states that the reciprocal of a product is the product of the reciprocals.
Assertion (e) states that every nonzero x ∈ X is the reciprocal of its reciprocal.
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When working with fields, it is both convenient and common to write

x/y , xyz , x2 , x3 , · · · ,

rather than
xy−1 , x(yz) , xx , xxx , · · · .

More precisely, the symbol xn is can be defined for every field element x and every positive
interger n by induction. We set x1 = x and define xn+1 = xnx for every n ∈ Z+, where Z+

denotes the positive integers. This notation satisfies the following properties.

Proposition 1.5. Let X be a field.

(a) If x ∈ X and m, n ∈ Z+ then xm+n = xmxn and xmn = (xm)n.
(b) If x, y ∈ X and n ∈ Z+ then (xy)n = xnyn.
(c) If x ∈ X, x 6= 0, and n ∈ Z+ then xn 6= 0 and (xn)−1 = (x−1)n.

Proof. Exercise.

Motivated by these facts, for every nonzero field element x the definition of the symbol xn can
be extended to every integer n by setting x0 = 1, where the 1 is the multiplicative identity, and
xn = (x−1)−n when n is negative. The symbol 0n remains undefined when n is not positive.

Exercise. Let X be a field. Extend Proposition 1.5 to Z by proving the following.

(a) If x ∈ X, x 6= 0, and m, n ∈ Z then xm+n = xmxn and xmn = (xm)n.
(b) If x, y ∈ X, x 6= 0, y 6= 0, and n ∈ Z then (xy)n = xnyn.
(c) If x ∈ X, x 6= 0, and n ∈ Z then xn 6= 0 and (xn)−1 = (x−1)n.

1.2.3. Consequences of the Distributive Axiom. The distributive axiom gives the key connection
between addition and multiplication. Taken together, the field axioms imply the following.

Proposition 1.6. Let X be a field.

(a) If x ∈ X then x0 = 0.
(b) If x, y ∈ X and xy = 0 then x = 0 or y = 0.
(c) If x, y ∈ X then (−x)y = −(xy) = x(−y).
(d) If x ∈ X and x 6= 0 then (−x)−1 = −x−1.

Proof. Exercise.

Assertion (a) states that the product of anything with zero is zero. In particular, it shows that
zero cannot have a multiplicative inverse. Hence, an element has a multiplicative inverse if and
only if it is nonzero. Assertion (b) states that if a product is zero, at least one of its factors
must be zero. This should be compared with (d) of Proposition 2.2. Assertions (c) and (d)
state how negation, multiplication, and reciprocation relate.

The field axioms allow you to extend to any field many of the formulas that you have known
for years in the context of R or C. For example, you can establish the following formulas.

Proposition 1.7. Let X be a field. Then for every x, y ∈ X and every n ∈ N we have the
difference of powers and binomial formulas

xn+1 − yn+1 = (x − y)
(

xn + xn−1y + · · ·+ xn−kyk + · · ·+ x yn−1 + yn
)

,(1.1)

(x + y)n = xn + n xn−1y + · · · + n!

(n − k)! k!
xn−kyk + · · ·+ n x yn−1 + yn .(1.2)

Proof. Exercise.
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1.3. Ordered Sets. The sets N, Z, Q, and R endowed with their natural order relation are
each an example of a general structure known as an ordered set.

Definition 1.3. An ordered set (X, <) is a set X equipped with a distinguished binary relation
“<”, called an order, that satisfies the order axioms presented below.

Order axioms. A binary relation “<” on a set X is called an order whenever:

O1: if x, y, z ∈ X then x < y and y < z implies x < z, — transitivity;
O2: if x, y ∈ X then exactly one of x < y, x = y, or y < x is true, — trichotomy.

Examples. When “<” has its usual meaning of “less than”, the order axioms clearly hold in
N, Z, Q, and R. When “<” has the unusual meaning of “greater than”, the order axioms also
clearly hold in N, Z, Q, and R. We will stick with the usual meaning of “<” in what follows.

When working with ordered sets, it is both convenient and common to use the notation

x > y , x ≤ y , x ≥ y ,

x < y < z , x < y ≤ z , · · · ,

to respectively mean

y < x , x < y or x = y , y < x or x = y ,

x < y and y < z , x < y and y ≤ z , · · · .

1.3.1. Bounds. Ordered sets have associated notions of boundedness.

Definition 1.4. Let (X, <) be an ordered set. A point x ∈ X is an upper bound (a lower
bound ) of a set S ⊂ X whenever y ≤ x (x ≤ y) for every y ∈ S. If S ⊂ X has an upper bound
(a lower bound) then S is said to be bounded above (bounded below ). A set S ⊂ X that is
both bounded above and bounded below is said to be bounded.

Definition 1.5. Let (X, <) be an ordered set, and let S ⊂ X be bounded above. A point x ∈ X
is a least upper bound or supremum of S whenever:

(i) x is an upper bound of S;
(ii) if y ∈ X is also an upper bound of S then x ≤ y.

We similarly define a greatest lower bound or infimum of S.

If a supremum or infimum of S exists then it must be unique. The supremum of S is denoted
sup{S} or sup{z : z ∈ S}, while the infimum is denoted inf{S} or inf{z : z ∈ S}. These
notions should not be confused with those of maximum and minimum.

Definition 1.6. Let (X, <) be an ordered set, and let S ⊂ X. A point x ∈ S is a maximum
(minimum ) of S whenever x is an upper (lower) bound of S.

If a maximum or minimum of S exists then it must be unique. The maximum of S is denoted
max{S} or max{z : z ∈ S}, while the minimum is denoted min{S} or min{z : z ∈ S}.
Moreover, if a maximum (minimum) of S exists then

sup{S} = max{S}
(

inf{S} = min{S}
)

.

Examples. Any bounded open interval (a, b) in R has neither a maximum nor a minimum,
yet sup{(a, b)} = b and inf{(a, b)} = a. For any bounded closed interval [a, b] in R one has
max{[a, b]} = b and min{[a, b]} = a. The same is true if these intervals and their endpoints are
restricted to elements of Q.
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1.3.2. Least Upper Bound Property. What distinguishes R from Q is the following property.

Definition 1.7. Let (X, <) be an ordered set. Then X is said to have the least upper bound
property whenever every nonempty subset of X with an upper bound has a least upper bound.

Remark. It may seem we should also define a “greatest lower bound property”, but the next
proposition shows that this is unnecessary because it is exactly the same property.

Proposition 1.8. Let (X, <) be an ordered set. Let X have the least upper bound property.
Then every nonempty subset of X with a lower bound has a greatest lower bound.

Proof. Let S ⊂ X be a nonempty set with a lower bound. Let L ⊂ X be the set of all lower
bounds of S. It is nonempty and bounded above by any element of S. Therefore sup{L} exists.
It is easy to check that sup{L} = inf{S}. �

Examples. When “<” has its usual meaning of “less than”, the sets N and Z have the least
upper bound property. However, as we will show in the next proposition, the set Q does not.

Proposition 1.9. The set Q does not have the least upper bound property.

Proof. Consider the sets

S =
{

r ∈ Q : r > 0 , r2 < 2
}

, S̃ =
{

r ∈ Q : r > 0 , r2 > 2
}

.

These sets are clearly nonempty because 1 ∈ S and 2 ∈ S̃. One can show that every point in
S̃ is an upper bound for S. In order to show that S has no least upper bound, one first shows
that there is no r ∈ Q such that r2 = 2. It follows (by trichotomy) that if p is a least upper
bound of S then either p ∈ S or p ∈ S̃. We will show that neither can be the case. More
specifically, we will show that if p ∈ S then p is not an upper bound of S, and that if p ∈ S̃
then p is not a least upper bound of S.

Let p ∈ S. We will construct a q ∈ S such that p < q, thereby showing that p is not
an upper bound of S. There are many ways to construct such a q. We are seeking a rational
approximation of

√
2 from below that is better than p. This can be done by taking one iteration

of Newton’s method applied to f(x) = 1 − 2/x2 = 0. Set

q = p − f(p)

f ′(p)
= p − p2 − 2

4
p =

6 − p2

4
p .

Because x 7→ f(x) is increasing and concave over x > 0, a picture alone should convince you
this is a suitable q. Indeed, it is clear from the above formula that 0 < p < q. A skeptic only
needs to check that q2 < 2. We confirm this fact by the calculation

2 − q2 = 2 − 36 − 12p2 + p4

16
p2 =

(2 − p2)2(8 − p2)

16
> 0 .

Now let p ∈ S̃. We will construct a q ∈ S̃ such that q < p, thereby showing that p is not a
least upper bound of S. Once again, there are many ways to construct such a q. This time we
are seeking a rational approximation of

√
2 from above that is better than p. This can be done

by taking one iteration of Newton’s method and applied to f(x) = x2 − 2 = 0. Set

q = p − f(p)

f ′(p)
= p − p2 − 2

2p
=

p2 + 2

2p
.
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Because x 7→ f(x) is increasing and convex over x > 0, a picture alone should convince you
this is a suitable p. Indeed, it is clear from the above formula that q < p and that q > 0. A
skeptic only needs to check that q2 > 2. We confirm this fact by the calculation

q2 − 2 =
p4 + 4p2 + 4

4p2
− 2 =

p4 − 4p2 + 4

4p2
=

(

p2 − 2

2p

)2

> 0 .

�

Remark. An alternative construction that can be used for both cases in the above proof is

q = p − p2 − 2

p + 2
=

2p + 2

p + 2
.

Then

q2 − 2 =
4p2 + 8p + 4

p2 + 4p + 4
− 2 = 2

p2 − 2

(p + 2)2
.

While this construction yields a slicker proof, the underlying geometric picture seems less clear.

1.4. Ordered Fields. The sets Q and R endowed with their natural algebraic operations and
order relation are each an example of a general algebraic structure known as an ordered field.

Definition 1.8. A set X that is both a field and an ordered set is called an ordered field
whenever

OF1: if x, y, z ∈ X then x < y implies x + z < y + z;
OF2: if x, y ∈ X then 0 < x and 0 < y implies 0 < xy.

If x > 0 (x < 0, x ≥ 0, x ≤ 0) then we say x is positive (negative, nonnegative, nonpositive).
The set of all positive (negative) elements of X is denoted X+ (X−).

Examples. When addition, multiplication, and “<” have their usual meanings, the sets Q and
R are ordered fields. In an algebra course you can learn that many other ordered fields arise in
Galois theory.

1.4.1. Consequences of the Ordered Field Axioms. The ordered field axioms allow you to extend
to any ordered field many of the rules for working with inequalities that you have known for
years in the context of R. For example, the rule that multiplying both sides of an inequality
by a positive (negative) quantity will preserve (reverse) the inequality. Some of these rules are
given in the following proposition.

Proposition 1.10. Let X be an ordered field.

(a) If x > 0 then −x < 0, and vice versa.
(b) If x > 0 and y < z then y < x + z and xy < xz.
(c) If x < 0 and y < z then x + y < z and xy > xz.
(d) If x 6= 0 then x2 > 0.
(e) If 0 < x < y and n ∈ Z+ then 0 < xn < yn and 0 < y−n < x−n.

Proof. Exercise.

The above proposition shows that X+ satisfies the following.

P1: If x, y ∈ X+ then x + y ∈ X+ and xy ∈ X+.
P2: For every x ∈ X exactly one of x ∈ X+, −x ∈ X+, or x = 0 is true.

