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Abstract

Reliable estimators of the spatial distribution of socio-economic indicators are
essential for evidence-based policy-making. As sample sizes are small for highly
disaggregated domains, the accuracy of the direct estimates is reduced. To over-
come this problem small area estimation approaches are promising. In this work
we propose a small area methodology using machine learning methods. The semi-
parametric framework of mixed effects random forest combines the advantages of
random forests (robustness against outliers and implicit model-selection) with the
ability to model hierarchical dependencies. Existing random forest-based methods
require access to auxiliary information on population-level. We present a method-
ology that deals with the lack of population micro-data. Our strategy adaptively
incorporates aggregated auxiliary information through calibration-weights - based
on empirical likelihood - for the estimation of area-level means. In addition to our
point estimator, we provide a non-parametric bootstrap estimator measuring its
uncertainty. The performance of the proposed point estimator and its uncertainty
measure is studied in model-based simulations. Finally, the proposed methodology
is applied to the 2011 Socio-Economic Panel and aggregate census information from
the same year to estimate the average opportunity cost of care work for 96 regional
planning regions in Germany.

Keywords: Official statistics; Small area estimation; Mean squared error; Tree-based
methods
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1 Introduction

Evidence-based policy requires reliable empirical information on social and economic con-
ditions summarised by appropriate indicators. For questions addressing regional and
spatial aspects of inequality, we need precise and reliable information extending beyond
aggregate levels into highly disaggregated geographical and other domains (e.g., demo-
graphic groups). An apparent trade-off regarding the work with survey data is the inverse
relation between high spatial resolution and decreasing sample sizes on the level of inter-
est. The estimation of indicators under these circumstances can be facilitated using an
appropriate model-based methodology collectively referred to as Small Area Estimation
(SAE) (Rao & Molina, 2015; Tzavidis et al., 2018).
Models handling unit-level survey data for the estimation of area-level means are predom-
inantly regression-based linear mixed models (LMM), where the hierarchical structure of
observations is captured by random effects. A well-known example is the nested error
regression model (Battese et al., 1988) - further labelled as BHF - which requires access
to the survey and to area-level auxiliary information. A versatile extension of the BHF
model is the EBP approach by Molina & Rao (2010) with which even non-linear indica-
tors can be estimated and, unlike the BHF, requires access to population-level auxiliary
data. The underlying LMM of the BHF (and the EBP) relies on distributional and struc-
tural assumptions that are prone to violations in SAE applications. Working with social
and economic inequality data in LMMs requires assumptions of linearity and normality
of random effects and error terms, which hardly meet empirical evidence. Jiang & Rao
(2020) remind, that optimality results and predictive performance of model-based SAE
are inevitably connected to the validity of model assumptions. Without theoretical and
practical considerations regarding violated assumptions, estimates are potentially biased
and mean squared error (MSE) estimates are unreliable.
In SAE, several strategies evolved to prevent model-misspecification: A well-known ex-
ample is the assurance of normality by transforming the dependent variable (Sugasawa &
Kubokawa, 2017; Tzavidis et al., 2018; Rojas-Perilla et al., 2019; Sugasawa & Kubokawa,
2019). Furthermore, the use of models under more flexible distributional assumptions is
a fruitful approach (Diallo & Rao, 2018; Graf et al., 2019). From a different perspective,
semi- or non-parametric approaches for the estimation of area-level means are investi-
gated among others by Opsomer et al. (2008), using penalized spline components within
the LMM setting. A distinct methodological option to avoid the parametric assumptions
of LMMs are machine learning methods. These methods are not limited to parametric
models and learn predictive relations from data, including higher order interactions be-
tween covariates, without explicit model assumptions (Hastie et al., 2009; Varian, 2014).
Recently, Krennmair & Schmid (2022) introduce a framework enabling a coherent use of
tree-based machine learning methods in SAE. They propose a non-linear, data-driven,
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and semi-parametric alternative for the estimation of area-level means by using mixed ef-
fects random forests (MERF) in the methodological tradition of SAE. In general, random
forests (RF) (Breiman, 2001) exhibit excellent predictive performance in the presence of
outliers and implicitly solve problems of model-selection (Biau & Scornet, 2016). MERFs
(Hajjem et al., 2014) combine these advantages with the ability to model hierarchical
dependencies.
All previously mentioned model-based strategies against model-misspecification in SAE
assume access to auxiliary information from population-level micro-data. Due to data
security reasons, the access to unit-level census or register data is limited, which imposes a
strong restriction for researchers and SAE practitioners. However, aggregated population-
level auxiliary data (e.g., means) are often available at finer spatial resolution.
In this paper, we present a methodology for the estimation of area-level means using
MERFs under limited population-level auxiliary information. We propose a purely data-
driven approach for solving the dual problem (model-misspecification and limited auxiliary
data). Particularly, we introduce a strategy for the adaptive incorporation of auxiliary
information through calibration-weights for the estimation of area-level means. The deter-
mination of weights without explicit distributional assumptions is based on the empirical
likelihood (EL) approach (Chen & Qin, 1993; Qin & Lawless, 1994; Han & Lawless,
2019). For the point estimation of area-level means, Li et al. (2019) propose the use
of EL-based calibration weights and introduce a bias-corrected transformation approach
using aggregated covariate data combined with the smearing approach of Duan (1983).
Complementing our proposed method for point estimates, we introduce a non-parametric
bootstrap estimator assessing the uncertainty of estimated area-level means. To the best
of our knowledge, no comparable procedure exists for uncertainty estimation in the con-
text of non-linear semi-parametric tree-based procedures under limited data access. We
highlight strengths and weaknesses of our approach for point and uncertainty estimates
by comparing it to existing SAE methods under limited auxiliary information in a model-
based simulation.
We demonstrate our methodology using the 2011 Socio-Economic Panel (SOEP) (Socio-
Economic Panel, 2019) combined with aggregate census information from the same year
to estimate the average individual opportunity cost of care work for 96 regional planning
regions (RPRs) in Germany. We refer to care work as unpaid working hours attributed
to child- or elderly-care reported by the SOEP. Opportunity cost is an economic concept
comprising the time allocation problem, where the time allocated for care work implic-
itly corresponds to time not providing paid work (Buchanan, 1991). Informally provided
care work has no direct corresponding monetary value and the determination of a correct
shadow-price for the economic value is difficult. Classical interpretations of labour supply
in economics such as Becker (1965) imply that an individual’s hourly wage is an acceptable
approximation to the unknown opportunity cost of time for working population. Thus,
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we measure time cost by multiplying an individual’s care time by the opportunity cost of
the person’s time represented as the reported hourly wage calculated also from reported
income in the SOEP data. We are aware that our application is at best a first approxima-
tion making regional differences in opportunity cost of care work visible, accountable, and
comparable. Unpaid care work mitigates public and private expenses on needed health
services and infrastructure (Charles & Sevak, 2005). On the other hand, care-giving has
a complex impact on the labour market (Truskinovsky & Maestas, 2018; Stanfors et al.,
2019), for instance by affecting workforce individuals through personal or social burdens
(Bauer & Sousa-Poza, 2015). From a macro-perspective, several studies examine the eco-
nomic value of care work for countries through the concept of opportunity cost (Chari et
al., 2015; Ochalek J., 2018; Mudrazija, 2019) and provide empirical evidence for policy
measures.
While the mapping of spatial patterns of income inequality in Germany is of scientific
interest (Frick & Goebel, 2008; Kosfeld et al., 2008; Fuchs-Schündeln et al., 2010), to the
best of our knowledge, no study on regional dispersion of opportunity cost of unpaid care
work exists. From a spatial perspective, Oliva-Moreno et al. (2019) provide estimates on
the economic value of time of informal care for two regions in Spain. We maintain that
mapping opportunity cost of care work in Germany is particularly interesting given the
German history of Reunification and the German Federalism, characterized by powerful
regional jurisdictions and different laws for aspects directly affecting care work. The
visualization of opportunity cost highlights regional patterns, adding insights for planning
and comparison of social-compensation policies.
The rest of the paper is structured as follows: Section 2.1 states a general mixed model
that treats LMMs in SAE as special cases and enables the use of tree-based models. We
consider the estimation of area-level means using MERFs, which effectively combine ad-
vantages of non-parametric random forests with the possibility to account for hierarchical
dependencies. Section 2.2 describes our area-level mean estimator based on MERFs un-
der limited data access. We scrutinize the use of EL calibration weights and subsequently
address methodological limitations in Section 2.3. As a result, we propose a best prac-
tice strategy to ensure the proper usability of EL calibration weights in the context of
SAE. Section 3 introduces a non-parametric bootstrap-scheme for the estimation of the
area-level MSE. In Section 4, we use model-based simulations under complex settings to
assess the performance of our stated methods for point and MSE estimates, showing that
MERFs are a valid alternative to existing methods for the estimation of SAE means under
limited data access. In Section 5, we estimate the average individual opportunity cost of
care work for 96 RPRs in Germany using the 2011 SOEP data. After the introduction of
data sources and direct estimates in Section 5.1, we highlight modelling and robustness
properties of our proposed methods for point and uncertainty estimates compared to di-
rect and other SAE estimates under limited auxiliary data. In Section 6, we conclude and
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motivate further research.

