
UNIT-I 

 

AXIOMATIC STUDY OF REAL NUMBERS 

 

We could use the axioms of set theory as the foundation for real analysis. To carry this out, 

we would start by defining the set of natural numbers 

N = {1, 2, 3, . . .} and ω = {0} ∪ N = {0, 1, 2, 3, . . .}, 

together with the usual operations of addition and multiplication. We could then define an 

equivalence relation ∼ on the Cartesian product ω × ω by 

(m, n) ∼ (q, r) ⇔ m + r = q + n. 

The set of integers Z is then the set of equivalence classes. If [m, n] is the equivalence class of 

the pair (m, n) ∈ N × N, then 

Z = {. . . , −2 = [0, 2], −1 = [0, 1], 0 = [0, 0], 1 = [1, 0], 2 = [2, 0], . . .}. 

We then define the usual addition and multiplication on Z and show that it satisfies the familiar 

properties. Finally, we define an equivalence relation ∼ on the Cartesian product Z × (Z − {0}) by 

(m, n) ∼ (q, r) ⇔ mr = qn. 

We would think of the equivalence class [m, n] are representing the fraction m/n as a rational 

number. We would then establish as theorems all the rules you learned for arithmetic with 

rational numbers in grade school. The process would be long and time-consuming, and you 

might wonder whether it isn’t a bit pedantic to carry this out with so much rigor. But the point to 

understand is that all of the familiar rules of arithmetic for rational numbers can in fact be 

established in this way. 

The last stage is developing the real numbers R, which can be thought of as limits of 

sequences of rational numbers. For example π is the limit of the sequence 

(3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . . . , 3.14159265358979, . . .). 



It is precisely the notion of defining the limit of such a sequence which is the major difficulty in 

developing real analysis. It would take a long time just to define the real numbers in this manner. 

So for a first treatment of real analysis, most authors take a shortcut, and formulate a collection 

of axioms which characterize the real numbers. One assumes these axioms as the starting point of 

real analysis, rather than just the axioms of set theory. (Since one does want to use the properties 

of sets in discussing real numbers, a full formal development of analysis in this shortened form 

would require both the axioms of set theory and the axioms of real numbers. On the other hand, 

many authors, such as [1] just use set theory as a basic language whose basic properties are 

intuitively clear; this is more or less the way mathematicians thought about set theory prior to its 

axiomatization.) 

 

The axioms for real numbers fall into three groups, the axioms for fields, the order axioms and 

the completeness axiom. 

 

1 Field axioms 

Definition. A field is a set F together with two operations (functions) 

   f : F × F → F, f (x, y) = x + y  

 and  g : F × F → F,  g(x, y) = xy, 

called addition and multiplication, respectively, which satisfy the following axioms: 

• F1. addition is commutative: x + y = y + x, for all x, y ∈ F . 

• F2. addition is associative: (x + y) + z = x + (y + z), for all x, y, z ∈ F . 

• F3. existence of additive identity: there is a unique element 0 ∈ F such that x + 0 = x, for all x ∈ 

F . 

• F4. existence of additive inverses: if x ∈ F , there is a unique element 

−x ∈ F such that x + (−x) = 0. 

• F5. multiplication is commutative: xy = yx, for all x, y ∈ F . 

• F6. multiplication is associative: (xy)z = x(yz), for all x, y, z ∈ F . 
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• F7. existence of multiplicative identity: there is a unique element 1 ∈ F 

such that 1 ƒ= 0 and x1 = x, for all x ∈ F . 

• F8. existence of multiplicative inverses: if x ∈ F and x ƒ= 0, there is a unique element (1/x) ∈ F 

such that x · (1/x) = 1. 

• F9. distributivity: x(y + z) = xy + xz, for all x, y, z ∈ F . 

 

Note the similarity between axioms F1-F4 and axioms F5-F8. In the language of algebra, axioms 

F1-F4 state that F with the addition operation f is an abelian group. (The group axioms are 

studied further in the first part of abstract algebra, which is devoted to group theory.)  Axioms 

F5-F8 state that F 0 with the 

multiplication operation g is also an abelian group. Axiom F9 ties the two field operations 

together. 

Most important examples. The key examples of fields are the set of rational numbers Q, the set 

of real numbers R and the set of complex numbers C, in all cases taking f and g to be the usual 

addition and multiplication operations. On the other hand, the set of integers Z is NOT a field, 

because integers do not always have multiplicative inverses. 

Other useful examples. Another example is the field Z/pZ, where p is a prime ≥ 2, which 

consists of the elements  1......,,2,1,0 −p . In this case, we define addition or multiplication by 

first forming the sum or product in the usual sense and then taking the remainder after division 

by p, so as to arrive back in the set  1......,,2,1,0 −p . This is often referred to as mod p addition 

and multiplication. Thus for example, 

Z/5Z = {0, 1, 2, 3, 4} 

and within Z/5Z, 

3 + 4 = 7 mod 5  = 2, 3 · 4 = 12 mod 5 = 2. 

On the other hand, if n is not a prime, then Z/nZ with mod n addition and multiplication is NOT 

a field. Indeed, in Z/4Z, 

2 + 2 = 4 mod 4 = 0, 



− 

so 2 does not have a multiplicative inverse in Z/4Z, contradicting Axiom F8. 

 

Starting with the field axioms, one can prove that the usual rules for addition and multiplication 

hold. As long as we are within ANY field, we can then use those rules with perfect confidence. 

For example, we could begin by giving a complete proof of the cancellation law: 

Proposition. If F is a field and x, y, z ∈ F , then 

x + z = y + z ⇒ x = y. 

Proof: Suppose that x + z = y + z. Let ( z) be an additive inverse to z, which exists by Axiom F4. 

Then 

(x + z) + (−z) = (y + z) + (−z). 

By associativity of addition (Axiom F2), 

x + (z + (−z)) = y + (z + (−z)). 

Then by Axiom F4, x + 0 = y + 0 and by Axiom F3, x = y. 

Proposition. If F is a field and x ∈ F , then x · 0 = 0. 

Proof:  By Axiom F3, x ·0 = x ·(0+0).  By distributivity (Axiom F9), x ·(0+0) = 

x · 0 + x · 0. By Axiom F3 again, 

0 + x · 0 = x · 0 + x · 0, 

and by Axiom F1, 

       x · 0 + 0 = x · 0 + x · 0. 

Hence 0 = x · 0 by the preceding proposition. 
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