These so-called positivity properties alone characterize the order relation on the field X.



8

Proposition 1.11. Let X be a field. Let X+ ⊂ X satisfy the positivity properties P1 and P2.
Define the binary relation < on X by

(1.3) x < y means y − x ∈ X+ .

Then (X, <) is an ordered field.

Proof. Exercise.

Remark. Proposition 1.11 implies that we could have defined an ordered field as a field
X that has a subset X+ satisfying the positivity properties, P1 and P2. In that case the
positivity properties become the positivity axioms and, upon defining the order on X by (1.3),
the order axioms O1, O2, OF1, and OF2 become order properties. This is the approach taken
in Fitzpatrick’s book.

1.4.2. Absolute Value Function. There is a natural absolute value function on any ordered field.

Definition 1.9. Let X be an ordered field. The absolute value function on X is defined by

|x| =











x if x > 0

0 if x = 0

−x if x < 0

.

Some of its properites are given in the following proposition. They should all look very familiar
to you. However, your goal now is to understand how they follow from Definition 1.9 and the
ordered field axioms.

Proposition 1.12. Let X be an ordered field. Then for every x, y ∈ X

(a) |x| ≥ 0,
(b) |x| = 0 if and only if x = 0,
(c) |x + y| ≤ |x| + |y|,
(d) |xy| = |x| |y|,
(e)

∣

∣|x| − |y|
∣

∣ ≤ |x − y|.
Proof. Exercise.

With the absolute value function we can define the distance between points x, y ∈ X by
d(x, y) = |x − y|. This distance function satisfies the following proposition.

Proposition 1.13. Let X be an ordered field. Let d(x, y) = |x − y| where | · | is given by
Definition 1.9. Then for every x, y, z ∈ X

(a) d(x, y) ≥ 0,
(b) d(x, y) = 0 if and only if x = y,
(c) d(x, y) = d(y, x),
(d) d(x, x) = d(x, y) + d(y, z).

Proof. Exercise.

We can also characterize bounded sets with the absolute value function.

Proposition 1.14. Let X be an ordered field. Then S ⊂ X is bounded if and only if there
exists an m ∈ X+ such that

x ∈ S =⇒ |x| ≤ m .

Proof. Exercise.
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1.5. Real Numbers. We now state without proof the main theorem of this section.

Theorem 1.1. There exists a unique (up to an isomorphism) ordered field with the least upper
bound property that contains Q (up to an isomorphism) as a subfield.

Proof. Proofs of this theorem are quite long and technical. You can find a proof of all but
the uniqueness in the book by W. Rudin, Principles of Mathematical Analysis, McGraw-Hill,
New York, 1976, and another in the book by T. Tao, Analysis I, Hindustan Book Agency, 2006
(available through the American Mathematical Society). The proof in Rudin is based upon a
construction due to Dedekind in which the real numbers are built from subsets of the rationals
called Dedekind cuts. The proof in Tao is based upon a construction due to Cantor in which
the real numbers are built from equivalence classes of Cauchy sequences within the rationals.
Both Dedekind and Cantor published their constructions in 1872. �

Definition 1.10. The real numbers are defined to be the unique ordered field with the least
upper bound property whose existence is guaranteed by Theorem 1.1. This field is denoted R.

Remark. The least upper bound property that sets R apart from Q. As we will see, it is why
R can be identified with a line.

1.5.1. Intervals. Intervals are special subsets of R that will play a leading role in our study.
They are denoted with the so-called interval notation. The empty set ∅ is considered to be an
interval. For every a ∈ R we define [a, a] = {a}. For every a, b ∈ R such that a < b we define

(a, b) =
{

x ∈ R : a < x < b
}

, [a, b) =
{

x ∈ R : a ≤ x < b
}

,

(a, b] =
{

x ∈ R : a < x ≤ b
}

, [a, b] =
{

x ∈ R : a ≤ x ≤ b
}

.

For every a, b ∈ R we define

(a,∞) =
{

x ∈ R : a < x
}

, (−∞, b) =
{

x ∈ R : x < b
}

,

[a,∞) =
{

x ∈ R : a ≤ x
}

, (−∞, b] =
{

x ∈ R : x ≤ b
}

.

Finally, we define (−∞,∞) = R. Here have not defined the symbols ∞ and −∞ outside of the
context of an unbounded interval. Unless it is stated explicitly otherwise, when we write (a, b),
[a, b), or (a, b] it is implied that a < b, while when we write [a, b] it is implied that a ≤ b.

Exercise. Prove that for every a ∈ R and r ∈ R+ we have

{x ∈ R : |x − a| < r} = (a − r, a + r) , {x ∈ R : |x − a| ≤ r} = [a − r, a + r] .

1.5.2. Consequences of the Real Number Axioms. The following important properties relate the
reals R with the positive integers Z+, the integers Z, and the rationals Q.

Proposition 1.15. The following hold.

• If x, y ∈ R and x > 0 then there exists n ∈ Z+ such that

nx > y .

• If x ∈ R then there exists a unique m ∈ Z such that

m ∈ (x − 1, x]
(

or equivalently x ∈ [m, m + 1)
)

.

• If x, y ∈ R and x < y then there exists a q ∈ Q such that

x < q < y .
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Remark. The first assertion above is called the Archimedean property of R, the second is a
statement about the uniform distribution of the integers, while the third asserts that Q is dense
in R — i.e. that between any two reals lies a rational.

Proof. Suppose the first assertion is false. Then the set S = {nx : n ∈ N} is bounded above
by y. By the least upper bound property S has a supremum. Let z = sup{S}. Because x > 0
one has that z − x < z. Hence, z − x is not an upper bound for S because z = sup{S}. This
implies there exists some n ∈ N such that z−x < nx. But then z < (n+1)x, which contradicts
the fact z is an upper bound of S. Therefore the first assertion holds.

To prove the second assertion, by the first assertion there exists k, l ∈ Z+ such that −x < k
and x < l. It follows that −k < x < l. Because

x ∈ (−k, l) ⊂
l−1
⋃

m=−k

[m.m + 1) ,

there exists some m ∈ Z such that

−k ≤ m < l and m ≤ x < m + 1 .

It then follows that m ∈ (x − 1, x]. To prove uniqueness, suppose that m, n ∈ Z and m, n ∈
(x−1, x]. Without loss of generality we may suppose that m ≤ n — otherwise simply exchange
m and n. Because x − 1 < m ≤ n ≤ x, we see that n − m ∈ Z satisfies

0 ≤ n − m < x − (x − 1) = 1 .

It follows that n − m = 0, thereby establishing the uniqueness in the second assertion.

To prove the third assertion, because y − x > 0, by the first assertion there exists n ∈ Z+

such that n(y − x) > 1. Then by the second assertion there exists a unique m ∈ (nx, nx + 1].
Combining these facts yields

nx < m ≤ nx + 1 < nx + n(y − x) = ny .

Because n is positive, we conclude that

x <
m

n
< y .

Therefore the third assertion holds with q = m/n. �

1.5.3. Rational Powers. Recall that we showed that y2 = 2 had no solution within Q. One of
the most important consequences of the fact R has least upper bound property is the existence
of solutions to such equations.

Proposition 1.16. For every x ∈ R+ and every n ∈ Z+ there exists a unique y ∈ R+ such
that yn = x.

Proof. The uniqueness of such a y is clear because if y < z then yn < zn. So we only have to
show such a y exists. Consider the sets

S =
{

r ∈ R+ : rn < x
}

, S̃ =
{

r ∈ R+ : rn > x
}

.

The set S is nonempty because s = x/(1 + x) < 1 implies sn < s < x, whereby s ∈ S. The set
S̃ is nonempty because 1 + x ∈ S̃. One can show that every point in S̃ is an upper bound for
S. Let y = sup{S}. Then (by trichotomy) either y ∈ S, y ∈ S̃, or yn = x. We will show that
the first two cases cannot occur, which will thereby prove the theorem. More specifically, we
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will show that no point in S is an upper bound of S, and that no point in S̃ is the least upper
bound of S.

Let p ∈ S. We can construct a q ∈ S such that p < q, thereby showing that p is not an
upper bound of S. This can be done by taking one iteration of Newton’s method applied to
f(r) = 1 − x/rn = 0. The details are left as an exercise.

Now suppose p ∈ S̃. We can construct a q ∈ S̃ such that q < p, thereby showing that p is
not a least upper bound of S. This can be done by taking one iteration of Newton’s method
and applied to f(r) = rn − x = 0. The details are left as an exercise. �

The number y asserted in Proposition 1.16 is written x
1

n . You can then show that (x
1

n )m =

(xm)
1

n for every m ∈ Z and n ∈ Z+. By setting x
m
n = (x

1

n )m = (xm)
1

n , we can therefore define
xp for every x ∈ R+ and p ∈ Q. One can then show the following.

Proposition 1.17. Let x, y ∈ R+ and p, q ∈ Q. Then xp > 0 and

(a) xp+q = xpxq,
(b) (xy)p = xpyp,
(c) xpq = (xp)q, and (xp)−1 = (x−1)p.

Proof. Exercise.

1.6. Extended Real Numbers. It is often convenient to extend the real numbers R by ap-
pending two elements designated −∞ and ∞. This enlarged set is called the extended real
numbers and is denoted by Rex.

The order < on R is extended to Rex by defining

−∞ < x < ∞ for every x ∈ R .

The ordered set (Rex, <) has the property that ∞ (−∞) is an upper (lower) bound for every
subset of Rex. It also has the least upper bound property. Indeed, the supremum of any S ⊂ Rex

is given by

sup{S} =











∞ if S ∩ R has no upper bound in R or ∞ ∈ S ,

−∞ if S = {−∞} or S = ∅ ,

sup{S ∩ R} otherwise ,

where ∅ denotes the empty set. In particular, every S ⊂ R that has no upper bound in R

(and therefore no supremum in R) has sup{S} = ∞ in Rex. Similar statements hold for lower
bounds and infimums.

The operations of addition and multiplication on R cannot be extended so as to make Rex

into a field. It is however natural to extend addition by defining for every x ∈ R

x + ∞ = ∞ + x = ∞ , x −∞ = −∞ + x = −∞ ,

and by defining

∞ + ∞ = ∞ , −∞−∞ = −∞ ,

while leaving ∞−∞ and −∞+∞ undefined. In particular, −∞ and ∞ do not have additive
inverses. Similarly, it is natural to extend multiplication by defining for every nonzero x ∈ R

x∞ = ∞ x =

{

∞ if x > 0 ,

−∞ if x < 0 ,
x (−∞) = (−∞) x =

{

−∞ if x > 0 ,

∞ if x < 0 ,
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and by defining

∞∞ = (−∞) (−∞) = ∞ , ∞ (−∞) = (−∞)∞ = −∞ ,

while leaving 0∞, ∞ 0, 0 (−∞), and (−∞) 0 undefined. In particular, −∞ and ∞ do not have
multiplicative inverses.

Interval notation extends naturally to Rex. Given any a ∈ Rex we define [a, a] = {a}. Given
any a, b ∈ Rex such that a < b we define the sets

(1.4)
(a, b) =

{

x ∈ Rex : a < x < b
}

, [a, b) =
{

x ∈ Rex : a ≤ x < b
}

,

(a, b] =
{

x ∈ Rex : a < x ≤ b
}

, [a, b] =
{

x ∈ Rex : a ≤ x ≤ b
}

.