2 Theory and Method

This section introduces a general mixed model enabling a simultaneous discussion of
traditional LMM-based models in SAE such as the model of Battese et al. (1988) as
well as semi-parametric interpretations such as the model of Krennmair & Schmid (2022)
using MERFs. Section 2.2 provides details on our proposed methodology for MERFs under
limited covariate data access and the determination of area-specific calibration weights
based on EL. We close the section with a discussion on limitations of EL for SAE and
state a best practice strategy ensuring the usability of our proposed point estimator in
challenging empirical examples.

2.1 Model and Estimation of Coefficients

We assume a finite population U of size N consisting of D separate domains U1, U2, ..., UD

with N1, N2, ..., ND units, where index i = 1, ..., D indicates respective areas. The contin-
uous target variable yij for individual observation j in area i is available for every unit
within the sample. Sample s is drawn from U and consists of n units partitioned into
sample sizes n1, n2, ..., nD for all D areas. We denote by si the sub-sample from area i.
The vector xij = (x1, x2, ..., xp)

ᵀ includes p explanatory variables and is available for every
unit j within the sample s. The relationship between xij and yij is assumed to follow a
general mixed effects regression model:

yij = f(xij) + ui + eij with ui ∼ N(0, σ2
u) and eij ∼ N(0, σ2

e). (1)

Function f(xij) models the conditional mean of yij given xij. The area-specific random
effect ui and the unit-level error eij are assumed to be independent. For instance, defining
f(xij) = xᵀ

ijβ with β = (β1, ..., βp)
ᵀ coincides with the well-known nested error regression

model of Battese et al. (1988) labelled as BHF. An empirical best linear unbiased predictor
for the area-level mean µi can be expressed as:

µ̂BHF
i = x̄ᵀ

i β̂ + ûi,

where x̄i = 1
Ni

∑
j∈Ui

xij denotes area-specific population means on p covariates. In a
variety of real-world examples, required assumptions for the BHF model hardly meet
empirical evidence. Apart from transformation strategies to meet the required assump-
tions, non-parametric approaches can be used alternatively (Jiang & Rao, 2020). Tree-
based machine learning methods such as RFs (Breiman, 2001) are data-driven procedures
identifying predictive relations from data, including higher order interactions between
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covariates, without explicit model assumptions (Hastie et al., 2009; Varian, 2014). RFs
inherently perform model-selection and properly handle the presence of outliers (Biau &
Scornet, 2016). However, an implicit assumption of tree-based models is the required
independence of unit-level observations.
Defining f in Model (1) to be a RF results in a semi-parametric framework, combin-
ing advantages of RFs with the ability to model hierarchical structures of survey data
using random effects. Krennmair & Schmid (2022) estimate area-level means with RFs
(Breiman, 2001) introducing a method that enables the estimation of model-components
f̂ , û, σ̂2

u, and σ̂2
e in the context of SAE. The so-called mixed effects random forest (MERF)

uses a procedure reminiscent of the EM-algorithm (Hajjem et al., 2014). For fitting Model
(1) (where f is a RF) on survey data, the MERF algorithm subsequently estimates a)
the forest function, assuming the random effects term to be correct and b) estimates the
random effects part, assuming the Out-of-Bag-predictions (OOB-predictions) from the
forest to be correct. OOB-predictions utilize the unused observations from the construc-
tion of each forest’s sub-tree (Breiman, 2001; Biau & Scornet, 2016). The estimation of
variance components σ̂2

ε and σ̂2
u is obtained implicitly by taking the expectation of ML

estimators given the data. For further methodological details, we refer to Krennmair &
Schmid (2022). The resulting estimator for the area-level mean for MERFs is summarized
as:

µ̂MERF
i =

¯̂
fi(xij) + ûi =

¯̂
fi(xij) +

σ̂2
u

σ̂2
u + σ̂2

e/ni

(
1

ni

∑
j∈si

(yij − f̂(xij))

)
, (2)

where ¯̂
fi(xij) =

1

Ni

∑
j∈Ui

f̂(xij).