When these sets are contained within R the notation coincides with the interval notation we
introduced earlier. We therefore call these sets intervals too. The new intervals are the ones
that contain either −∞ or ∞ — namely, ones that have the form [−∞, b), [−∞, b], (a,∞], or
[a,∞] for some a, b ∈ Rex. In particular, one has Rex = [−∞,∞].

We will often use the following characterization of intervals.

Proposition 1.18. (Interval Characterization Theorem.) A set S ⊂ Rex is an interval
if and only if it has the property that

(1.5) ∀x, y ∈ R x, y ∈ S and x < y =⇒ (x, y) ⊂ S .

Proof. (=⇒) It is clear from (1.4) that if S is an interval then it has property (1.5). In
particular, the empty set and every singleton set (a set with only a single point in it) have
property (1.5).

(⇐=) The empty set and every singleton set is an interval. So we only have to consider sets
that contain at least two points.

Let S ⊂ Rex contain at least two points and have property (1.5). Because Rex has the
least upper bound property, while every subset of Rex is bounded, we can set a = inf{S} and
b = sup{S}. You should be able to argue that a < b because S has at least two points in it.

First, we show that (a, b) ⊂ S. Let z ∈ (a, b). We claim that there exists x ∈ (a, z)
and y ∈ (z, b) such that x, y ∈ S. (Otherwise z is either a lower or upper bound for S,
which contradicts either a = inf{S} or a = sup{S}.) Hence, property (1.5) implies that
z ∈ (x, y) ⊂ S. Therefore, (a, b) ⊂ S.

Next, we claim that if x < a or x > b then x /∈ S because that would contradict either
a = inf{S} or a = sup{S}. When this fact is combined with the fact that (a, b) ⊂ S it follows
that S is an interval with

S =



















(a, b) if a /∈ S and b /∈ S ,

[a, b) if a ∈ S and b /∈ S ,

(a, b] if a /∈ S and b ∈ S ,

[a, b] if a ∈ S and b ∈ S ,

where the sets (a, b), [a, b), (a, b], and [a, b] are defined by (1.4). �
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2. Sequences of Real Numbers

2.1. Sequences and Subsequences. Sequences play a central role in analysis. We introduce
them here in the context of an arbitrary set X before specializing to sets of real numbers.

Definition 2.1. A sequence in a set X is a map from N into X, often denoted {xk} or {xk}k∈N,
where k 7→ xk maps the index k ∈ N to the point xk ∈ X.

Remark. Any countable ordered set may be used as the index set instead of N.

When X is an ordered set, sequences that either preserve or reverse order are special.

Definition 2.2. Let (X, <) be an ordered set. A sequence {xk}k∈N in X is called

increasing whenever xl > xk for every k, l ∈ N with l > k ,

nondecreasing whenever xl ≥ xk for every k, l ∈ N with l > k ,

decreasing whenever xl < xk for every k, l ∈ N with l > k ,

nonincreasing whenever xl ≤ xk for every k, l ∈ N with l > k .

It is called monotonic if it is either nondecreasing or nonincreasing.

When dealing with sequences, it is convenient to introduce the concepts of eventually and
frequently.

Definition 2.3. Let A(x) be any assertion about any x ∈ X. (For example, A(x) could be the
assertion “x ∈ S” for a given S ⊂ X.) Let {xk} be a sequence in X. Then one says:

“A(xk) eventually as k → ∞” when ∃m ∈ N such that ∀k ≥ m A(xk) ;

“A(xk) frequently as k → ∞” when ∀m ∈ N ∃k ≥ m such that A(xk) .

When there is no possible confusion as to the index set, one says simply “A(xk) eventually” or
“A(xk) frequently”, dropping the “as k → ∞”.

Exercise. Show that 2−k < .001 eventually.

Exercise. Let {xk} be a sequence in X. Let A(x) be any assertion about any x ∈ X and let
∼ A(x) be its negation. Show that the negation of “A(xk) eventually” is “∼ A(xk) frequently”.

Exercise. Show that cos(k) > .5 frequently, but not eventually.

Another useful concept is that of a subsequence.

Definition 2.4. A subsequence {xnk
}k∈N of a sequence {xk}k∈N in a set X is a map from N

into X given by k 7→ xnk
, where {nk}k∈N is an increasing sequence in N.

Example. If {xk} is a sequence in a set X, then {x2k} is the subsequence with indices that
are even, while {xk3} is the subsequence with indices that are cubes.

Exercise. Consider the sequence {2k}. Write out the first three terms (i.e. k = 0, 1, 2) in the
subsequences {23k} and {22k+1}.

In an ordered set, subsequences of monotonic sequences are again monotonic.

Proposition 2.1. Let (X, <) be an ordered set. Let {xk}k∈N be a sequence in X that is in-
creasing (nondecreasing, decreasing, nonincreasing). Then every subsequence of {xk}k∈N is also
increasing (nondecreasing, decreasing, nonincreasing).
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Proof. Exercise.

You should test your understanding of the concepts in this section by proving the following.

Proposition 2.2. Let X be a set. Let A(x) be any assertion about any x ∈ X. Let {xk}k∈N

be a sequence in X. Then A(xk) frequently as k → ∞ if and only if there exists a subsequence
{xnk

}k∈N such that A(xnk
) eventually as k → ∞.

Proof. Exercise.

2.2. Convergence and Divergence. The most important concept related to sequences is
that of convergence. Here we see it in the context of real sequences.

Definition 2.5. A sequence {ak}k∈N ⊂ R is said to converge or is said to be convergent
whenever there exists a point a ∈ R such that for every ǫ > 0 one has that

(2.1) |ak − a| < ǫ eventually as k → ∞ .

This is denoted as

ak → a as k → ∞ ,

or as

lim
k→∞

ak = a .

One then says that the sequence converges to a. A sequence that does not converge is said to
diverge or is said to be divergent.

An immediate consequence of this definition and ideas from the previous section is the fol-
lowing proposition.

Proposition 2.3. A sequence {ak}k∈N ⊂ R diverges if and only if for every a ∈ R there exists
an ǫa > 0 such that

|ak − a| ≥ ǫa frequently as k → ∞ .

Proof. Exercise.

Definition 2.5 does not assert that there is a unique number a that satisfies (2.1). The
following proposition establishes this and more.

Proposition 2.4. If a sequence {ak}k∈N ⊂ R converges, there is a unique point in R to which
it converges. Moreover, the set {ak} ⊂ R is bounded.

Proof. Here we prove only the boundedness assertion. The proof of the uniqueness assertion
is left as an exercise.

Let {ak}k∈N converge to a ∈ R. Then ∃m ∈ N such that ∀k ≥ m |ak − a| < 1. In particular,
for every k ≥ m one has that a − 1 < ak < a + 1. Then for every k ∈ N we have

|ak| < 1 + max
{

|a0|, |a1|, . . . , |am−1|, |a|
}

.

The sequence {ak}k∈N is therefore bounded. �

Definition 2.6. The unique point to which a convergent sequence in R converges is called the
limit of the sequence.

An important characterization of the limit of a convergent sequence is given by the following.
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Proposition 2.5. Let {bk}k∈N be a convergent sequence in R. Let b ∈ R. Then

lim
k→∞

bk = b ,

if and only if

a < b < c =⇒ a < bk < c eventually .

Proof. Exercise.

It is fairly easy to check that subsequences of a convergent sequence are also convergent, and
have the same limit.

Proposition 2.6. If a sequence {ak}k∈N ⊂ R converges to a limit a ∈ R then every subsequence
of {ak}k∈N also converges to a.

Proof. Exercise.

The main theorem regarding algebraic operations, order, and limits is the following.

Proposition 2.7. Let {ak} and {bk} be convergent sequences in R with ak → a and bk → b as
k → ∞. Then

(i) (ak + bk) → (a + b) ,

(ii) − ak → −a ,

(iii) akbk → ab ,

(iv) 1/ak → 1/a provided no division by zero occurs .

Moreover, if ak ≤ bk frequently then a ≤ b. (Equivalently, if a < b then ak < bk eventually.)

Proof. Exercise.

When working with real sequences, it is useful to distinguish two of the many ways in which
a sequence might diverge — namely, those when the sequence “approaches” either ∞ or −∞.

Definition 2.7. A sequence {ak}k∈N ⊂ R is said to diverge to ∞ (to −∞) if for every b ∈ R

one has that

ak > b eventually (ak < b eventually) as k → ∞.

This is denoted as

ak → ∞ (ak → −∞) as k → ∞ ,

or as

lim
k→∞

ak = ∞
(

lim
k→∞

ak = −∞
)

.

One then says that the sequence approaches ∞ (approaches −∞).
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2.3. Monotonic Sequences. For monotonic sequences the least upper bound property can
be employed to show the existence of limits.

Proposition 2.8. (Monotonic Sequence Theorem) Let {ak}k∈N be a sequence in R that is
nondecreasing (nonincreasing). Then it converges if and only if it is bounded above (bounded
below). Moreover, if it converges then

lim
k→∞

ak = sup{ak}
(

lim
k→∞

ak = inf{ak}
)

,

while if it diverges then

lim
k→∞

ak = ∞
(

lim
k→∞

ak = −∞
)

.

Proof. We give the proof for the nondecreasing case only; the nonincreasing case goes similarly.
The proof of the assertion in the case of divergence in is left as an exercise.

(⇒) This follows from Proposition 2.4, which states that every convergent sequence is bounded.

(⇐) Because {ak} is bounded above, we can set a = sup{ak ; k ∈ N} by the least upper bound
property. We claim that ak → a as k → ∞. Let ǫ > 0 be arbitrary. There exists some
mǫ ∈ N such that 0 ≤ a − amǫ

< ǫ. (For if not, it would mean that ak ≤ a − ǫ for every
k ∈ N, which would contradict the definition of a.) But then for every k > mǫ one has that
0 ≤ a − ak ≤ a − amǫ

< ǫ, which establishes the claim. �

For monotonic sequences it is enough to know what happens to a single subsequence.

Proposition 2.9. Let {ak} be a monotonic sequence in R. Then {ak} is convergent if and only
if it has a convergent subsequence.

Proof. Exercise.

The Monotonic Sequence Theorem has the following consequence, often attributed to Cantor.

Proposition 2.10. (Nested Interval Theorem.) Let {[ak, bk]}k∈N be a sequence of closed,
bounded intervals in R that is nested in the sense that

[ak+1, bk+1] ⊂ [ak, bk] for every k ∈ N .

Then the sequences {ak} and {bk} converge and
⋂

k∈N

[ak, bk] = [a, b] , where a = lim
k→∞

ak , b = lim
k→∞

bk , with a ≤ b .

Proof. Because the sequence of intervals {[ak, bk]} is nested, it follows that the sequence {ak}
is nondecreasing while the sequence {bk} is nonincreasing. Hence, for every m, n ∈ N we have
am ≤ an ≤ bn when m ≤ n and am ≤ bm ≤ bn when m ≥ n. This implies the sequence {ak}
is bounded above by every bn, while the sequence {bk} is bounded below by every an. The
Monotone Sequence Theorem then implies that the sequences {ak} and {bk} converge with

a = lim
k→∞

ak = sup
k

{ak} ≤ bn , b = lim
k→∞

bk = inf
k
{bk} ≥ an .

Because ak ≤ bk for every k ∈ N it follows that a ≤ b.

If x ∈ [a, b] then because [a, b] ⊂ [ak, bk] for every k ∈ N, it follows that x ∈ ∩k[ak, bk]. If
x < a then because ak → a, it follows that x < ak eventually, whereby x 6∈ ∩k[ak, bk]. Similarly,
if b < x then because bk → b, it follows that bk < x eventually, whereby x 6∈ ∩k[ak, bk]. �
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Remark. This theorem shows the above intersection of nested intervals is always nonempty.
In particular, when a = b this intersection consists of a single point. To better appreciate
significance of this result, you should do the following exercise.

Exercise. Show that a nested sequence of closed, bounded intervals in Q can have an empty
intersection.

2.4. Limit Superior and Limit Inferior. The power of the Monotonic Sequence Theorem
(Proposition 2.8) lies in the fact that from every real sequence {ak}k∈N that is bounded above
(bounded below), we can construct a nonincreasing (nondecreasing) sequence from its “tails”.
Specifically, we construct the sequence {ak} ({ak}) with elements defined by

ak = sup
{

al : l ≥ k
} (

ak = inf
{

al : l ≥ k
})

.

This sequence is clearly nonincreasing (nondecreasing). The convergence of such sequences is
characterized by the Monotonic Sequence Theorem, which motivates the following definition.

Definition 2.8. For every sequence {ak}k∈N in R, define its limit superior and limit inferior
by

lim sup
k→∞

ak ≡
{

lim
k→∞

ak if sup{ak} < ∞ ,

∞ otherwise ;

lim inf
k→∞

ak ≡
{

lim
k→∞

ak if inf{ak} > −∞ ,

−∞ otherwise .

These are called simply the “lim sup” and “lim inf” for short.

Remark. By the Monotonic Sequence Theorem (Proposition 2.8) we have that

lim sup
k→∞

ak ≡
{

inf{ak} if sup{ak} < ∞ ,

∞ otherwise ;

lim inf
k→∞

ak ≡
{

sup{ak} if inf{ak} > −∞ ,

−∞ otherwise .

Example. Consider the sequence {ak} given by

ak = (−1)k k + 1

k
for k ∈ Z+ .

The first eight terms of the sequences {ak}, {ak}, and {ak} are

ak | 3
2

3
2

5
4

5
4

7
6

7
6

9
8

9
8

|
ak | −2 3

2
−4

3
5
4

−6
5

7
6

−8
7

9
8

|
ak | −2 −4

3
−4

3
−6

5
−6

5
−8

7
−8

7
−10

9

Notice that {ak} diverges while {ak} and {ak} are both monotonic and converge to 1 and −1
respectively. Therefore

lim sup
k→∞

ak = 1 , lim inf
k→∞

ak = −1 .
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Remark. Notice that, unlike the limit, the lim sup and lim inf are defined for every real
sequence, taking values in Rex, and that in general

−∞ ≤ lim inf
k→∞

ak ≤ lim sup
k→∞

ak ≤ ∞ .

Example. The sequence {(−1)kk} is neither bounded above nor bounded below. Therefore

lim sup
k→∞

(−1)kk = ∞ , lim inf
k→∞

(−1)kk = −∞ .

The key to learning how to use lim sup and lim inf is an understanding of the following char-
acterizations. These should be compared with the characterization of the limit of a convergent
sequence given by Proposition 2.5

Proposition 2.11. Let {bk} be a sequence in R. Let b ∈ R. Then

(2.2) lim sup
k→∞

bk = b
(

lim inf
k→∞

bk = b
)

,

if and only if

(2.3) b < c =⇒ bk < c eventually (frequently) ,

and

(2.4) a < b =⇒ a < bk frequently (eventually) .

Proof. We give the proof of the lim sup assertion. The lim inf assertion is proved similarly.

(⇒) Suppose that (2.2) holds. Let a < b and c > b. Then because

b = lim sup
k→∞

bk = lim
k→∞

bk ,

where bk = sup{bl : l ≥ k}, it follows that

a < bk < c eventually .

Because bk ≤ bk for every k, we see directly that bk < c eventually, whereby (2.3) holds.
Moreover, a < bk implies that for some l ≥ k one has a < bl. (Otherwise a would be an upper
bound for the set {bl : l ≥ k}, which contradicts the fact b is the least upper bound of this
set.) Hence, a < bk frequently, whereby (2.4) holds.

(⇐) Suppose that (2.3) and (2.4) hold. Let a < b and c > b be arbitrary. Then (2.3) implies
that

bk = sup{bl : l ≥ k} ≤ c eventually ,

while (2.4) implies that

a < bk = sup{bl : l ≥ k} eventually .

(If for some k one had bk ≤ a then bl ≤ a for every l ≥ k, which contradicts (2.4).) Thus, we
see

a ≤ inf{bk} ≤ c .

But a < b and c > b were arbitrary, so that

lim sup
k→∞

bk = inf{bk} = b ,

whereby (2.2) holds. �

Convergent sequences may be characterized in terms of their lim sup and lim inf as follows.
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Proposition 2.12. Let {ak} be a sequence in R. Then {ak} converges if and only if

−∞ < lim inf
k→∞

ak = lim sup
k→∞

ak < ∞ ,

in which case
lim
k→∞

ak = lim inf
k→∞

ak = lim sup
k→∞

ak .

Proof. Exercise. Hint: Use Propositions 2.5 and 2.11.

When adding and comparing sequences, lim sup and lim inf generally behave as follows.

Proposition 2.13. Let {ak} and {bk} be sequences in R. Then

lim sup
k→∞

(ak + bk) ≤ lim sup
k→∞

ak + lim sup
k→∞

bk ,

lim inf
k→∞

(ak + bk) ≥ lim inf
k→∞

ak + lim inf
k→∞

bk ,

whenever the sum on the right-hand side is defined. Moreover, if ak ≤ bk eventually then

lim sup
k→∞

ak ≤ lim sup
k→∞

bk , lim inf
k→∞

ak ≤ lim inf
k→∞

bk .

Proof. Exercise.

When multiplying sequences, lim sup and lim inf generally behave as follows.

Proposition 2.14. Let {ak} and {bk} be sequences in R. If {ak} is convergent with

lim
k→∞

ak = a > 0 ,

then
lim sup

k→∞

akbk = a lim sup
k→∞

bk , lim inf
k→∞

akbk = a lim inf
k→∞

bk .

Proof. Exercise.

When they converge, the lim sup and lim inf of a sequence are actually limits of some of its
subsequences.

Proposition 2.15. Let {ak} be a sequence in R. If {ank
} is any subsequence of {ak} then

lim inf
k→∞

ak ≤ lim inf
k→∞

ank
≤ lim sup

k→∞

ank
≤ lim sup

k→∞

ak .

Moreover, there exist subsequences {ank
} and {amk

} such that

lim
k→∞

ank
= lim sup

k→∞

ak , lim
k→∞

amk
= lim inf

k→∞

ak .

Proof. Exercise. Hint: Use Propositions 2.5 and 2.11.

In particular, the following famous theorem of Bolzano and Weierstrass is a consequence.

Proposition 2.16. (Bolzano-Weierstrass Theorem) Every bounded sequence in R has a
convergent subsequence.

Proof. Let {bk} be a bounded sequence in R. This implies that there exists [a, c] ⊂ R such
that {bk} ⊂ [a, c]. Then

−∞ < a ≤ lim inf
k→∞

bk ≤ lim sup
k→∞

bk ≤ c < ∞ .

The result then follows by Proposition 2.15. �
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2.5. Cauchy Criterion. When a sequence is monotonic, just knowing that it is bounded
tells you that it is convergent. When a sequence is not monotonic, determining whether it
is convergent or divergent is generally much harder. For example, to establish convergence
directly from Definition 2.5 you must first know the limit of the sequence. Cauchy introduced
a criterion for convergence that does not require knowledge of the limit.

Definition 2.9. A sequence {ak}k∈N ⊂ R is said to be Cauchy whenever for every ǫ > 0 there
exists Nǫ ∈ N such that

(2.5) k, l ≥ Nǫ =⇒ |ak − al| < ǫ .

In other words, a sequence is Cauchy if for every ǫ > 0 one can find a tail of the sequence such
that any two terms in the tail are within ǫ of each other. Roughly speaking, a Cauchy sequence
is one whose terms generally get closer together.

The main result of this section is the so-called Cauchy criterion for convergence — namely,
that a sequence in R is convergent if and only if it is Cauchy. The easier half of this criterion
is established by the following.

Proposition 2.17. A convergent sequence in R is Cauchy.

Proof. Let {ak} be a convergent sequence in R with limit a. Let ǫ > 0. Then by the definition
of convergence there exists Nǫ ∈ N such that

k ≥ Nǫ =⇒ |ak − a| <
ǫ

2
.

It follows from the triangle inequality that if k, l ≥ Nǫ then

|ak − al| =
∣

∣(ak − a) + (a − al)
∣

∣ ≤ |ak − a| + |al − a| <
ǫ

2
+

ǫ

2
= ǫ .

Hence, the sequence {ak} is Cauchy. �

We now take the first step toward establishing the harder half of the Cauchy criterion.

Proposition 2.18. A Cauchy sequence in R is bounded.

Proof. The proof is very similar to the proof that a convergent sequence is bounded. It is left
as an exercise. �

We are now ready to establish the Cauchy Criterion.

Proposition 2.19. (Cauchy Criterion) A sequence in R is convergent if and only if it is
Cauchy.

Proof. Proposition 2.17 established that convergent sequences are Cauchy. We only need to
establish the other direction.

Let {ak} be a Cauchy sequence in R. By Proposition 2.18 the sequence {ak} is bounded. By
the Bolzano-Weierstrass Theorem (Proposition 2.16) it has a convergent subsequence {ank

}.
Let a be the limit of this convergent subsequence. We will use the fact {ak} is a Cauchy
sequence to show that it converges to a.

Let ǫ > 0. Because the subsequence {ank
} converges to a while the sequence {ak} is Cauchy,

there exists an Nǫ ∈ N such that

k ≥ Nǫ =⇒ |ank
− a| <

ǫ

2
,
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and
k, l ≥ Nǫ =⇒ |ak − al| <

ǫ

2
.

Because k ≥ Nǫ implies that nk ≥ Nǫ, the line above implies that

k ≥ Nǫ =⇒ |ak − ank
| <

ǫ

2
.

It follows from the triangle inequality that if k ≥ Nǫ then

|ak − a| ≤ |ak − ank
| + |ank

− a| <
ǫ

2
+

ǫ

2
= ǫ .

The sequence {ak} therefore converges to a. �
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3. Series of Real Numbers

3.1. Infinite Series. Any finite set of real numbers can be summed. Here we study one way
to make sense of the sum of an infinite sequence of real numbers.

Definition 3.1. Given any real sequence {ak}∞k=0, for every m, n ∈ N with m ≤ n define the
sigma notation:

n
∑

k=m

ak ≡ am + am+1 + · · ·+ an−1 + an .

Associate with the sequence of terms {ak} the so-called sequence of partial sums {sn} defined
by

sn ≡
n
∑

k=0

ak .

It is convenient to encode {sn} with the formal infinite series

∞
∑

k=0

ak .

If the sequence {sn} converges to a limit s then we say that the series converges, and that s is
the sum of the series. In that case we write

∞
∑

k=0

ak = s .

If the sequence {sn} diverges then we say that the series diverges.