2.2 MERFs under Aggregated Data

Estimates for the area-level mean µi using MERFs from Equation (2) require unit-level
auxiliary census data as input for f . In contrast to the linear BHF model by Battese
et al. (1988), aggregated covariate data cannot directly be used for non-linear or non-
parametric procedures such as RFs, as in general f(x̄i) 6= f̄i(xij). Although the access to
auxiliary population micro-data for the covariates imposes a limitation for practitioners,
not many methods in SAE cope with the dual problem of providing robustness against
model-failure, while simultaneously working under limited auxiliary data (Jiang & Rao,
2020). We propose a solution overcoming this issue by calibrating model-based estimates
from MERFs in Equation (2) with weights that are based only on aggregated census-
level covariates (means). The general idea originates from the bias-corrected transformed
nested error regression estimator using aggregated covariate data (TNER2 ) by Li et al.
(2019). We build on their idea of using calibration weights for SAE based on EL (Owen,
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1990; Qin & Lawless, 1994; Owen, 2001) and transfer it to MERFs. As a result, our
proposed method offers benefits of RFs such as robustness and implicit model-selection,
while simultaneously working in cases of limited access to auxiliary covariate data. In
short, our estimator for the area-level mean can be written as:

µ̂MERFagg
i =

ni∑
j=1

ŵij

[
f̂(xij) + ûi

]
. (3)

Note that optimal estimates for required model-components f̂ and ûi are obtained similar
to Equation (2) from survey data using the MERF algorithm as described by Krennmair
& Schmid (2022). We incorporate aggregate census-level covariate information through
the calibration weights wij, which balance unit-level predictions to achieve consistency
with the area-wise covariate means from census data. Following Owen (1990) and Qin &
Lawless (1994) the technical conditions for wij are to maximize the profile EL function∏ni

j=1wij under the following three constraints:

•
∑ni

j=1wij(xij−x̄pop,i) = 0, monitoring the area-wise sum of distances between survey
data and the population-level mean, denoted as x̄pop,i, for auxiliary covariates;

• wij ≥ 0, ensuring the non-negativity of weights;

•
∑ni

j=1wij = 1, to normalize weights.

Optimal weights ŵij, maximizing the profile EL under the given constraints, are found by
the Lagrange multiplier method:

ŵij =
1

ni

1

1 + λ̂ᵀi (xij − x̄pop,i)
, (4)

where λ̂i solves
ni∑
j=1

xij − x̄pop,i

1 + λ̂ᵀi (xij − x̄pop,i)
= 0.

2.3 Limitation of Empirical Likelihood and a Best Practice Ad-

vice for SAE

The existence of an optimum solution to the maximization problem for the calibration
weights ŵij is not necessarily guaranteed for applications in SAE. A necessary and suf-
ficient condition ensuring the existence of a solution for λ̂i is the existence of the zero
vector as an interior point in the convex hull of constraint matrix xij − x̄pop,i. Especially
for small sample sizes ni this condition requires scrutiny (Emerson & Owen, 2009). If
sample means of xij for area i strongly differ from x̄pop,i, for instance, due to a strong
imbalance of individual sample values xij around the area-specific mean from popula-
tion data x̄pop,i, no optimal solution for λ̂i and subsequently ŵij can be obtained. The
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dimensionality of existing covariates p relative to the sample size ni exacerbates the prob-
lem. As a result, the constraints in matrix xij − x̄pop,i are infeasible for finding a global
optimum in Equation (4). Concrete empirical examples are different largely unbalanced
categorical covariates in xij, leading to column-wise multicollinearity in the ni× p matrix
of constraints xij − x̄pop,i.
Overcoming mentioned technical requirements, Li et al. (2019) propose the use of the
adjusted empirical likelihood (AEL) approach by Chen et al. (2008), which forces the
existence of a solution to Equation (4). Essentially, the introduced adjustment is an
additional pseudo-observation within each domain i, increasing area-specific sample sizes
to ni+1. This pseudo-observation is jointly calculated from respective area-specific survey
and census means of covariates (Chen et al., 2008). Although the added adjustment-
observation reduces risks of numerical instabilities, it simultaneously imposes difficulties
from an applied perspective of SAE. Emerson & Owen (2009) scrutinize the application of
AEL in the context of multivariate population means, maintaining that the added pseudo-
observation distorts the true likelihood configuration even for moderate dimensions of p
in cases of low area-specific sample sizes ni. Chen et al. (2008, p. 430) note, that the
problem is mitigated if the semi-parametric model is correctly specified and if the initial
estimates for x̄smp,i are not too far away from the true population mean. Nevertheless, we
observe that the influence of the bound-correction of Chen et al. (2008) used by Li et al.
(2019) has drawbacks, which we will discuss in the model-based simulation in Section 4.
Dealing with empirical examples characterized by low domain-specific sample sizes, we
abstain from the approaches of adding synthetic pseudo-observations to each domain.
We maintain that in the context of non-linear semi-parametric approaches (such as RFs)
there is a risk of including implausible individual predictions from f based on the pseudo-
covariates, i.e. ŷpseudo,i. In this sense, pseudo-observations manipulate the estimation
of area-level means under limited auxiliary information in two ways: indirectly through
their effect on the determination of all weights ŵij and directly through the predicted
pseudo-value that is added to the survey sample.
We postulate a stepwise approach to ensure a solution to Equation (4) for each area i
under a reduced risk of distortions driven by improper pseudo-values through optimization
bound-corrections. This approach can be interpreted as a best-practice strategy on the
incorporation of maximal auxiliary covariate information through calibration weights in
Equation (4) for the estimation of area-level means with MERFs. In detail, we first
check for each area i whether perfect column-wise-dependence in the p × ni matrix of
constraints (xij − x̄pop,i)j=1,...,ni

exists. If so, we remove perfectly collinear columns and
rerun the optimization. Subsequently, we proceed along two dimensions: a) increasing
the sample size of i-th area and b) decreasing the number of auxiliary covariates p to
calculate ŵij for area i. For a) we advise to sample a moderate number of observations
(e.g., 10) randomly with replacement from an area which is “closest” to area i. We refer to
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areas as “closest”, if they have the smallest Euclidean distance in census-level information
x̄pop,i. This additionally allows to handle out-of-sample areas. For b) we propose a
backward selection of covariate information based on the variable importance. Variable
importance are RF-specific metrics that enable the ranking of covariates reflecting their
influence on the predictive model. As we are primarily concerned about the order of
influence of covariates, we rank based on the mean decrease in impurity importance,
which measures the total decrease in node-specific variance of the response variable from
splitting, averaged over all trees (Biau & Scornet, 2016). Overall, our strategy to handle
potential failure in the solutions for weights and out-of-sample domains is summarized in
the following algorithmic strategy:

1. Use MERF to obtain estimates f̂ , û, σ̂2
u, and σ̂2

e from available unit-level survey data
and estimate the indicator µ̂MERFagg

i (3) including weights ŵij following Equation
(4).

2. If the calculation of weights fails due to infeasibility of constraints in the optimization
problem for area i:

(a) Check the feasibility of constraints used in the optimization and remove per-
fectly co-linear columns in (xij − x̄pop,i)j=1,...,ni

. Retry the optimization in
Equation (4).

(b) If the calculation of weights fails again, optionally enhance the domain-specific
sample size of area i by sampling randomly with replacement from the most
“similar” domain according to the minimal row-wise Euclidean distance be-
tween area-specific aggregated covariate vectors x̄pop,i. Retry the calculation
of weights ŵij.

(c) If it fails again, reduce the number of covariates used for the calculation of
weights for area i. Starting with the least influential covariate based on variable
importance from f̂ , reduce the number of covariates in each step and retry the
calculation of weights after each step.

(d) If the calculation of weights was not possible in step (c), set ŵij to 1/ni. These
weights are non-informative for incorporating auxiliary information, however,
the model-based estimates f̂(xij) + ûi still comprise information from other
in-sample areas.