Remark. It is clear that changing, adding, or removing a finite number of terms in a series
does not affect whether the series converges or diverges, but if it converges, the sum would
almost always be affected. For example,

∞
∑

k=0

ak converges ⇐⇒
∞
∑

k=5

ak converges ,

but when they do converge the sums will generally differ — namely,

in general
∞
∑

k=0

ak 6=
∞
∑

k=5

ak .

More specifically, these sums will be equal if and only if a0 + a1 + a2 + a3 + a4 = 0.

Example. Consider the infinite series

∞
∑

k=1

1

k(k + 1)
.
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The nth partial sum is given by

sn =
n
∑

k=1

1

k(k + 1)
=

n
∑

k=1

(

1

k
− 1

k + 1

)

=

(

1 − 1

2

)

+

(

1

2
− 1

3

)

+ · · · +
(

1

n
− 1

n + 1

)

= 1 +

(

− 1

2
+

1

2

)

+ · · · +
(

− 1

n
+

1

n

)

− 1

n + 1
= 1 − 1

n + 1
.

One then sees that the series is convergent with
∞
∑

k=1

1

k(k + 1)
= lim

n→∞

sn = 1 .

The previous example shows a series that can be put into so-called telescoping form.

Definition 3.2. A formal inifinite series with terms {ak}∞k=m is said to be in telescoping form
if ak = ck−1 − ck for some sequence {ck}∞k=m−1, so that the series is expressed as

(3.1)

∞
∑

k=m

(ck−1 − ck) .

If a series can be put into telescoping form with a sequence {ck} that is known explicitly then
the convergence or divergence of the series can be easily determined. Moreover, if it converges
then its sum can be easily determined. This is because the sequence {ck} is simply related to
the sequence of partial sums {sn}. Indeed, for every n ≥ m one sees that

sn =
n
∑

k=m

ak =
n
∑

k=m

(ck−1 − ck)

= (cm−1 − cm) + (cm − cm+1) + · · · + (cn−2 − cn−1) + (cn−1 − cn)

= cm−1 + (−cm + cm) + · · ·+ (−cn−1 + cn−1) − cn

= cm−1 − cn .

It follows immediately that the sequence {sn} converges if and only if the sequence {ck} con-
verges, and that when these sequences converge one has that

lim
n→∞

sn = cm−1 − lim
k→∞

ck .

Hence, the following proposition holds.

Proposition 3.1. Let {ck}∞k=m−1 be a real sequence. Then

∞
∑

k=m

(ck−1 − ck) converges ⇐⇒ {ck}∞k=m−1 converges .

Moreover, when these are convergent one has
∞
∑

k=m

(ck−1 − ck) = cm−1 − lim
k→∞

ck .
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Remark. The above considerations show that if a series is in the telescoping form (3.1) then
there is a c ∈ R such that ck = c−sk for every k ≥ m, where {sk}∞k=m is the sequence of partial
sums. This means that finding an explicit telescoping form for a series is equivalent to finding
an explicit expression for its partial sums. It should be clear that one can do this in only the
rarest of cases.

Given a general infinite series, it is usually impossible to evaluate the limit of the sequence of
partial sums. However, one can commonly determine whether a series is convergent or divergent
without explicitly evaluating this limit. The following proposition gives the simplest test for
divergence.

Proposition 3.2. (Divergence Test) Let {ak} be a real sequence.

If the series
∞
∑

k=0

ak converges then lim
k→∞

ak = 0.

Equivalently, if lim
k→∞

ak 6= 0 then the series
∞
∑

k=0

ak diverges.

Proof. The proof is based on the fact that the kth term in a formal infinite series can be
expressed as ak = sk − sk−1, where s−1 = 0 and {sk}k∈N is the sequence of partial sums. If the
series converges then one knows that

lim
k→∞

sk = s , lim
k→∞

sk−1 = s ,

where s is the sum of the series. It thereby follows that

lim
k→∞

ak = lim
k→∞

sk − lim
k→∞

sk−1 = s − s = 0 . �

Remark. You can easily find examples of a series whose terms converge to zero, yet the series
is divergent. One such example is the harmonic series:

∞
∑

k=1

1

k
.

Clearly 1/k → 0 as k → ∞. However, we will soon show that this series diverges.

3.2. Geometric Series. An important example is that of geometric series.

Definition 3.3. A formal infinite series of the form
∞
∑

k=0

ark

for some nonzero a and some r ∈ R is called a geometric series.

The convergence or divergence of a geometric series is easy to determine because it is one of
those rare series where one can find an explicit experssion for its partial sums. For every n ∈ N

let sn denote the partial sum given by

sn =
n
∑

k=0

ark .
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It is clear that if r = 1 then sn = (n + 1)a and the series will diverge. So suppose that r 6= 1.
One checks that

sn − rsn =

n
∑

k=0

ark −
n
∑

k=0

ark+1 =

n
∑

k=0

ark −
n+1
∑

k=1

ark = a − arn+1 ,

whereby the partial sum sn is found to be

sn =
a − arn+1

1 − r
.

By letting n tend to ∞ in this expression we find that

∞
∑

k=0

ark =

{ a

1 − r
if |r| < 1 ,

diverges otherwise .

Remark. The fact the geometric series diverges when |r| ≥ 1 can also be seen easily from the
Divergence Test. Indeed, in that case you see that

lim
k→∞

ark =

{

a (and hence is nonzero) if r = 1 ,

diverges (and hence is nonzero) if |r| ≥ 1 and r 6= 1 ,

whereby the Divergence Test (Proposition 3.2) shows that the geometric series diverges. Of
course, the Divergence Test does not show the geometric series converges when |r| < 1.

Exercise. Consider a formal infinite series of the form
∞
∑

k=1

krk

for some r ∈ R. Find all the values of r for which this series converges and evaluate the sum.
(Hint: Find an explicit expression for the partial sums and evaluate the limit. The explicit
expression may be derived from the analogous expression for a geometric series.)

3.3. Series with Nonnegative Terms. If the terms of an infinite series are nonnegative then
the associated sequence of partial sums will be nondecreasing. Hence, the least upper bound
property can be employed in the guise of the Monotonic Sequence Theorem (Proposition 2.8) to
show the convergence or divergence of the series. Specifically, one has the following proposition,
which lies at the heart of most proofs about the convergence or divergence of series with
nonnegative terms.

Proposition 3.3. (Series with Nonnegative Terms Theorem) Let {ak}∞k=m be a nonneg-
ative sequence. Then

∞
∑

k=m

ak converges ⇐⇒ {sk}∞k=m is bounded above ,

where {sk}∞k=m is the sequence of partial sums associated with the formal infinite series.

Proof. One first shows that the sequence {sk}∞k=m is nondecreasing. One then applies the
Monotonic Sequence Theorem. The details are left as an exercise. �
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One way to establish whether or not a sequence of partial sums is bounded above is to
compare it with a sequence for which the answer is known. This is often done with one of the
following comparison tests.

Proposition 3.4. (Comparison Tests for Series with Nonnegative Terms) Let {ak}
and {bk} be nonnegative sequences that satisfy one of the following comparison conditions:
(i) the direct comparison

∃M ∈ R+ such that ak ≤ M bk eventually ;

(ii) the limit comparison (if each bk is positive)

lim sup
k→∞

ak

bk

< ∞ ;

(iii) the ratio comparison (if each ak and bk is positive)

ak+1

ak

≤ bk+1

bk

< ∞ eventually .

Then

(3.2)

∞
∑

k=0

bk converges =⇒
∞
∑

k=0

ak converges ,

(

∞
∑

k=0

ak diverges =⇒
∞
∑

k=0

bk diverges .

)

Proof. First, condition (i) implies (3.2) because it and the fact that
∑

bk converges yields the
upper bound

n
∑

k=0

ak ≤ M
n
∑

k=0

bk ≤ M
∞
∑

k=0

bk < ∞ .

Proposition 3.3 therefore implies that
∑

ak converges. Next, condition (ii) implies condition
(i) (and hence (3.2)) upon observing that

lim sup
k→∞

ak

bk

< M < ∞ =⇒ ak ≤ Mbk eventually .

Finally, condition (iii) implies condition (ii) (and hence (3.2)) upon observing that

ak+1

ak

≤ bk+1

bk

< ∞ eventually =⇒ ak+1

bk+1
≤ ak

bk

eventually

=⇒
{

ak

bk

}

is nonincreasing eventually

=⇒ lim
k→∞

ak

bk

< ∞ . �

Exercise. The proof argues that the direct comparison test applies whenever the limit com-
parison test applies, and that the limit comparison test applies whenever the ratio comparison
test applies. Can you find an examples where (a) the direct comparison test applies but the
limit comparison test fails, or (b) the limit comparison test applies but the ratio comparison
test fails?
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Example. We can apply the direct comparison test to show the harmonic series diverges.
Consider the comparison

1 ≤ 1 , 1
2
≤ 1

2
, 1

4
≤ 1

3
, 1

4
≤ 1

4
, 1

8
≤ 1

5
, 1

8
≤ 1

6
, 1

8
≤ 1

7
, 1

8
≤ 1

8
, · · · .

Summing both sides, one sees that

1 +
n

2
≤

2n
∑

k=1

1

k
.

The partial sums clearly diverge.

3.4. Series with Nonincreasing Positive Terms. The harmonic series is a special case of
the so-called p-series, which is formally given by

(3.3)

∞
∑

k=1

1

kp
.

Because the terms of this series are nonincreasing and positive, the following two convergence
tests can be applied. Proposition 3.3 plays a central role in their proofs.

Proposition 3.5. (Cauchy 2k Test) Let {ak} be a nonincreasing, positive sequence. Then
∞
∑

k=1

ak converges ⇐⇒
∞
∑

k=0

2ka2k converges .

Proof. The result is a consequence of the direct comparisons

a2j+1 ≤ ak ≤ a2j for 2j ≤ k < 2j+1 ,

which yield the bounds

n−1
∑

j=0

2j−1a2j+1 ≤
2n

−1
∑

k=1

ak ≤
n−1
∑

j=0

2ja2j for every n ∈ Z+ .

The details are left as an exercise. �

Example. Because {1/kp} is a nonincreasing, positive sequence, Proposition 3.5 implies that
the p-series (3.3) converges or diverges as the series

∞
∑

k=0

2k 1

2kp
=

∞
∑

k=0

(

21−p
)k

.

But this is a geometric series that clearly converges for p > 1 and diverges for p ≤ 1.

Remark. The proof of the Cauchy 2k test outlined above extends the argument by which we
showed the harmonic series diverges. Indeed, the harmonic series is just the p-series for p = 1.

Remark. The Cauchy 2k test can be generalized to subsequences of {ak} of the form {ank
}

where there exist constants m and m such that

0 < m ≤ nk+1 − nk

nk − nk−1
≤ m < ∞ .

For example, one can choose nk = mk for some m ∈ N with m > 1. This satisfies

nk+1 − nk

nk − nk−1

=
m − 1

1 − m−1
= m ,
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whereby m = m = m. This leads to a “mk test” The statement and proof is left to you.

The second convergence test of this section requires the use of integrals — in fact, the use
of improper integrals. These will be developed rigorously later in the course. However, here we
will assume you have some familiarity with them from your elementary calculus courses.

Proposition 3.6. (Integral Test) Let f be a nonincreasing, positive, locally integrable (con-
tinuous, for example) function over [0,∞). Then

∞
∑

k=0

f(k) converges ⇐⇒
∫

∞

0

f(x) dx converges ,

where the integral is understood in the sense of an improper integral.