3. Calculate the indicator for the i-th area as proposed by Equation (3).

The general performance is illustrated by the results of the model-based simulation in
Section 4. Furthermore, the proposed best-practice strategy will be demonstrated in the
application in Section 5.
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3 Uncertainty Estimation

The area-wise MSE is a conventional measure for SAE to assess the uncertainty of provided
point estimates. While the quantification of uncertainty is essential for determining the
quality of area-level estimates, its calculation remains a challenging task. For instance,
even for the BHF model with block diagonal covariance matrices, the exact MSE cannot be
analytically derived with estimated variance components (Prasad & Rao, 1990; Datta &
Lahiri, 2000; González-Manteiga et al., 2008; Rao & Molina, 2015). Thus, the estimation
of uncertainty by elaborate bootstrap-schemes is an established alternative (Hall & Maiti,
2006; González-Manteiga et al., 2008; Chambers & Chandra, 2013).
General statistical results concerning the inference of area-level indicators from MERFs
in SAE are rare, especially in comparison to the existing theory of inference using LMMs.
Although the theoretical background for predictions from RFs grows (Sexton & Laake,
2009; Wager et al., 2014; Wager & Athey, 2018; Athey et al., 2019; Zhang et al., 2019),
existing research mainly aims to quantify the uncertainty of individual predictions. From
a survey perspective, Dagdoug et al. (2021) recently analyse theoretical properties of RF
in the context of complex survey data. The extension of these results for partly-analytical
uncertainty measures in the context of dependent data structures and towards area-level
indicators is non trivial and a conducive topic for theoretical SAE.
In this paper, we propose a non-parametric bootstrap for finite populations estimating the
MSE of the introduced area-level estimator under limited aggregate information defined
by Equation (3). Essentially, we aim to find a solution to two problems simultaneously:
Firstly, we need to flexibly capture the dependence-structure of the data and uncertainty
introduced by the estimation of Model (1). Secondly, we face problems in simulating a
full bootstrap population in the presence of aggregated census-level data.
Our proposed solution to this dual problem is the effective combination of two existing
bootstrap schemes introduced by Chambers & Chandra (2013) and González-Manteiga et
al. (2008). Addressing the problem of non-parametric generation of random components,
we rely on the approach introduced by Chambers & Chandra (2013). One key-advantage
is its leniency to potential specification errors of the covariance structure, as the extraction
of the empirical residuals only depends on the correct specification of the mean behaviour
function f of the model. Solving the problem of missing unit-level population covariate
data, we base the general procedure on the methodological principles of the parametric
bootstrap for finite populations introduced by González-Manteiga et al. (2008) adapted
to the estimation of domain-level means. This allows us to find (pseudo-)true values by
generating only error components instead of simulating full bootstrap populations. An
important step concerning the handling and resampling of empirical error components is
centring and scaling them by a bias-adjusted residual variance proposed by Mendez & Lohr
(2011). In short, the estimator of the residual variance under the MERF from Equation

10



(2), σ̂2
ε is positively biased, as it includes excess uncertainty concerning the estimation

of function f̂ . Further methodological details on the modification of the approach by
Chambers & Chandra (2013) for MERFs for area-level means under unit-level models
are found in Krennmair & Schmid (2022). Note that our proposed non-parametric MSE-
bootstrap algorithm works for in- and out-of sample areas. The steps of the proposed
bootstrap are as follows:

1. Use estimates f̂ , σ̂e, σ̂u, and respective weights ŵij from the application of the
proposed method as summarized in Equation (3) on survey data with metric target
variable yij.

2. Calculate marginal residuals r̂ij = yij − f̂(xij) and use them to compute level-2
residuals for each area by r̄i = 1

ni

∑ni

j=1 r̂ij for i = 1, ...D.

3. To replicate the hierarchical structure we use the marginal residuals and obtain the
vector of level-1 residuals by rij = r̂ij − r̄i. Level-1 residuals rij are scaled to the
bias-corrected variance σ̂2

bc,ε (Mendez & Lohr, 2011) and centred, denoted by rcij.
Level-2 residuals r̄i are also scaled to the estimated variance σ̂2

v and centred, denoted
by r̄c.

4. For b = 1, ..., B:

(a) Simple random sampling with replacement (srswr) for each area i from the
empirical distribution of scaled and centred level-1 (sample 1 value for each
area i) and level-2 (sample ni value for each area i) residuals to obtain the
following three random components:

r
∗(b)
ij = srswr(rcij, ni) , ē∗(b)i = srswr(rcij

σ̂bc,ε√
Ni − ni

, 1), and u
∗(b)
i = srswr(r̄c, 1).

(b) Compute (pseudo-)true values for the population based on the fixed effects
from area-wise mean estimates µ̂MERFagg

i , as:

ȳ
(b)
i =

ni∑
j=1

ŵij f̂(xij) + u
∗(b)
i + Ē

(b)
i , where Ē

(b)
i =

ni
Ni

r̄
∗(b)
ij +

Ni − ni
Ni

ē
∗(b)
i .

(c) Use the known sample covariates xij to generate the bootstrap sample response
values in the following way:

y
(b)
ij = f̂OOB(xij) + u

∗(b)
i + r

∗(b)
ij .

We use OOB-predictions from f̂ to imitate variations of xij covariates through
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predictions from unused observations within each tree in the fitting process
that vary throughout the bootstrap replications.

(d) Estimate µ̂MERFagg(b)
i with the proposed method from Equation (3) on bootstrap

sample values y(b)ij . Note that weights ŵij remain constant over B replications
because the original survey covariates xij and population-level covariates x̄pop,i

remain unchanged over B.

5. Finally, calculate the estimated MSE for the area-level mean for areas i = 1, ..., D

M̂SEi =
1

B

B∑
b=1

[(
µ̂

MERFagg(b)
i − ȳ(b)i

)2]
.

4 Model-Based Simulation

The model-based simulation allows for a controlled empirical assessment of our proposed
methods for point and uncertainty estimates. Overall, we aim to show, that the proposed
methodology from Section 2 and Section 3 performs as well as traditional SAE methods
and has advantages in terms of robustness against model-failure. In particular, we study
the performance of the proposed MERFs under limited data access (MERFagg, (3)) to
the direct estimator, the TNER2 estimator proposed by Li et al. (2019), the BHF esti-
mator (Battese et al., 1988) as well as the MERF assuming access to unit-level census
data (MERFind, (2)) by Krennmair & Schmid (2022). The direct estimator only uses
sampled data to estimate the mean, which implies a strong dependence between the area-
specific sample size and the quality of estimates. The BHF model serves as an established
baseline model for the estimation of area-level means under limited auxiliary data. The
TNER2 aims to provide an alternative to the BHF, introducing aspects of transforma-
tions under limited data access. General differences in the performance of the direct,
BHF, and TNER2 estimator to the two MERF candidates (MERFagg, MERFind) indi-
cate advantages of semi-parametric and non-linear modelling in the given data scenarios.
The additional inclusion of the MERFind enables a direct comparison regarding the effect
of access to aggregated auxiliary data (MERFagg) and existing unit-level auxiliary data
(MERFind).
We consider four scenarios denoted as Normal, Pareto, Interaction, and Logscale and
repeat each scenario independently M = 500 times. All four scenarios assume a finite
population U of size N = 50000 with D = 50 disjunct areas U1, ..., UD of equal size
Ni = 1000. We generate samples under stratified random sampling, utilizing the 50 small
areas as stratas, resulting in a sample size of n =

∑D
i=1 ni = 1229. The area-specific
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Table 1: Model-based simulation scenarios

Scenario Model x1 x2 µi v ε

Normal y = 5000− 500x1 − 500x2 + v + ε N(µi, 3
2) N(µi, 3

2) unif(−1, 1) N(0, 5002) N(0, 10002)
Pareto y = 5000− 500x1 − 500x2 + v + ε N(µi, 3

2) N(µi, 3
2) unif(−1, 1) N(0, 5002) Par(3, 800)

Interaction y = 1000 + 100x1x2 + 75x2 + v + ε N(µi, 2
2) N(µi, 1) unif(−7, 7) N(0, 5002) N(0, 10002)

Logscale y = exp(7.5− 0.25x1 − 0.25x2 + v + ε) N(µi, 1) N(µi, 1) unif(−3, 3) N(0, 0.152) N(0, 0.252)

sample sizes range from 5 to 50 sampled units with a median of 21 and a mean of 25. The
sample sizes are comparable to area-level sample sizes in the application in Section 5 and
can thus be considered to be realistic.
The choice of the simulation scenarios is motivated by our aim to evaluate the performance
of the competing methods for economic and social inequality data. This includes skewed
data, deviations from normality of error terms, or the presence of unknown non-linear
interactions between covariates, that might trigger model-misspecifications in traditional
SAE approaches based on LMMs. The data generating processes for the used scenarios
are provided in Table 1. Scenario Normal provides a baseline under a LMM with normally
distributed random effects and unit-level errors. As the model assumptions for LMMs are
fully met, we aim to show that the MERFagg performs similarly well compared to linear
competitors. Scenario Pareto is based on the same linear additive structure as scenario
Normal, but has Pareto distributed unit-level errors. This leads to a skewed target vari-
able, comparable to empirical cases of monetary data. The data generating process of
scenario Interaction likewise results in a skewed target variable yij, although it shares
its structure of random components with Normal. The Interaction scenario portrays ad-
vantages of semi-parametric and non-linear modelling methods protecting against model-
failure arising from models with unknown interactions. Scenario Logscale introduces an
additional example resulting in a skewed target variable. Log-normal distributed vari-
ables mimic realistic income scenarios and constitute a showcase for SAE transformation
approaches. We want to show the ability of MERFs and particularly of MERFagg to
handle such scenarios as well by identifying the non-linear relation introduced trough the
transformation on the linear additive terms.
We evaluate point estimates for the area-level mean over M replications by the empirical
root MSE (RMSE), the relative bias (RB), and the relative root mean squared error
(RRMSE). As quality-criteria for the evaluation of the MSE estimates, we choose the
relative bias of RMSE (RB-RMSE) and the relative root mean squared error of the RMSE
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(RRMSE-RMSE):
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where µ̂(m)
i is the estimated mean in area i based on any of the methods mentioned above

and µ(m)
i defines the true mean for area i in replication m. MSE

(m)
est,i is estimated by the

proposed bootstrap from Section 3.
For the computational realization of the model-based simulation, we use R (R Core Team,
2020). The BHF estimates are realized from the sae-package (Molina &Marhuenda, 2015).
For the estimates of the TNER2, we used code provided by Li et al. (2019). For estimates
based on the MERF approach, we use the packages ranger (Wright & Ziegler, 2017)
and lme4 (Bates et al., 2015) to implement our method (MERFagg) and the MERFind
estimator (Krennmair & Schmid, 2022). For RFs, we set the number of split-candidates
to 1, keeping the default of 500 trees for each forest.

4.1 Performance of Point Estimators of the Small Area Means

We start with a focus on the performance of point estimates. Figure 1 reports the empirical
RMSE of each point estimation method under the four scenarios. As expected, the direct
estimates perform poorest due to the low sample sizes and the complexity of the data
generating process. In these specific settings, the TNER2 estimator outperforms direct
estimates but performs worse compared to the BHF. In the Pareto and Logscale scenario,
benefits of transformations might be suppressed by the influence of pseudo-observations
due to the AEL approach, as discussed throughout the methodological Section 2.3 of this
paper.
In the Normal scenario, the BHF performs best as it replicates the data generating
process. The MERFind and the MERFagg perform on a comparable level, underlining
the quality of our proposed calibration approach to incorporate aggregated census-level
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Figure 1: Empirical RMSE comparison of point estimates for area-level
averages under four scenarios

information through the weights. MERFagg shows a better performance in median values,
however the range of area-specific RMSE values is larger compared to MERF estimates
based on unit-level census information. One area with particularly low sample size has
a relatively high level of RMSE, which is explainable by the dependence of the optimum
function for the weights in Equation (4) on ni.
We observe similar patterns in the Pareto scenario. The BHF has one outlier for an
area with low sample size. As anticipated, the performance of both MERF candidates is
comparable to the Normal scenario, confirming robust behaviour under skewed data and
violations of the normal distribution of errors. Since MERFagg behaves comparably, the
robustness also holds for the calculation of calibration weights.
In the Interaction scenario, the point estimates of the proposed MERFagg outperform tra-
ditional SAE approaches under limited auxiliary information. Apparently the LMM-based
methods cannot sufficiently capture the underlying predictive relation between the covari-
ates, while the MERFs detect the non-linear term. Regarding the impact of restricted
covariate data access, we observe relatively low values of mean and median RMSE com-
pared to the hypothetical case of existing unit-level data in MERFind. Four outliers in
areas with low sample sizes for MERFagg become apparent, although the median RMSE
is lowest. We maintain, that this phenomenon can be mitigated if we increase the size
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Table 2: Mean and Median of RB and RRMSE over areas for point
estimates in four scenarios

Normal Pareto Interaction Logscale

Median Mean Median Mean Median Mean Median Mean

RB

Direct 0.0000 0.0002 0.0001 0.0004 -0.0005 0.0076 0.0003 0.0010
TNER2 0.0002 -0.0001 -0.0003 -0.0008 0.0010 0.0187 -0.0014 -0.0020

BHF 0.0009 0.0013 0.0019 0.0022 0.0031 0.0233 -0.0188 -0.0225
MERFind 0.0014 0.0019 0.0033 0.0038 0.0071 0.0061 0.0076 0.0082
MERFagg 0.0001 0.0005 0.0011 0.0016 0.0034 0.0138 0.0004 0.0002

RRMSE

Direct 0.0984 0.1080 0.0994 0.1100 0.1570 1.1500 0.0978 0.1030
TNER2 0.0838 0.0886 0.0876 0.0915 0.1550 1.2900 0.0866 0.0879