Proof. The key fact we need from integration theory is that the improper integral
∫

∞

0

f(x) dx converges

whenever the sequence {Sn} converges, where each Sn is defined by

Sn =

∫ n

0

f(x) dx .

Because {Sn} is an increasing sequence, showing convergence reduces to showing it is bounded
above.

The result will then be a consequence of the fact that

Sn =

n
∑

k=1

∫ k

k−1

f(x) dx for every n ∈ Z+ ,

and the direct comparisons

f(k) ≤
∫ k

k−1

f(x) dx ≤ f(k − 1) , for every k ∈ Z+ .

These facts should be clear to you based on your knowledge of definite integrals from elementary
calculus. If not, a picture should help clarify things. We will establish them rigorously later.
Here we will assume they are true and complete the proof.

By summing the above direct comparisons, one obtains

n
∑

k=1

f(k) ≤ Sn ≤
n
∑

k=1

f(k − 1) =

n−1
∑

k=0

f(k) .

The remaining details are left as an exercise. �

Example. Because {1/kp} is a nonincreasing, positive sequence, Proposition 3.6 implies that
the p-series (3.3) converges or diverges as the improper integral

∫

∞

1

1

xp
dx .

But for p 6= 1 one can easily check that

Sk =

∫ k

1

1

xp
dx =

1

p − 1

(

1 − 1

kp−1

)

,
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while for p = 1 one has

Sk =

∫ k

1

1

x
dx = log(k) .

(Here log( · ) denotes the natural logarithm.) One then sees that the sequence {Sk} converges
for p > 1 and diverges for p ≤ 1. The same is therefore true for the p-series.

3.5. Alternating Series. Until now we have only studied convergence tests for nonnegative
series. The underlying tool has been the Monotonic Sequence Theorem (Proposition 2.8), which
was used to prove Proposition 3.3. Here we use the Monotonic Sequence Theorem to obtain
the following characterization of convergence for a special class of series with alternating sign.

Proposition 3.7. (Alternating Series Test) Let {ak} be a positive, nonincreasing sequence
in R. Then

∞
∑

k=0

(−1)kak converges ⇐⇒ lim
k→∞

ak = 0 .

Proof. The direction =⇒ is just Proposition 3.2 (Divergence Test). To prove the other
direction, let

sn =

n
∑

k=0

(−1)kak .

First, the picture is that

{s2k}k∈N is nonincreasing , while {s2k+1}k∈N is nondecreasing ,

and that
s2k > s2j+1 for every j, k ∈ N .

Indeed, the first two assertions follow because

s2k+2 − s2k = a2k+2 − a2k+1 ≤ 0 ,

s2k+3 − s2k+1 = −a2k+3 + a2k+2 ≥ 0 .

Next, because s2k > s2k+1 for every k ∈ N, for any j ≤ k one has

s2k > s2k+1 ≥ s2j+1 , s2j ≥ s2k > s2k+1 .

The result follows by exchanging j and k in the last inequality. The monotonic subsequences
{s2k} and {s2k+1} are thereby bounded below and above respectively. By the Monotonic Se-
quence Theorem they therefore converge. Let

s = lim
k→∞

s2k , s = lim
k→∞

s2k+1 .

Then
s − s = lim

k→∞

(

s2k − s2k+1

)

= lim
k→∞

a2k+1 = 0 ,

whereby s = s. The last step is to show that this fact implies that {sk} converges. This is left
as an exercise. �

Examples.
∞
∑

k=1

(−1)k

kp
converges for p > 0 ,

∞
∑

k=2

(−1)k

log(k)
converges .



30

3.6. Absolute Convergence. The Monotonic Sequence Theorem has been the tool underlying
all the convergence tests we have studied so far. We now use the Cauchy criterion to establish
a test that does not require the series to be nonnegative.

Proposition 3.8. (Absolute Convergence Test) Let {ak} be a real sequence. Then
∞
∑

k=0

|ak| converges =⇒
∞
∑

k=0

ak converges .

Proof. Let {pn} and {qn} be the sequences of partial sums given by

pn =
n
∑

k=0

|ak| , qn =
n
∑

k=0

ak .

By hypotheses {pn} is convergent, and thereby Cauchy. The idea of the proof is to show that
{qn} is Cauchy, and thereby convergent.

The key to doing so is the fact that for every m, n ∈ N one has the inequality

|qn − qm| ≤ |pn − pm| .
This is trivially true when m = n. When n > m the triangle inequality yields

|qn − qm| =

∣

∣

∣

∣

∣

n
∑

k=m+1

ak

∣

∣

∣

∣

∣

≤
n
∑

k=m+1

|ak| = |pn − pm| .

The case n < m goes similarly.
Let ǫ > 0. Because {pn} is Cauchy there exists an Nǫ ∈ N such that

m, n ≥ Nǫ =⇒ |pn − pm| < ǫ .

Because |qn − qm| ≤ |pn − pm|, one immediately sees that

m, n ≥ Nǫ =⇒ |qn − qm| < ǫ .

Hence, {qn} is Cauchy, and thereby convergent. �

Proposition 3.8 motivates the following definition.

Definition 3.4. If {ak} is a real sequence such that
∞
∑

k=0

|ak| converges ,

then one says

∞
∑

k=0

ak

converges absolutely ,

or

is absolutely convergent .

Example. Consider the alternating p-series
∞
∑

n=1

(−1)n

np
.

This converges for p > 0 by the alternating series test, but it converges absolutely only for
p > 1. This example shows that not every convergent series is absolutely convergent. In other
words, absolute convergence is a stronger property than convergence.
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When the definition of absolute convergence is combined with the Comparison Tests for series
with nonnegative terms (Proposition 3.4), we get an array of new comparison tests for absolute
convergence that can be applied to general series.

Proposition 3.9. (Absolute Comparison Tests) Let {ak} and {bk} be real sequences that
satisfy one of the following comparison conditions:
(i) the direct comparison

∃M ∈ R+ such that |ak| ≤ M bk eventually ;

(ii) the limit comparison (if each bk is positive)

lim sup
k→∞

|ak|
bk

< ∞ ;

(iii) the ratio comparison (if each |ak| and bk is positive)

|ak+1|
|ak|

≤ bk+1

bk

< ∞ eventually .

Then

(3.4)

∞
∑

k=0

bk converges =⇒
∞
∑

k=0

ak converges absolutely .

Proof. Exercise.

Example. Because | cos(kx)| ≤ 1 for every x ∈ R and k ∈ Z+, direct comparison with the
p-series shows that the series

∞
∑

k=1

cos(kx)

kp
converges absolutely for p > 1 .

3.7. Root and Ratio Tests. The root and ratio tests both draw their conclusions about the
convergence of a series based on absolute comparisons with a geometric series.

Proposition 3.10. (Root Test) Let {ak} be a real sequence. Let

ρ = lim sup
k→∞

k
√

|ak| .

Then

ρ < 1 =⇒
∞
∑

k=0

ak converges absolutely ,

ρ > 1 =⇒
∞
∑

k=0

ak diverges .

If ρ = 1 the series may either converge or diverge.

Proof. The convergence conclusion when ρ < 1 follows by a direct comparison of the series
with a convergent geometric series. Specifically, by Proposition 2.11 one has that

ρ < r < 1 =⇒ lim sup
k→∞

k
√

|ak| < r =⇒ |ak| < rk eventually .

The absolute convergence follows from the direct comparison test of Proposition 3.9.
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The divergence conclusion when ρ > 1 follows by showing that lim sup |ak| > 0. Specifically,

1 < r < ρ =⇒ lim sup
k→∞

k
√

|ak| > r =⇒ |ak| > rk frequently .

This implies there exists a subsequence {ank
}k of {ak}k such that

|ank
| > rnk eventually .

Then lim sup |ak| ≥ lim sup |ank
| ≥ lim rnk = ∞. But lim sup |ak| > 0 implies the sequence

{ak} does not converge to zero, which by the Divergence Test (Proposition 3.2) implies the
associated series diverges.

We leave as an exercise them problem of finding examples of both a convergent and a divergent
series with ρ = 1. �

Proposition 3.11. (Ratio Test) Let {ak} be a nonzero real sequence. Then

lim sup
k→∞

|ak+1|
|ak|

< 1 =⇒
∞
∑

k=0

ak converges absolutely ,

|ak+1|
|ak|

≥ 1 eventually =⇒
∞
∑

k=0

ak diverges .

Proof. As with the proof of the root test, the convergence conclusion follows by a direct
comparison of the series with a convergent geometric series, while the divergence conclusion
follows by showing that lim sup |ak| > 0. Specifically, by Proposition 2.11 one has that

ρ < r < 1 =⇒ lim sup
k→∞

|ak+1|
|ak|

< r =⇒ |ak+1|
|ak|

< r eventually .

An induction argument can then be used to show that for some m ∈ N one has

|ak| ≤ |am| rk−m for every k ≥ m .

Because the geometric series
∞
∑

k=m

|am|
rm

rk converges ,

the comparison theorem implies
∞
∑

k=0

ak converges .

The proof of the divergence assertion is left as an exercise. �

Remark. Some books give the divergence criterion of the ratio test as

lim inf
k→∞

|ak+1|
|ak|

> 1 =⇒
∞
∑

k=0

ak diverges .

This is clearly weaker than the one we give.

Remark. The version of the ratio test most commonly found in elementary calculus texts is
the following, which makes a much stronger hypothesis than our version.
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Proposition 3.12. (Elementary Ratio Test) Let {ak} be a nonzero real sequence such that

(3.5) ρ = lim
k→∞

|ak+1|
|ak|

exists .

Then

ρ < 1 =⇒
∞
∑

k=0

ak converges absolutely ,

ρ > 1 =⇒
∞
∑

k=0

ak diverges .

If ρ = 1 the series may either converge or diverge.

Hypothesis (3.5) above requires the existence of a limit, whereas there is no such requirement
in Proposition 3.11. (Recall that the lim sup exists in Rex for every sequence, even ones that
diverge.)

Remark. The root test is sometimes harder to apply, but as the following indicates, its
convergence assertion can be sharper.

Proposition 3.13. Let {ak} be a positive sequence. Then

(3.6) lim inf
k→∞

ak+1

ak

≤ lim inf
k→∞

k√ak ≤ lim sup
k→∞

k√ak ≤ lim sup
k→∞

ak+1

ak

.

Proof. Exercise. (The middle inequality is obvious, so just prove the other two.)

Exercise. Find a series for which all the inequalities in (3.6) are strict.

Remark. Because both the root and ratio tests draw their conclusion about the convergence
of a series based on comparison with a geometric series, they should only be used when such a
comparison makes sense. For example, these tests can be used to assert the absolute convergence
of series like

∞
∑

k=1

k42−k ,
∞
∑

l=0

e−l24l ,
∞
∑

m=0

(m!)2

(2m)!
(−3)m ,

but will not yield any information about the convergence of series like
∞
∑

k=2

log(k)

k2
,

∞
∑

l=0

(

3l + 2

l4 + 2

)
1

2

,
∞
∑

m=2

(−1)m

m(log(m))2
.

Example. Find the least upper bound and greatest lower bound of the set

S =

{

x ∈ R :

∞
∑

n=0

(3n)!

n!

(2n)!

(4n)!
xn converges

}

.