BHF 0.0392 0.0418 0.0368 0.0418 0.1590 1.2900 0.1670 0.1760
MERFind 0.0417 0.0450 0.0398 0.0441 0.1370 1.5900 0.0620 0.0636
MERFagg 0.0409 0.0451 0.0409 0.0446 0.1330 1.2900 0.0610 0.0634

of “close” observations from other areas to a higher level, especially in cases of complex
interactions of effects in covariates such as Interaction.
The last scenario Logscale shows that the MERFagg outperforms the direct and LMM-
based competitors. Similar to the Interaction and Pareto scenario, the effect of covariate
data access - comparing MERFagg and MERFind - is not severe for an average area.
Overall, the results from Figure 1 indicate that the MERF performs comparably well to
LMMs in simple scenarios, and outperforms traditional SAE models in the presence of
complex data generating processes, such as unknown non-linear relations between covari-
ates or non-linear functions. Additionally, the robustness against model-misspecification
of MERFs and their calibration weights ŵij holds if distributional assumptions for LMMs
are not met, i.e. in the presence of non-normally distributed errors and skewed data. The
influence of unit-level versus aggregated covariate information appears to be marginal in
all of our four scenarios. We observe a moderate dependence between sample sizes and
the quality of area-specific means for MERFagg, which is mainly explained by the way the
calibration weights rely on the quality of survey data for a respective area i as discussed
in Section 2.2.
Table 2 reports the corresponding values of RB and RRMSE for the discussed point
estimates. The RB and the RRMSE from the MERFagg attest a competitively low level
under all scenarios. All model-based MERF estimators have a lower mean and median
RRMSE compared to the direct estimator in all scenarios. Despite a few outliers for
RMSE and RB (cf. Figure 1), the median and mean values of MERFagg are remarkably
low emphasizing the quality of estimates given the the substantial reduction in required
covariate information.
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4.2 Performance of the Bootstrap MSE Estimator

We scrutinize the performance of our proposed MSE estimator on the four scenarios,
examining whether the proposed procedure for uncertainty estimates performs equally
well in terms of robustness against model-misspecification and in cases of limited access
to auxiliary information.
For each scenario and each simulation round, we choose B = 200 bootstrap replications.
From the comparison of RB-RMSE among the four scenarios provided in Table 3, we
infer, that the proposed non-parametric bootstrap-procedure effectively handles all four
scenarios. This is demonstrated by relatively low mean values of positive RB-RMSE
over the 50 areas after M replications. From an applied perspective, we prefer over- to
underestimation for the MSE as it serves as an upper bound. We mainly use the area-
level MSE for the further assessment in terms of CVs and consequently overestimation
of area-level MSEs leads to an increased CVs. If our CVs are still below the thresholds,
the estimates are definitely acceptable. The difference in RB-RMSE between Normal
and Pareto is marginal, indicating that the non-parametric bootstrap effectively handles
non-Gaussian error terms.

Table 3: Performance of MSE estimator in model-based simulation:
mean and median of RB-RMSE and RRMSE-RMSE over areas

Normal Pareto Interaction Logscale

Median Mean Median Mean Median Mean Median Mean

RB-RMSE 0.0525 0.0591 0.0596 0.0643 0.0192 0.0205 −0.0117 0.0054
RRMSE-RMSE 12.7000 15.6000 30.6000 34.3000 9.9000 12.4000 22.9000 25.3000

Figure 2 provides additional intuition on the quality of our proposed non-parametric
MSE-bootstrap estimator. Given the area-wise tracking properties in all four scenarios,
we conclude that our MSE estimates strongly correspond to the empirical RMSE. We
infer that the overestimation in Table 3 is mainly driven by overestimation in areas with
low sample sizes. Thus, our non-parametric MSE estimator provides an upper bound for
the uncertainty of particular difficult point estimates due to low sample sizes. Apart from
this characteristic, we observe no further systematic differences between the estimated
and empirical MSE estimates regarding their performance throughout our model-based
simulation.
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Figure 2: Estimated and empirical area-level RMSEs for four scenarios
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5 Application

This section starts with a description of data sources and outlines our empirical analysis.
We describe the survey data SOEP (Socio-Economic Panel) and discuss primary direct
estimates on spatial differences of average individual opportunity cost of care work for
German RPRs. Moreover, we propose the use of model-based SAE, which incorporates
auxiliary variables from the 2011 German census. Demonstrating our proposed method of
MERFs with aggregated data for point and uncertainty estimates, we show advantages to
existing model-based SAE methods. Finally, we discuss our empirical findings concerning
the cost of care work in Germany. We conduct the analysis with R (R Core Team, 2020).

5.1 Data Sources and Direct Estimates of Spatial Opportunity

Cost of Care Work

The SOEP was established in 1984 by the German Institute of Economic Research (DIW)
and evolved into an imperative survey for Germany regarding multidisciplinary social in-
formation on private households (Goebel et al., 2019). Statistical considerations regarding
sampling designs and representativeness of the longitudinal data set, justify its relevance
for governmental institutions, policy makers, and researchers alike. For our primary cal-
culation of opportunity cost of care work, we need information on individual income as
well as hours worked on the job and for care work. This information is only provided
in the SOEP, in contrast to the German Microcensus (Statistisches Bundesamt, 2015),
where income is only available as an interval censored variable.
We construct the target variable of individual monthly opportunity cost of care work
from the SOEP in 2011 (Socio-Economic Panel, 2019) and use the available refreshment
samples. We choose the year 2011 because the last census was in this year and therefore
census and survey data have no time inconsistencies. The underlying sampling design is a
multi-stage stratified sampling procedure: Initially, stratification is carried out into federal
states, governmental regions, and municipalities. Subsequently, addresses are sampled
using the random walk methodology within each primary sampling unit (Kroh et al.,
2018). Our analysis focuses on the working age population aged between 15 to 64, as
defined by international standards (OECD, 2020). In detail, we calculate the individual
opportunity cost in Euro per month for 2011 as follows: first, we compute opportunity
cost as hourly wage by taking the mean gross individual income divided by hours of paid
work. Then, we multiply the hours of monthly unpaid work due to child- or elderly-care
by the hourly cost of opportunity. The resulting metric target variable yij for Germany
is highly skewed, ranging from 0e to 2413.79e (mean: 100.96e and median: 176.93e ). A
histogram is provided in Figure 3.
In total we have 3939 sample survey observations. National averages do not serve for

19



100

200

300

400

Direct estimates of 
average monthly 
opportunity cost of 
care work [€]

0.1

0.2

0.3

0.4

0.5

C
V

0

200

400

600

800

0 500 1000 1500 2000 2500

ob
se

rv
at

io
ns

Individual monthly opportunity cost of care work in Germany [€]

Figure 3: Overview of direct estimates, corresponding CVs and the
distribution of opportunity cost of care work in Germany.