This can be easily done employing the ratio test. Indeed, because

|an+1|
|an|

=

(3n + 3)!

(n + 1)!

(2n + 2)!

(4n + 4)!
|x|n+1

(3n)!

n!

(2n)!

(4n)!
|x|n

=
(3n + 3)(3n + 2)(3n + 1)(2n + 2)(2n + 1)

(n + 1)(4n + 4)(4n + 3)(4n + 2)(4n + 1)
|x| .

one finds that

lim
n→∞

|an+1|
|an|

=
33 × 22

44
|x| =

33

43
|x| .



34

The elementary ratio test, Proposition 3.12, therefore implies that the series converges when
|x| < (4/3)3 and diverges when |x| > (4/3)3. The least upper bound of S is thereby (4/3)3

while the greatest lower bound is −(4/3)3.

3.8. Dirichlet Test. We now apply the Cauchy criterion to establish a test that, like the
Alternating Series Test, can be applied to series that do not converge absolutely.

Proposition 3.14. (Dirichlet Test) Let {ak}k∈N be a positive, nonincreasing sequence in R

such that

lim
k→∞

ak = 0 .

Let {bk}k∈N be a sequence in R for which there exists M such that

(3.7)

∣

∣

∣

∣

n
∑

k=0

bk

∣

∣

∣

∣

≤ M for every n ∈ N .

Then
∞
∑

k=0

akbk converges .

Remark. The Dirichlet Test implies the convergence conclusion of the Alternating Series Test.
Indeed, if we set bk = (−1)k then

n
∑

k=0

bk =

n
∑

k=0

(−1)k =

{

1 for n even ,

0 for n odd .

Hence, bound (3.7) holds with M = 1. The Dirichlet Test then tells us that for every positive,
nonincreasing real sequence {ak}k∈N such that ak → 0 as k → ∞ the series

∞
∑

k=0

(−1)kak converges .

As the next example illustrates, the Dirichlet Test is far more powerful than the Alternating
Series Test.

Example. Consider the problem of determining all x, p ∈ R for which the Fourier p-series
∞
∑

k=1

cos(kx)

kp
converges .

Because | cos(kx)| ≤ 1 for every k ∈ Z+, direct comparison with the regular p-series shows that
this series converges absolutely for p > 1. However this argument says nothing about what
happens when p ≤ 1.

First observe that when x ∈ {2mπ : m ∈ Z} one has cos(kx) = 1 for every k ∈ Z+. In this
case the Fourier p-series reduces to a regular p-series, which diverges for every p ≤ 1.

Next, observe that when x ∈ {(2m+1)π : m ∈ Z} one has cos(kx) = (−1)k for every k ∈ Z+.
In this case the Fourier p-series reduces to an alternating p-series, which (by the Alternating
Series Test) converges for every p > 0.

We now use the Dirichlet Test to analyze the more general case when x /∈ {2mπ : m ∈ Z}.
Let ak = 1/kp and bk = cos(kx). Clearly the sequence {ak} is positive, decreasing, and vanishes
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as k → ∞. The hard step is to show that the partial sums associated with the sequence {bk}
satisfy (3.7). To do this we use the trigonometric identity

2 sin(1
2
x) cos(kx) = sin((k + 1

2
)x) − sin((k − 1

2
)x) ,

and the fact sin(1
2
x) 6= 0 when x /∈ {2mπ : m ∈ Z} to obtain (by a telescoping sum) the

formula
n
∑

k=1

bk =
n
∑

k=1

cos(kx) =
n
∑

k=1

sin((k + 1
2
)x) − sin((k − 1

2
)x)

2 sin(1
2
x)

=
sin((n + 1

2
)x) − sin(1

2
x)

2 sin(1
2
x)

.

It is clear from this formula that
∣

∣

∣

∣

n
∑

k=1

bk

∣

∣

∣

∣

=

∣

∣

∣

∣

sin((n + 1
2
)x) − sin(1

2
x)

2 sin(1
2
x)

∣

∣

∣

∣

≤ | sin((n + 1
2
)x)| + | sin(1

2
x)|

2 | sin(1
2
x)| ≤ 1

| sin(1
2
x)| .

Hence, bound (3.7) holds with M = 1/| sin(1
2
x)|. The Dirichlet Test then implies that when

x /∈ {2mπ : m ∈ Z} the Fourier p-series converges for every p > 0.
Finally, you can use the Divergence Test to show that the Fourier p-series diverges for every

p ≤ 0. This follows easily once you know that

lim sup
k→∞

cos(kx) > 0 for every x ∈ R .

We leave the details as an exercise. �

Remark. When applying the Dirichlet test to a given series, one must identify the sequences
{ak} and {bk}, and check that all the hypotheses on them are satisfied. The hypotheses on
{ak} are easy to check, so do that first: the sequence {ak} must be positive, nonincreasing, and
vanish as k → ∞. The hypothesis on {bk} is typically much harder to check: the associated
partial sums must satisfy (3.7). The key to checking this in the above example was to write
bk = ck+1 − ck (by using a trigonometric identity) for some bounded sequence {ck}, whereby
the partial sums telescoped as

n
∑

k=0

bk =
n
∑

k=0

(ck+1 − ck) = cn+1 − c0 .

This telescoping approach can be taken for a variety of other {bk} too.

Our proof of the Dirichlet Test uses an identity that is a discrete analog of the integration-
by-parts formula from calculus. Because it has many other applications, this identity gets its
own proposition.

Proposition 3.15. (Summation-by-Parts Identity) Let {ak}k∈N and {bk}k∈N be sequences
in R. Let B−1 = 0 and

Bn =

n
∑

k=0

bk for every n ∈ N .

Then for every m, n ∈ N with m ≤ n one has identity

n
∑

k=m

akbk = anBn − amBm−1 +
n−1
∑

k=m

(ak − ak+1)Bk ,

with the understanding that the last sum is zero when m = n.
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Remark. This is called the summation-by-parts identity because it is a discrete analog of the
integration-by-parts formula

∫ n

m

a(x)b(x) dx = a(x)B(x)
∣

∣

∣

n

m
−
∫ n

m

a′(x)B(x) dx ,

where B′(x) = b(x).

Proof. Because bk = Bk − Bk−1 we have
n
∑

k=m

akbk =
n
∑

k=m

ak(Bk − Bk−1)

=
n
∑

k=m

akBk −
n
∑

k=m

akBk−1

=
n
∑

k=m

akBk −
n−1
∑

k=m−1

ak+1Bk

= anBn − amBm−1 +

n−1
∑

k=m

(ak − ak+1)Bk .

To get from the second to the third line above we re-indexed the last sum. All the other steps
are straightforward algebra. �

We now turn to the proof of the Dirichlet Test.

Proof of Dirichlet Test. Let

sn =

n
∑

k=0

akbk .

We will show the sequence {sk}k∈N is Cauchy, and therefore convergent.

Let ǫ > 0. We seek Nǫ ∈ N such that

m, n ≥ Nǫ =⇒ |sn − sm| < ǫ .

For m = n this is always true. Suppose m < n. (For the case n < m simply reverse the roles
of m and n.) Then

|sn − sm| =

∣

∣

∣

∣

n
∑

k=m+1

akbk

∣

∣

∣

∣

=

∣

∣

∣

∣

anBn − am+1Bm +

n−1
∑

k=m+1

(ak − ak+1)Bk

∣

∣

∣

∣

≤ an|Bn| + am+1|Bm| +
n−1
∑

k=m+1

(ak − ak+1)|Bk|

≤ anM + am+1M +

n−1
∑

k=m+1

(ak − ak+1)M = 2am+1M .

Here we have used the summation-by-parts identity in the second step, the triangle inequality
and the fact that {ak}k∈N is positive and nonincreasing in the third step, the bound |Bk| ≤ M
in the fourth step, and evaluated the telescoping sum in the last step. Because ak → 0 as
k → ∞, we can choose Nǫ so that m ≥ Nǫ implies 2am+1M < ǫ. Hence, for every n > m ≥ Nǫ

the above inequalities imply |sn − sm| < ǫ. �
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4. Sets of Real Numbers

4.1. Closure, Closed, and Dense. The notions of closure, closed, and dense pertain to sets
as they relate to the limit process. The closure of a set is all points that are the limit of some
convergent sequence that lies within the set. If the closure of a set is the set itself then the set
is said to be closed. Simply put, limits do not get out of closed sets. If the closure of a set
is everything then the set is said to be dense. Simply put, limits can go anywhere from dense
sets. Here we make these notions precise for subsets of R.

4.1.1. Closure. We begin with the definition.

Definition 4.1. Given any A ⊂ R its closure is given by

Ac =
{

a ∈ R : a is the limit of a sequence in A
}

.

It is clear that A ⊂ Ac for every A ⊂ R. Indeed, every a ∈ A is the limit of the constant
sequence {ak} with ak = a for every k ∈ N. As we will now see, sometimes Ac = A, but in
general Ac will be larger than A.

Examples. It is easy to show that ∅c = ∅ and Rc = R.

Examples. If a < b then the closures of the intervals (a, b), (a, b], [a, b), [a, b], (a,∞), [a,∞),
(−∞, b), and (−∞, b] are given by

(a, b)c = (a, b]c = [a, b)c = [a, b]c = [a, b] ,

(a,∞)c = [a,∞)c = [a,∞) , (−∞, b)c = (−∞, b]c = (−∞, b] .

You should be able to prove these facts.

We have the following propositions.

Proposition 4.1. If A ⊂ R is nonempty and bounded above (below) then sup{A} ∈ Ac

( inf{A} ∈ Ac).

Proof. You have to show that if sup{A} /∈ A then there exists a sequence {ak} ⊂ A such that
ak → sup{A} as k → ∞. The details are left as an exercise. �

Proposition 4.2. For every A, B ⊂ R one has that

(i) A ⊂ B =⇒ Ac ⊂ Bc ,

(ii) (A ∪ B)c = Ac ∪ Bc ,

(iii) (A ∩ B)c ⊂ Ac ∩ Bc .

Proof. Exercise.

An important fact is that the closure of Q is R. In other words, every real number is the
limit of a sequence of rational numbers.

Proposition 4.3. Qc = R.

Proof. Let a ∈ R. Consider the sequence of intervals {Ik}k∈N where each Ik is given by

Ik =
(

a − 1
2k , a + 1

2k

)

.

For each k ∈ N the third assertion of Proposition 1.15 implies there exists a ak ∈ Ik ∩ Q. The
step of showing that ak → a as k → ∞ is left as an exercise. It then follows that a ∈ Qc,
whereby the assertion follows. �



38

4.1.2. Closed. We are ready for the next definition.

Definition 4.2. A subset A of R is said to be closed when A = Ac.

Examples. The empty set ∅ is closed.

Examples. If a < b then intervals of the form [a, a], [a, b], [a,∞), (−∞, b], and R = (−∞,∞)
are closed, while intervals of the form (a, b), (a, b], [a, b), (a,∞), and (−∞, b) are not.

Our terminology seems to demand that closures should be closed. This is indeed the case.

Proposition 4.4. Let A ⊂ R. Then Ac is closed (i.e. (Ac)c = Ac).

Proof. Let a ∈ (Ac)c. We must show that a ∈ Ac. Because a ∈ (Ac)c there exists a sequence
{bi}i∈N in Ac such that bi → a as i → ∞. If bi = a for some i ∈ N then a = bi ∈ Ac.