monitoring efficacy of regional developments and policy measures. Our major interest is
a finer spatial resolution to map regional patterns of opportunity cost of care work across
Germany. We analyse 96 respective RPRs in Germany, resulting in area-specific sample
sizes from 4 to 158 with a mean of 35 and median of 41. First results of direct estimates
can be seen in the map in Figure (3). Estimates of the mean monthly opportunity cost
of individual care work range from 64.31e (Oberpfalz-Nord) to 409.38e (Neckar-Alb).
In general, we observe no major difference between former East and West Germany.
Additionally, levels of opportunity cost are higher in metropolitan areas surrounding cities
than in the cities itself and compared to rural areas.
Small sample sizes lead to unreliable estimates accompanied by high variances. Further-
more, we are not allowed to report direct estimates from regions with sample size below
10 due to confidentiality agreements with the data provider. This is the case for 7 RPRs.
To obtain variances and subsequently determining the coefficients of variation (CV) for
the direct estimates, we use the calibrated bootstrap by Alfons & Templ (2013) imple-
mented in the R-package emdi by Kreutzmann et al. (2019). Eurostat (2019) postulates
that estimates with a CV of less than 20% can be considered as reliable. As reported by
Figure 3, more than half of the regions (47 out-of reaming 89) exceed this threshold.
The direct estimation results suffer from differences in quality due to low area-level sample
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sizes and specifically high variability. Model-based SAE methods help to improve the
estimation accuracy of results. As SOEP auxiliary variables are measured in the same
way as in the Germans census (Statistisches Bundesamt, 2015), census covariate data
can serve as auxiliary information needed in SAE models. However, the German census
provides information only at aggregated RPR-levels. Overall, we have 19 covariates on
personal and socio-economic background within our sample for which we additionally
received corresponding means from the German Statistical Office calculated from the
German 2011 census. Details on available covariates and their variable importance is
provided within the Appendix in Table 4.

5.2 Model-Based Estimates

This section illustrates the application of our proposed method for MERFs with aggre-
gate covariate data for the estimation of area-level means. We map the estimated monthly
mean opportunity cost of unpaid care work for 96 RPRs in Germany for the year 2011.
Moreover, we assess the quality of our estimates by providing CVs based on our proposed
non-parametric MSE-bootstrap procedure discussed in Section 3 and juxtapose our re-
sults to the previously discussed direct estimates and the well-established BHF model
by Battese et al. (1988). A full comparison to the TNER2 estimates (Li et al., 2019) is
not possible because Li et al. (2019) do not provide uncertainty estimators required for a
qualitative comparison in terms of CVs.
As reported by Figure 3, our target variable of individual opportunity cost is highly
skewed, indicating that traditional LMMs (such as the BHF) run the risk of model-
misspecification. In contrast, our proposed procedure shows robustness against model-
failure due to outliers or complex data structures. Apart from specifying separate regions
being modelled as random intercepts, the proposed MERFagg approach can be seen as
purely data-driven: We train a predictive model on the survey set and incorporate as
much auxiliary information for the determination of area-specific calibrations weights as
possible based on the variable importance obtained from the fitted RF object f̂ . For
this example we set the tuning parameter of the RF to 500 sub-trees. Repeated 5−fold
cross-validation supports the choice of proposing 5 randomly drawn split candidates at
each split for the forest. Regarding our best-practice strategy, we chose that we want to
calculate the weights based on a minimum of the 3 most influential variables. An overview
of the number of covariates included can be found in the appendix (Figure 7). For the
non-parametric MSE bootstrap-procedure, we use B = 200.
The results from the application of MERFagg are reported in Figure 6. We primarily
focus on a discussion of technical details of estimates from our proposed approach and
postpone the contextual discussion of results to the end of this section. Overall we observe
a dominance of covariates of age, size of the household, households with a child, gender
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Figure 4: Spatial representation of area-level mean estimates from
MERFagg (3) for mean monthly opportunity cost of care work [e ].

and whether the person is employed in the public sector (cf. Table 4 in the Appendix).
Throughout all 96 areas, we incorporate auxiliary information from 3 up to 15 covariates
from census-level aggregates through optimal calibration-weights ŵij. A detailed map on
the number of included census-level covariates is provided in the Appendix within Figure
7. Unfortunately this attempt failed for 5 regions, which were left with uninformative
weights ŵij = 1/ni. Although these estimates do not incorporate auxiliary information,
recall from Equation (3) that the corresponding estimates are reduced to f̂(xij) + ûi and
thus still rely on the model-based estimates comprising information from other in-sample
areas.
A comparison between the maps from direct estimates in Figure 3 and estimates based on
MERFagg from Figure 4 indicates that results formMERFagg appear to be more balanced
and overall no major differences regarding changes in regional patterns of opportunity cost
of care work are observable. Figure 5 sorts areas by increasing survey sample sizes and
thus allows for a more precise discussion on peculiarities of point estimates for area-level
means of monthly opportunity cost for the 96 RPRs. Estimates from the BHF method
are produced form the R-package sae (Molina & Marhuenda, 2015). Although, the raw
comparison of point estimates only allows for limited findings regarding the quality of
methods, we report the mitigation of two outlier-driven direct estimates. Compared to
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the direct estimates, as well as the estimates from the BHF, the MERFagg produces
relatively lower values although the estimates track patterns of high- and low levels with
increasing survey sampling size.
As already discussed, direct estimates suffer from relatively low accuracy measured by
their respective CVs. Figure 6 juxtaposes CVs for direct estimates, the BHF, and our
proposed method of MERFagg to contextualize the performance of point estimates from
Figure 5. We observe that CVs forMERFagg are on average smaller compared to CVs from
direct estimates as well as the BHF. According to the boxplots in Figure 6, model-based
estimates produce more accurate results indicated by lower CVs than direct estimates.
MERFagg shows the lowest CVs compared to the other methods in mean and median-
terms. Two areas can be considered as outliers reporting CVs over 0.3. For one of these
two regions, the calculation of weights failed. The MERFagg estimates improve the direct
estimates: Only 15 areas from 96 do not meet the required threshold of 20%. As expected,
especially for areas that are unreliable due to low sample sizes, model-based estimates
improve the accuracy. In turn, we observe that the direct estimates are relatively accurate
for areas with high sample sizes. Compared to other model-based SAE methods, survey
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between direct, BHFand MERFagg. The red line marks the
20%-criterion for defining reliable estimates by Eurostat (2019).

weights are not directly used in the model-fitting for MERFagg. Although it is generally
possible to incorporate survey weights in the importance sampling within a forest, we
maintain that the efficient use of survey weights with MERFs for the estimation of area-
level indicators requires further research which would exceed the scope of this paper.
Overall, all RPRs throughout Germany report comparable levels of average individual
monthly opportunity cost of care work. Nevertheless, a detailed inspection of Figure 4
reveals a small cluster of lower values in the North-East of Germany. From a causal per-
spective, the explanation of such patterns appears to be difficult and not effective. Wage
and individual opportunity cost directly relate while time spent for care work negatively
affects opportunity cost. Thus, it is not observable whether the effect is driven by dif-
ferences in average income or increased time-allocation for care work or both. On the
other hand, the concept allows us to uncover and map the value of unpaid care work on
a sub-regional-level in Germany.
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6 Conclusion

In this paper, we provide a coherent framework enabling the use of RFs for SAE under
limited auxiliary data. Our approach meets modern requirements of SAE, including the
robustness against model-failure and aspects of data-driven model-selection within the
existing methodological framework of SAE. We introduce a semi-parametric unit-level
mixed model, treating LMM-based SAE methods, such as the BHF and the EBP, as spe-
cial cases. Furthermore, we discuss the MERF procedure (Hajjem et al., 2014) and its
application to SAE as introduced by Krennmair & Schmid (2022). We address the chal-
lenging task of incorporating aggregated census-level auxiliary information for MERFs
and propose the use of calibration weights based on a profile EL optimization problem.
We deal with potential issues of numerical instabilities of the EL approach and propose a
best practice strategy for the application of our proposed estimator MERFagg for SAE.
The proposed point estimator for area-level means is complemented by a non-parametric
MSE-bootstrap-scheme. We evaluate the performance of point and MSE estimates com-
pared to traditional SAE methods by a model-based simulation that reflects properties
of real data (e.g., skewness). From these results, we conclude that our approach outper-
forms traditional methods in the existence of non-linear interactions between covariates
and demonstrates robustness against distributional violations of normality for the ran-
dom effects and for the unit-level error terms. Moreover, we observe that the inclusion
of aggregated information through calibration weights based on EL works reliably. Re-
garding the performance of our MSE-bootstrap scheme, we observe moderate levels of
overestimation and report authentic tracking behaviour between estimated and empirical
MSEs. We focus on a distinctive SAE example, where we study the average individual
opportunity cost of care work for Germany RPRs. Overall, we provide an illustrative
example on how to use our data-driven best practice strategy on MERFs in the context of
limited auxiliary data. Comparing direct to model-based results, we show that differences
between German RPRs are small and balanced. Nevertheless, we allocate a small cluster
of lower levels of average individual opportunity cost of care work in the North-Eastern
part of Germany.
From an empirical perspective, we face limitations that directly motivate further research.
Firstly, we only calculate the opportunity cost of the working population and neglect
care work done by people who already left the labour market due to care work issues.
Despite its long tradition in economics, the basic concept of opportunity cost (treating
the shadow value of care work equivalently to hourly wage from labour) faces drawbacks.
Different models from a health and labour economic perspective (e.g., Oliva-Moreno et
al. (2019)) can be integrated into our approach. Nevertheless, given the data and our
initial aim to provide a general methodology for regional mapping of care work specific
regional differences, we consider the hourly wage as a first reasonable approximation to
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the unobservable “real” shadow price.
We motivate two major dimensions for further research, including theoretical work and
aspects of generalizations. From a theoretical perspective, further research is needed
to investigate the construction of a partial-analytical MSE for area-level means or the
construction of an asymptotic MSE estimator. From a statistical perspective, an in-depth
analysis regarding the effects of incorporating survey weights into RFs and particularly
MERFs under aggregated covariate data is needed for point and uncertainty estimates,
as this would clearly exceed the scope of the present paper. Our approach shares the
EL-calibration-argument with Li et al. (2019), however, saves on the computationally
intensive procedure of a smearing step (Duan, 1983) without drawbacks on the predictive
performance, because no transformations and corresponding bias exists. Nevertheless,
we maintain that pairing our approach with a smearing argument allows for a more
general methodology and subsequently for the estimation of indicators such as quantiles
(Chambers & Dunstan, 1986). Although, we will leave a detailed discussion of this idea to
further research, a short outline of the argument can be found in the Appendix 7.2. Apart
from generalizations to quantiles, the approach of this paper is generalizable to model
(complex) spatial correlations. Additionally, a generalization towards binary or count
data is possible and left to further research. The semi-parametric composite formulation
of Model (1) allows for f to adapt any functional form regarding the estimation of the
conditional mean of yij given xij and technically transfers to other machine learning
methods, such as gradient-boosted trees or support vector machines.
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7 Appendix

7.1 Additional Information on the Application (Section 5)

Table 4: Auxiliary variables on personal and socio-economic background and their variable
importance based on the trained RF f̂ .

Covariates Variable importance

Age in years 30715147.623
Number of persons living in household 17109846.300
Position in Household: Child 7519805.884
Sex 4031803.086
Employment status: civil servants 3704520.439
Employment status: employed without 3078656.890

national insurance (e.g. mini-jobber)
Tenant or owner 2632970.858
Position in Household: single parent 2500261.812
Migration background: direct 2453187.125
Position in Household: living alone 1380917.681
Position in Household: marriage-like 1341933.482
Migration background: indirect 1207604.491
Grouped nationality: European Union (excluding Germany) 697919.972
Grouped nationality: remaining European countries 468653.092
Grouped nationality: Asia 367207.174
Grouped nationality: North America 224042.331
Grouped nationality: Australia 45084.788
Grouped nationality: Africa 10109.844
Grouped nationality: South America 5150.957
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7.2 Extension towards the Estimation of Quantiles

Smearing Approach and Estimation of Means: The smearing argument form Duan
(1983) could be optionally inserted in Equation (3) to estimate mean values

µ̂MERFagg Smearing
i =

ni∑
j=1

[
ŵij

1

R

R∑
r=1

(f(xij) + ûi + e∗ir)

]
, (5)

where R is a suitably large number of smearing residuals and e∗ir are OOB model residuals:

e∗ij = yij − f(xij)
OOB − ûi.

Note that the formulation of Equation (5) coincidences with the estimator of Li et al.
(2019), if we choose f = xᵀ

ijβ and draw e∗r from N(0, σ̂2
e). Additionally, they apply a

data-driven transformation on f(xij) + ûi + e∗ir.
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Extension towards Quantile Estimation: The combination of a smearing argument
(Duan, 1983) with a model of a finite-population CDF of y enables the estimation of area-
specific CDFs for yi. Chambers & Dunstan (1986) develop a model-consistent estimator
for a finite-population CDF from survey data and provide asymptotic results under LMMs.
Tzavidis et al. (2010) propose the use of the CDF method within a general unit-level SAE
framework to produce estimates of means and quantiles using robust methods. In the
case of RF, it holds that the predicted value of a non-sampled individual observation in
area i is given by µ̂ij = f̂(xij) + ûi, which expresses its expected value conditional on
area i. We propose to obtain an estimator of the area-level CDF F̂ ∗i (t) using existing
survey information modifying the CDF method, by substituting µ̂ij = f̂(xij) + ûi and
incorporating census-level information for upsampled predictions via weights ŵij. The
respective estimator for the area-level CDF F̂ ∗i (t) is summarized as:

F̂ ∗i (t) = N−1i

[∑
j∈si

I(yij ≤ t) +R−1
∑
j∈si

R∑
r=1

niŵijI
(
f̂(xij) + ûi + e∗ir ≤ t

)]
, (6)

where e∗ij = yij − f(xij)
OOB − ûi.

The area-level quantile q(i, φ) of φ ∈ [0, 1] can straight forwardly be calculated by:

q̂i(φ) = F̂ ∗−1i (φ).
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