On the other hand, if bi 6= a for every i ∈ N then because bi ∈ Ac for each i ∈ N there exists
a sequence {b(i,j)}j∈N in A such that b(i,j) → bi as j → ∞. The picture is

b(0,0) , b(0,1) , b(0,2) , · · · b(0,j) , · · · → b0

b(1,0) , b(1,1) , b(1,2) , · · · b(1,j) , · · · → b1

b(2,0) , b(2,1) , b(2,2) , · · · b(2,j) , · · · → b2
...

...
...

...
...

...
...

b(i,0) , b(i,1) , b(i,2) , · · · b(i,j) , · · · → bi

...
...

...
...

...
...

...
↓
a ,

Because for each i ∈ N we have b(i,j) → bi as j → ∞ and |bi − a| > 0, there exists a ji ∈ N such
that

∣

∣b(i,ji) − bi

∣

∣ < |bi − a| .
Set ai = b(i,ji) for each i ∈ N. It is clear that the sequence {ai}i∈N lies within A. The step of
showing that ai → a as i → ∞ is left as an exercise. It then follows that a ∈ Ac, whereby the
assertion follows. �

Proposition 4.5. Let A ⊂ R. Then Ac is the smallest closed set that contains A.

Proof. The previous proposition shows that Ac is closed. Earlier we showed that A ⊂ Ac.
Now let B be any closed set that contains A. We see from (i) of Proposition 4.2 that A ⊂ B
implies Ac ⊂ Bc. Because B is closed we know that Bc = B. It follows that Ac ⊂ Bc = B.
Therefore Ac is the smallest closed set that contains A. �

The property of being closed is preserved by certain set operations.

Proposition 4.6. If A and B are closed subsets of R then A ∩ B and A ∪ B are closed. If
{Ak}k∈N is a sequence of closed subsets of R then

⋂

k∈N

Ak is closed .

Proof. Exercise.

Remark. By repeated application of the first assertion above, we see that the union and in-
tersection of any finite collection of closed sets is again closed. The second assertion states that
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the intersection of any countable collection of closed sets is again closed. The analogous stat-
ment for unions is generally false. Indeed, consider the countable collection of closed intervals
{Ik}k∈N where each Ik is given by

Ik =
[

− 1 + 1
2k , 1 − 1

2k

]

.

You can easily show that
⋃

k∈N

Ik = (−1, 1) ,

which is not closed.

4.1.3. Dense. Finally, we have the concept of a set being dense in a larger one.

Definition 4.3. Let A ⊂ B ⊂ R. Then A is said to be dense in B if B ⊂ Ac.

Examples. Proposition 4.3 states the Q is dense in R. In a similar manner one can show that
(a, b) ∩ Q is dense in [a, b], that (a,∞) ∩ Q is dense in [a,∞), and (−∞, b) ∩ Q is dense in
(−∞, b].

Proposition 4.7. If A ⊂ B ⊂ C ⊂ D ⊂ R and A is dense in D then B is dense in C.

Proof. Exercise.

Proposition 4.8. Let A ⊂ R. Then A is dense in R if and only if for every interval (a, b) one
has A ∩ (a, b) 6= ∅.

Proof. Exercise.

4.2. Completeness. Completeness is a central notion in analysis. As such, it arises in many
settings. Here we introduce it in the setting of R, where it is easily characterized. The basic
notion of completeness is as follows.

Definition 4.4. A set S ⊂ R is said to be complete if every Cauchy sequence contained in S
has a limit that is in S.

The Cauchy Criterion, Proposition 2.19, immediately implies that R is complete. Moreover, it
easily yields the following characterization of all complete subsets of R.

Proposition 4.9. A subset of R is complete if and only if it is closed.

Proof. Exercise.

Remark. In more general settings the notions of complete and closed do not coincide. For
example, consider the set Q equipped with the usual notion of distance. A sequence in Q is said
to be convergent in Q if it is convergent as a sequence in R and its limit is in Q. A sequence in
Q is said to be Cauchy in Q if it is Cauchy as a sequence in R. Because there are sequences in
Q that are Cauchy in Q but not convergent in Q the set Q is not complete. On the other hand,
the set Q is closed because it contains all possible limit points of sequences that are convergent
in Q.
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4.3. Sequential Compactness. Compactness is another central notion in analysis where it
plays the principle role in many existence proofs. As such, it comes in many varieties. Fortu-
nately, these varieties coincide in the setting of R. We will take advantage of this coincidence
by presenting only the concept of sequential compactness, for which we have all the tools at
hand.

Definition 4.5. A set A ⊂ R is said to be sequentially compact if every sequence in A has a
subsequence that converges to a limit in A.

Example. The interval [0,∞) is not sequentially compact because the incresing sequence
{k}k∈N diverges, and therefore has no convergent subseqence.

Example. The interval (0, 1) is not sequentially compact because the limit of the convergent
sequence {2−k}k∈N is 0, which is not in (0, 1).

It is clear that every sequentially compact set must be closed, for otherwise there would be a
convergent sequence within it whose limit lies outside it. Intuitively, a sequentially compact set
must also be “small enough” that every sequence within it has a convergent subsequence. The
following characterization of sequentially compact subsets of R uses the Bolzano-Weierstrass
Theorem to show that “small enough” is simply that the set is bounded.

Proposition 4.10. A set A ⊂ R is sequentially compact if and only if A is closed and bounded.

Proof. (⇒) Suppose that A is either not bounded or not closed. Here we give the proof for the
case when A is not closed. The proof for the case when A is not bounded is left as an exercise.

Because A is not closed there exists a sequence {ak} in A and a point a /∈ A such that ak → a
as k → ∞. By Proposition 2.6 every subsequence of {ak} also converges to the point a, which
is not in A. Therefore A is not sequentially compact.

(⇐) Let A ⊂ R be closed and bounded. Let {ak} be an arbitrary sequence in A. Because
A is bounded, the sequence {ak} is bounded. By the Bolzano-Weierstrass Theorem, {ak} has
a converging subsequence {ank

}. Let a be the limit of this subsequence. Because A is closed
and {ank

} is in A, the limit a must also be in A. By the arbitrariness of {ak}, we conclude
that every sequence in A has a subsequence that converges to a limit in A. Therefore A is
sequentially compact. �

An immediate consequence of this characterizarion is the following.

Proposition 4.11. Let A ⊂ R be sequentially compact and B ⊂ R be closed. Then A ∩ B is
sequentially compact. In particular, every closed subset of A is sequentially compact.

Proof. Exercise.

Sequentially compact subsets of R have the following important covering property.

Proposition 4.12. Let A ⊂ R be sequentially compact. Let {(ak, bk)}k∈N be a countable col-
lection of open intervals that covers A — i.e. such that

A ⊂
⋃

k∈N

(ak, bk) .

Then there exist n ∈ N such that

A ⊂
n
⋃

k=0

(ak, bk) .
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Proof. Suppose not. Then for every n ∈ N there exists an xn ∈ A such that

(4.1) xn /∈
n
⋃

k=0

(ak, bk) .

Because {xn}n∈N ⊂ A while A is sequentially compact, there exists a subsequence {xnk
}k∈N

that converges to a limit x ∈ A. Because {(ak, bk)}k∈N covers A, there exists m ∈ N such that
x ∈ (am, bm). Because xnk

→ x as k → ∞, this implies that xnk
∈ (am, bm) eventually as

k → ∞. But this contradicts the fact seen from (4.1) that xnk
/∈ (am, bm) for every nk ≥ m. �

There is a converse of the previous proposition that we state without proof.

Proposition 4.13. Let A ⊂ R such that for every countable collection of open intervals
{(ak, bk)}k∈N that covers A there exist n ∈ N such that

A ⊂
n
⋃

k=0

(ak, bk) .

Then A is sequentially compact.

Remark. By combining Propositions 4.12 and 4.13, we see that the covering property stated
in the hypothesis of Proposition 4.13 characterizes sequential compactness for subsets of R.
This property is closely related to the properties of countable compactness and compactness,
which are also covering properties that characterize sequential compactness for subsets of R.
In more general settings these notions of campactness can differ from each other.

4.4. Connectedness. Connectedness is another central notion in analysis. As such, it also
comes in many varieties. Fortunately, these varieties coincide in the setting of R. The basic
notion of connectedness is as follows.

Definition 4.6. A set S ⊂ R is said to be disconnected there exists nonempty A, B ⊂ S such
that

(4.2) A ∪ B = S , Ac ∩ B = A ∩ Bc = ∅ .

Otherwise S is said to be connected.

If a set S is disconnected then the nonempty sets A and B that arise in Definition 4.6 have the
property that any convergent sequence that lies within one them will have a limit that is not
in the other. In other words, if {xn} ⊂ A is convergent and xn → x then x /∈ B.

Example. The set (−∞, 0) ∪ (0,∞) is disconnected because (4.2) is satisfied by the sets
A = (−∞, 0) and B = (0,∞).

It is clear from Definition 4.6 that every disconnected set has at least two points in it. In
particular, the empty set or any singleton set (a set containing only a single point) is connected.
The following proposition shows that the connected subsets of R are precisely the intervals. We
will use the Interval Characterization Theorem, Proposition 1.18.

Proposition 4.14. A subset of R is connected if and only if it is an interval.

Proof. (=⇒) Let S ⊂ R be connected. We will show that S is then an interval by using the
Interval Characterization Theorem, Proposition 1.18.

Let x, y ∈ S such that x < y. We must show that (x, y) ⊂ S. Let z ∈ (x, y). We must
show that z ∈ S. Suppose not. Let A = (−∞, z] ∩ S and B = [z,∞) ∩ S. Because x ∈ A and
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y ∈ B, these sets are nonempty. It is easy to check that A and B satisfy (4.2), whereby S is
disconnected. But this contradicts the fact S is connected. Hence, z ∈ S. Therefore (x, y) ⊂ S.
Because this is true for every x, y ∈ S such that x < y, the Interval Characterization Theorem,
Proposition 1.18, implies that S is an interval.

(⇐=) Let S ⊂ R be an interval. Suppose that S is disconnected. Then there exists nonempty
sets A, B ⊂ S that satisfy (4.2). Let x ∈ A and y ∈ B. Because we can always relabel the
sets A and B, we can assume without loss of generality that x < y. Because x, y ∈ S while
S is an interval, we know from the Interval Characterization Theorem, Proposition 1.18, that
[x, y] ⊂ S. Because A ∪ B = S, we have (A ∩ [x, y]) ∪ (B ∩ [x, y]) = [x, y].

Now consider the point z = sup{A ∩ [x, y]}. By Propositions 4.1 and 4.2 we have

z ∈ (A ∩ [x, y])c ⊂ Ac ∩ [x, y] .

Because Ac ∩ B = ∅ and y ∈ B, it follows that z 6= y, which implies that z < y. Because
z = sup{A ∩ [x, y]} < y while (A ∩ [x, y]) ∪ (B ∩ [x, y]) = [x, y], we see that (z, y] ⊂ B. But
then z ∈ [z, y] ⊂ Bc by Proposition 4.2, so that z /∈ A because A∩Bc = ∅. On the other hand,
because Ac ∩ B = ∅ while (A ∩ [x, y]) ∪ (B ∩ [x, y]) = [x, y], it follows that z ∈ A ∩ [x, y] ⊂ A.
This contradicts the conclusion of the sentence before it. Therefore S must be connected. �


