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Abstract 

A brain template provides a standard space for statistical analysis of brain structure and 

function. For decades, the T1- and T2-weighted brain templates have been widely used for 

brain grey matter anatomical and functional analysis. However, T1- and T2-weighted templates 

provide very limited information about the axonal organization within the white matter. Recent 

advances in Diffusion MRI have enabled the detailed modelling of the axonal fibre orientation 

distribution (FOD) in white matter. Therefore, building a FOD template is essential for more 

robust white matter anatomy related analysis; however, it is important that this template aligns 

well with the cortical and subcortical structures. From such a FOD template, a tractography 

template can be also generated by fibre tracking algorithms, which can be used for subsequent 

applications, such as to perform the joint structural and functional analysis while ensuring 

rigorous fibre-to-fibre correspondence. In this paper, we explore the potential of generating the 

FOD template based on multimodal registration, in order to constrain the tempalte unbiased to 
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both white and grey matter. We combine the information from T1-weighted, T2-weighted and 

Diffusion MRI to generate a coherent transformation for FOD registration and template 

generation. Our FOD template preserves the structural details at the white-grey matter 

boundary. To illustrate the benefit of this new approach, the resulting tractography template 

was used for joint structural-functional connectivity analysis. 

Keywords: Diffusion MRI, fiber orientation distribution template, tractogram template.  

1. Introduction 

Diffusion MRI (dMRI) has attracted increasing attention in fundamental neuroscience(Assaf 

et al., 2019) as well as mental health research(Alexander et al., 2019; Calamante, 2019). For 

example, both the Human Connectome Project (HCP) (Sotiropoulos et al., 2013) and UK 

Biobank (Alfaro-Almagro et al., 2018) employ multi-shell dMRI as an essential imaging 

modality to depict the wiring of the human brain. Different from T1-weighted (T1w) and T2-

weighted (T2w) MRI, which mostly capture anatomical details in the cerebral cortex and 

subcortical nucleus, dMRI provides rich information about the organization (Zeng et al., 2022) 

in white matter. The dMRI has provided many effective metrics to study whiter matter; for 

example, tensor-based scalar metrics, such as fractional anisotropy (FA) and mean diffusivity 

(MD)(Alexander et al., 2007), have been widely used for white matter characterization. More 

advanced modelling, such as the fibre orientation distribution (FOD) can be estimated with the 

sophisticated constraint spherical deconvolution (CSD) (Tournier et al., 2007)technique. 

Particularly, using multi-shell and high-angular resolution imaging protocols, CSD can better 

resolve crossing-fibre configurations in white matter, as well as observe more details of the 

neurite distribution in the cortical grey matter(Calamante et al., 2018). With the information 

from FODs, axonal streamlines with high angular resolution can be tracked with various 

algorithms(Calamante, 2019; Smith et al., 2020, 2012) and structural connectome(Yeh et al., 
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2019) can be constructed consequently. Recently, the “Fixel”( representing fibre population 

within a voxel) based analysis(Dhollander et al., 2021; Raffelt et al., 2017a) has been developed 

to quantitatively compare FODs in each voxel, and their derived features, such as apparent 

fibre density(Raffelt et al., 2017a) and fibre complexity(Dhollander et al., 2021; Raffelt et al., 

2017a; Riffert et al., 2014), provide new means to quantitatively characterize the white matter. 

In neuroimaging studies, a template space is essential for group-wise statistics and inference. 

A brain template is usually generated by averaging the spatially normalized brains from a 

representative population. Using it as a standard space, individual brains can be registered to 

the template for inter-subject comparison and group-wise statistical inference. For example, 

the Montreal Neurological Institute (MNI) T1w and T2w templates have served as the 

reference space for countless quantitative grey matter analyses (Ashburner and Friston, 2000) 

and functional analyses(Smith et al., 2004). A number of brain atlases are also defined in MNI 

space. Derived from diffusion tensor imaging, the MNI FA template has been used to guide 

white matter analysis(Evans et al., 2012), given its details in white matter. As the white matter 

has attracted increasing attention in neuroscience (Bethlehem et al., 2022; Zhu et al., 2013) and 

disease research, such as multiple sclerosis(Rovaris et al., 2005), Schizophrenia(Klauser et al., 

2017; Lv et al., 2020) and Alzheimer’s Disease(Zhang et al., 2009), more quantitative and 

statistical analysis is desired on the complex FOD in white matter. A FOD template provides a 

reference space for such analysis.  

The first FOD template was generated with the symmetric diffeomorphic registration by Rafelt 

et al (Raffelt et al., 2011). The template was generated solely with dMRI to minimize the inter-

individual mean squared difference of FODs. With this FOD template as a reference, the Fixel 

Based Analysis (FBA) framework (Raffelt et al., 2017a, 2017b) was developed for group-wise 

inference. However, one limitation of this template is that the specificity of FODs at the vicinity 

of the grey-white matter boundary (peripheral white matter) is relatively low compared with 
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that in the core white matter (Fig.2d). In these peripheral regions, however, the traditional 

registration approach based on T1w and T2w contrast provides better details for ensuring 

spatial specificity. A multi-modal approach for template construction therefore can offer 

substantial benefits(Greene et al., 2018; Uus et al., 2021). 

In this paper, we propose to leverage the complementary information captured by T1w, T2w, 

and dMRI, exploring the classical tensor-based(Alexander et al., 2007) and the Fixel-based 

metrics(Dhollander et al., 2021), and use multimodal image registration(Avants et al., 2007) to 

generate a young adult brain template space, where the individual FODs are transformed into 

and averaged to be the FOD template. The HCP (Glasser et al., 2013) dataset is employed to 

guarantee the high quality of the template. As this template combines multimodal information, 

it contains good details for ensuring proper correspondence of both major white matter fibre 

bundles and grey matter regions, thus providing a tissue-unbiased FOD template. Anatomical 

constrained probabilistic fibre tracking(Smith et al., 2012) can be performed on this template 

to compute a tractogram template, and Tract-Seg (Wasserthal et al., 2018) can be performed to 

automatically segment the template into white matter bundles. As an illustration of the 

application of the new templates, the tractogram template is used to perform fibre-centred 

functional connectivity analysis(Lv et al., 2010), and group-wise functional connectivity is 

shown to be reproducible and stable.  

2. Materials and Methods 

2.1 Dataset  

The HCP dataset(Glasser et al., 2013) was employed in this study, as it is among the best 

publicly available dMRI datasets currently. The acquisition parameters of the data are detailed 

below Please refer to (Glasser et al., 2013) for further details of the HCP acquisition protocol. 
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dMRI was acquired using a spin-echo diffusion-weighted EPI sequence, with TR=5520ms, 

TE=89.5ms. FOV= 210x180mm2, matrix= 168x144, 111 slices, 1.25 mm isotropic resolution. 

Diffusion weighting consisted of 3 shells of b=1000, 2000, and 3000 s/mm2 and 90 directions 

per shell. Multiple b0 scans were collected throughout. A multiband factor of 3 was used to 

accelerate the acquisition(Glasser et al., 2013). Images were acquired using both phase-

encoding polarities, for robust correction of susceptibility distortions.  

HCP data also included high-quality T1w and T2w anatomical scans. The T1w data was 

collected using a 3D MPRAGE sequence, with TR=2.4s, TE=2.14ms, inversion time = 1s, flip 

angle of 8 degrees, FOV=224x224 mm2, 0.7 mm isotropic resolution. T2w data were collected 

using a 3D T2 SPACE sequence, with TR=3.3s TE=565ms, FOV=224x224 mm2, 0.7 mm 

isotropic resolution.  

Resting-state fMRI (rfMRI) is another key imaging modality included in HCP for functional 

connectivity analysis. The rfMRI was collected using Gradient-echo EPI, with TR=0.72s, 

TE=33.1ms, flip angle of 52 degrees, FOV= 208x208 mm2, 2 mm isotropic resolution. A 

multiband factor of 8 was used to accelerate the scan. During the 14.5 minutes scan, 1200 

volumes were collected.  

Around 1200 young adults were recruited for the HCP project. In this study, we randomly 

selected 50 subjects (aged between 22 and 35, gender-balanced) for building the template. And 

we further randomly selected 300 participants for the fibre-centred functional connectivity 

analysis (see details in section 2.3). 

2.2 Data processing 

The minimally pre-processed data were downloaded from the HCP database, and we have 

performed additional processing steps of the dMRI data with the MRtrix3(Tournier et al., 2019) 

software. After performing the bias field correction(Tournier et al., 2019), the dMRI data were 
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resampled to 1 mm to increase the quality of FOD. Two different dMRI models were 

considered for the template building. First, we calculated the tensor model (Alexander et al., 

2007) and subsequently computed the FA and MD maps. Second, we used CSD (Tournier et 

al., 2007) to estimate the FODs. The tissue response function was estimated for each individual 

using the ‘Dhollander’ algorithm(Tournier et al., 2019) and then averaged over the 50 subjects 

to compute a group average response function. Multi-shell multi-tissue CSD (Jeurissen et al., 

2014)was used to compute the FOD, accounting for partial volume effects. The intensity of 

white mater FOD was then normalized using the method in(Tournier et al., 2019). We used the 

first volume of the FOD (i.e., the l=0 term of the spherical harmonic expansion) to represent 

the total apparent fibre density (AFDtotal) (Raffelt et al., 2012b). And the FOD is further 

converted into Fixels, where the Fixel-based (Dhollander et al., 2021)feature ‘fibre complexity’ 

(Riffert et al., 2014) (CX) was estimated, which reflect the heterogeneity of fibre bundles. In 

summary, two parameters were computed from the tensor model (FA and MD), and two from 

the CSD model (CX and AFDtotal), which were used for the construction of the template.  

The minimally pre-processed T1w and T2w images were downsampled to 1 mm isotropic in 

order to match the resolution of the dMRI. Additional pre-processing steps include spatial 

smoothing with FWHM=6mm and 0.01~0.1HZ temporal bandpass filtering were applied to the 

minimally preprocessed resting-state fMRI data of HCP. 

2.3 Template Generation Method 

We employed the multivariate symmetric group-wise normalization (SyGN) (Avants et al., 

2010, 2007) method to generate multimodal templates from the 50 HCP subjects. The SyGN 

robustly searches for a common space where each subject is transformed, and a template is 

generated by minimizing its difference with each subject in the group(Avants et al., 2010). The 

template generation can be summarized in the following steps(Avants et al., 2010): 
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1) Linearly align all the subjects and average them to initialize the template. 

2) Pairwise normalisation between each individual and template with the symmetric 

normalization method(SyN)(Avants and Gee, 2004). 

3) Average the registered individuals to update the template. 

4) Go to 2) and repeat until the distance between the individuals and the template is 

minimized. 

In our approach, we have used cross-correlation to define the energy function(Avants et al., 

2008) for the optimization and the method converged after four iterations. The multivariate 

strategy (Avants et al., 2007)was used to combine the complementary information from the 

multiple imaging modalities and optimize the spatial normalization(Avants et al., 2007) and 

template optimization. In this paper, we have applied equal weights among different modalities. 

The following three approaches have been designed to generate the multimodal brain templates 

as shown in Fig.1a-c. Specifically, we used T1w, T2w images and feature images derived from 

dMRI as multi-channels for registration. The optimized transformation is used to warp the FOD 

into template space. Following reorientation(Raffelt et al., 2012a), the FOD images are 

averaged across subjects to generate the FOD template. Three different multimodal methods 

were designed in this paper. As illustrated in Fig.1, in Method (a), we used only T1 and T2 

images for template generation. This method is designed to test whether the registration based 

on the structural image alone can provide good FOD alignment. While in Method (b) we added 

tensor-based dMRI features of MD and FA. These well-recognized tensor metrics provide a 

better characterization of the white matter in healthy brains and diseased brains. In Method (c), 

the FOD-based features of AFDtotal and CX were combined with T1w and T2w to improve the 

template. AFDtotal quantitatively measures the total neurite density within a voxel, while CX 

measures the heterogeneity of the fibres; they, therefore, also provide complementary 

information. These three templates are compared with the single-modal FOD-based Symmetric 
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Diffeomorphic registration method(Raffelt et al., 2011) (Fig.1d), which is used as a baseline 

method given its widespread use for FBA and other dMRI analyses(Raffelt et al., 2011). 

 

Fig.1. Method and Experiment design. (a-c) illustrates the multimodal registration and template 

generation. The transformation generated with multimodal images is applied to the FOD data, which 

are then averaged to generate each FOD template. (d) illustrates the population FOD template 

generation based on single modality FOD-based registration. 

2.4 Evaluation 

To evaluate the FOD templates, we calculated the average individual-template difference with 

two metrics: 1) root-mean-square error (RMSE) of spherical harmonics(Raffelt et al., 2011); 
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and 2) Angular correlation coefficient (ACC) (Anderson, 2005). The two metrics reflect the 

intensity and angular alignment between individuals and the template, respectively. 

We define 𝑢𝑙𝑚  and 𝑣𝑙𝑚  as the coefficients of the spherical harmonic expansion of the 

individual and the template FOD, respectively, at the corresponding voxel. 𝑙 and 𝑚 represent 

the degree and order of a spherical harmonic function. The RMSE of the FOD is defined as: 

                         𝑅𝑀𝑆𝐸 = √
∑ ∑ (𝑢𝑙𝑚−𝑣𝑙𝑚)2𝑙

𝑚=−𝑙
8
𝑙=0

∑ ∑ 1𝑙
𝑚=−𝑙

8
𝑙=0

                                                                  (1) 

And ACC is defined as: 

𝐴𝐶𝐶 =
∑ ∑ 𝑢𝑙𝑚𝑣𝑙𝑚

∗𝑙
𝑚=−𝑙

8
𝑙=2

√(∑ ∑ |𝑢𝑙𝑚|2𝑙
𝑚=−𝑙

8
𝑙=2 )   ∙  √(∑ ∑ |𝑣𝑙𝑚|2𝑙

𝑚=−𝑙
8
𝑙=2 )

 
(2) 

The evaluation was performed at two different scales, i.e., at the overall whole-brain white 

matter level and at the tract segmentation level. At the whole-brain white matter level, we 

averaged the individual-template difference of FOD of all the voxels within three brain masks 

defined based on various levels of AFDtotal. Specifically, the whole brain white matter mask is 

generated by thresholding with AFDtotal>0.1, the core white matter mask is defined with high 

total AFD (AFDtotal>0.2), and the peripheral white matter mask was defined with low total 

AFD (0.2>AFDtotal >0.1) – see Fig.5. Within the three masks, we calculated the RMSE and 

ACC between the individual and template.  

At the tract segmentation level, we first automatically segmented the whole brain into 72 tract 

bundles using the TractSeg toolbox(Wasserthal et al., 2018). The bundle masks and the bundle 

ending masks (Wasserthal et al., 2018) were compared between individuals and the template, 

and their agreement is measured by the Intersection over the Union (IoU) metric.  

2.4 Generating the tractogram template with Anatomical Constrained Tractography 
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The multimodal template pipeline generates a set of templates in the input modality. As the 

T1w template generated with our method has the essential detail and good contrast between 

tissue types (see Fig.7a), we used Freesurfer(Fischl, 2012) to generate the tissue interfaces. In 

addition, the template tissue segments generated with the 5-tissue segmentation method (Smith 

et al., 2012; Tournier et al., 2019) using the T1w template can be used to guide the fibre tracking 

in the template, in a similar approach as it is used at the individual subject level fibre-tracking. 

To this end, we used the Anatomically Constrained Tractography (ACT) (Smith et al., 2012) 

framework using iFOD2 probabilistic fibre-tracking (Smith et al., 2012; Tournier et al., 2019)to 

generate the tractography template. The fibre tracking parameters were as follows: track 

number= 90,000, minimal length of 5mm and maximal length of 300mm. The other parameters 

are set with the default values provided by MRtrix3. 

2.5 Calculating the fibre-centred functional connectivity 

The fMRI data of HCP is warped to our template space to align with our tractography template. 

The image coordinates of the two endpoints were calculated (Lv et al., 2011, 2010)for each 

streamline of the tractogram template, and we then extracted the fMRI time series from those 

locations for each individual. The Pearson’s correlation of the fMRI signals at the two ends 

was used to represent the functional connectivity associated with the streamline(Lv et al., 2011, 

2010; Zhu et al., 2014).  

3. Results 

We present below an evaluation of the proposed FOD templates in comparison with the 

existing baseline method, as well as demonstrate a possible application with the unbiased 

template, namely fibre-centred functional connectivity using the tractography template. 

3.1 Whole-brain FOD Templates 
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With the four experimental settings introduced in Section 2.3, we have generated four sets of 

FOD templates. We qualitatively show a cross-section of the four FOD templates in Fig.2, 

overlayed on the AFDtotal (i.e. 𝑙0  term of the FOD). FOD templates generated with the 

multimodal methods (Fig.2a-c) clearly preserve the gyrus and sulcus organisation and provide 

much higher spatial specificity near the white-grey-matter boundaries than the FOD-based 

template (Fig.2d). As can be observed, the multimodal methods also perform similarly well at 

crossing fibre zones. We further visualized the AFDtotal from multiple perspectives in Fig.3. It 

is evident that the multimodal methods deliver sharp contrast (see the first 3 rows in Fig.3) at 

the white-grey-matter boundaries, in the cerebellum, in subcortical structures (such as thalamus 

and hippocampus), and preserve the cortical folding patterns in detail (see the volume rendering 

at the fourth row of Fig.3). 

 

Fig.2 FOD templates generated from 50 HCP subjects with the 4 strategies described in Fig. 1. The 

FOD butterfly patterns are overlaid on the AFDtotal map, with the colours indicating the local fibre 

orientation (red: left-right; green: anterior-posterior; blue: inferior-superior). The white boxes highlight 

zoomed areas of the FODs with crossing-fibres and near-cortex white matter. 
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Fig.3. Visualization of AFDtotal map from each of the four FOD templates. The rows represent three 

viewing perspectives and the volume rendering. The result of the traditional FOD-based registration, 

which is shown in (d), has blurry white-grey-matter boundaries, and ambiguous folding patterns. In 

contrast, the results of our multimodal methods in (a-c) are much sharper. 

The two individual-template difference metrics (RMSE and ACC) were averaged across 50 

subjects and visualized in Fig.4. Qualitatively, we can see that our method shows lower RMSE 

and higher ACC near the grey matter regions compared with the FOD-based registration 

method. For each subject, we further calculated the overall individual-template difference by 

averaging each metric across voxels within the brain masks defined in Section 2.3. The 

averaged differences and the standard deviation based on the statistics of 50 subjects are plotted 
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in Fig.5 for the whole brain white matter, the core white matter (with high AFDtotal), and the 

peripheral white matter (with low AFDtotal). As shown in Fig.5b, within the whole brain white 

matter mask, both the T1+T2+MD+FA and the T1+T2+AFDtotal+CX methods show the lowest 

RMSE of FOD and highest ACC (p<0.05, FDR), while the T1+T2+MD+FA method performs 

slightly better than T1+T2 + AFDtotal+CX in terms of ACC. At the core white matter regions 

(Fig.5c), both the T1+T2+MD+FA and the T1+T2+AFDtotal+CX methods show comparable 

RMSE with FOD registration and the T1+T2+MD+FA show slightly better (p<0.05, FDR) 

ACC than the FOD-based registration. The largest difference takes place at the peripheral white 

matter(Fig.5d), where both the T1+T2+MD+FA and the T1+T2+AFDtotal+CX methods show 

much lower RMSE (p<0.05, FDR) and much higher ACC (p<0.05, FDR) compared with FOD-

based registration. This indicates that multimodal registration is capable of generating a tissue 

unbiased FOD template. As a reference, the T1+T2 method showed relatively good 

performance at the peripheral white matter but poor performance at the core white matter 

regions, which is reasonable because both T1w and T2w images provide limited detail in the 

white matter. 
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Fig.4. The average individual-template difference calculated by averaging the metrics across subjects. 

Each row shows the averaged voxel-wise measurement across 50 subjects. The lower RMSE of FOD 

indicates better amplitude agreement, while the higher angular correlation indicates better angular 

alignment. 

 

Fig.5. The individual-template difference calculated by averaging each metric across all the voxels 

within different white matter(WM) masks (a). The error bar plots show the mean and standard deviation 

of the 50 subjects. The individual template-difference are compared between the four methods within 

the whole brain WM mask (b), core WM mask(c), i.e. with high total AFD (AFDtotal>0.2), and peripheral 

WM mask(d)  with low total AFD (0.2>AFDtotal >0.1). The first row shows the difference in terms of 

the average RMSE of FOD, while the second row shows the difference in terms of average ACC. 

Similar to Fig.4, The lower overall RMSE of FOD indicates better amplitude agreement, and the higher 

ACC indicates better angular alignment. 

3.1 Comparison of the Tract Segmentation 

The Tractseg method automatically produces 72 white matter tract segmentation, which has 

been widely used to evaluate the major fibre bundles in the brain. Fig.6a shows 2 example fibre 
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bundles: the right Corticospinal tract (CST) and right Inferior occipitofrontal fascicle (IFO). 

Each bundles’ spatial geometry can be characterized by two segmentation masks, the bundle 

segmentation and the ending segmentation. We have applied Tract-Seg separately on the 4 

FOD templates, as well as on the corresponding individual FODs registered in each template 

space. The IoU index (for which higher values indicate better performance) was used to 

measure the spatial individual-template agreement of the 72 bundle and 144 ending 

segmentations. The histogram of the bundle(Wasserthal et al., 2018) IoU and the ending 

segmentation(Wasserthal et al., 2018) IoU are shown in Fig. 6b and 6c, respectively. And the 

outline of each histogram (with colour correspondence) shows the fitting of the distribution. 

Overall, both the T1+T2+MD+FA and the T1+T2+AFDtotal+CX methods show the best 

agreement (high IoU) between individual and template on the 72 fibre bundles. 
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Fig.6. The histogram of IoU index of the tract segmentations between individual and templates. 

(a) Two examples of the 72 fibre bundles (right Corticospinal tract (CST) and right Inferior 

occipitofrontal fascicle (IFO)) generated by Tract-Seg. (b) The percentage histogram of IoU of 

bundle segmentation. (c) The percentage histogram of the IoU of the ending segmentations.  

3.2 Anatomical Constrained Tractography Template  
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Fig.7. (a) The T1 template generated from the T1+T2+MD+FA method. (b-e). The cortex, 

subcortex, white matter and CSF regions generated by the 5ttgen method within MRtrix based 

on the T1 template in (a). (f) The fibre ends of the template tractogram (h) overlayed onto the 

T1 template. (g) The white-gray matter interface constructed by Freesurfer using the T1 

template in (a). (h) The fibre tracks of the template tractogram generated by ACT method using 

the FOD template generated by the T1+T2+MD+FA method, displayed as a view from above, 

or as slices in three orientations (coronal, sagittal and axial). The colours in (h) indicate the 

local fibre orientation (red: left-right; green: anterior-posterior; blue: inferior-superior). 

 

Compared with the traditional FOD-based registration method, the multimodal methods in this 

paper also produce templates of each of the input modalities, including structural T1w and T2w 

templates. As shown in Fig.7a, we have visualized the T1w template generated by the 

T1+T2+MD+FA method. This template provides fine details in the cortical regions, subcortical 

regions and the white-gray-matter boundaries. Qualitatively, this template looks much finer 

than the MNI T1w template. As a result, we have successfully reconstructed the cortex surfaces 
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with fine anatomical detail, as shown in Fig.7g. Similarly, we can also generate the five tissue 

probability maps with the 5-tissue segmentation method(Tournier et al., 2019), corresponding 

to cortical gray matter, subcortical gray matter, white matter, cerebrospinal fluid, and abnormal 

tissue (which is not present in our dataset of healthy subjects). The results can be seen in Fig.7b-

e.  

With the five tissue maps generated, we also successfully performed fibre tracking using the 

Anatomically Constrained Tractography framework(Smith et al., 2012). The generated 

tractogram template is visualized in Fig.7h.  Qualitatively, the streamlines reflect the known 

white matter anatomy. Particularly, the template nicely characterises areas of crossing fibres. 

We have further mapped the fibre ending density and overlaid it on the T1w template. As 

shown in Fig.7f, the fibre ends densely distributed throughout the gray-white-matter 

boundaries. 

3.3 Fiber-Centred Functional Connectivity 

The tractogram template generated in section 3.2 has high specificity at the white-grey-matter 

boundaries and therefore provides a good substrate to calculate the fibre-centred functional 

connectivity(Lv et al., 2011, 2010) of each individual with their rsfMRI data warped to the 

template space. The derived functional connectivity reflects the strength of functional 

synchrony between the two fibre endpoints. We have colour coded the functional connectivity 

onto the streamlines for visualization. In these images, reddish (blueish) pathways indicate 

fibre bundles that connect gray matter regions with high (low) functional synchrony. To 

evaluate the reliability of the fibre-centred functional connectivity, we have randomly divided 

the 300 HCP subjects into 3 group, 100 subjects in each group without overlap. We have 

averaged fibre-centred functional connectivity within each group, and these results are 
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visualized in Fig.8. High consistency of functional connectivity (with spatial correlation of 

0.9939±0,0002, p<10-10) is seen across the average of three sets of 100 subjects(Fig.8).  

 

Fig.8. Fiber-centred functional connectivity results. The functional connectivity measured by 

the Pearson’s correlation of two endpoints of the streamline mapped (as colour) onto the 

streamline. The three columns are the average results from three sets of subjects (100 subjects 

each). The top row shows the results view from above; the bottom row shows coronal and axial 

sections. 

4. Discussion  

We have provided a new framework to build a white matter FOD template using multimodal 

MRI data. Multimodal registration allows combining the complementary information from the 

T1w and T2w (with high cortical and subcortical gray matter detail) and Diffusion MRI (with 

high white matter detail), and thus generate a tissue-unbiased template space. The FOD 

templates generated by combining T1w, T2w and Diffusion MRI features have shown high 

detail in both core white matter regions and peripheral white matter regions, even for 
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subcortical white matter where the traditional FOD-based template lacks specificity. The 

associated T1w and T2w templates, which are determined during the process of multimodal 

template construction, also provide very fine detail for the grey matter and grey-white-matter 

boundaries. We thus conclude that the approach proposed generates a robust tissue-unbiased 

FOD template for neuroscience applications.  

The conventional FOD template generated with the FOD-based registration(Raffelt et al., 2011)  

has shown very good specificity on core white matter regions but compromised specificity at 

the peripheral white matter and grey-white-matter boundaries. This has caused difficulties for 

joint grey and white matter analysis or joint structural and functional analysis, as traditional 

templates tend to favour one tissue type at the expense of the other. Therefore, the tissue-

unbiased FOD templates and the associated tractogram template generated in this paper has 

filled an important gap in the field. For example, with our tractogram template, fibre activation 

detection method proposed in (Lv et al., 2011) can be now evaluated at the group level.  

As shown in Fig.7, the multimodal T1w(T2w) template presents abundant details for tissue 

segmentation and surface reconstruction. In contrast, when we run the Freesurfer and 5-tissue 

segmentation on the widely used MNI T1w template, both methods fail to generate a result; 

this is likely because of the poor grey matter and white matter contrast and ambiguous white-

grey-matter boundaries in the MNI template. On the other end, the FOD template generated by 

solely FOD registration cannot provide a brain structure template for tissue segmentation. This 

stresses an advantage of the proposed multimodal template approach. Only with this advantage, 

the ACT method can be used to generate the tractogram template with nice alignment with the 

grey-white matter boundary. Consequently, our method provides new potential for joint grey-

white matter analysis and joint structure-function analysis. 
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One well-recognized challenge for neuroimage analysis is the lack of ground truth. This also 

applies to the building of brain templates. To evaluate the quality of the FOD template, we 

have proposed to use the strategy of individual-template difference. We believe it is a fair 

comparison so far in the field. For the fibre-centred functional connectivity, we have also cross-

validated the results across separated groups. The consistency across the groups has shown the 

strong reliability of the analysis. 

In this paper, we have explored only a limited number of combinations of diffusion MRI 

metrics to combine with T1w and T2w structural images for template generation. The results 

have been very promising. More importantly, we have provided a new framework for building 

tissue-unbiased FOD templates from multimodal MRI, which could be easily extended to 

incorporate alternative diffusion MRI metrics. 

The FOD template is generated by averaging the registered individual FODs. The fibre tracking 

algorithm can track the common tracks with the FOD template, but inevitably it may generate 

spurious fibres. We did not cover the validation and refinement of the tractography template. 

In our future work, we will explore the benefits of fibre filtering methods, such as spherical-

deconvolution informed filtering (SIFT)(Smith et al., 2013) and SIFT2(Smith et al., 2015) 

methods, for refinement of the tractogram template. 

The axonal fibres are the substrate of regional functional connectivity. More and more interest 

has been shown to the axonal connection informed the functional connectivity (Calamante, 

2017; Calamante et al., 2017, 2013; Lv et al., 2011, 2010).  In this paper, we have provided a 

new method to define fibre-centred functional connectivity, which reflects structural-informed 

functional synchrony(Calamante et al., 2013; Lv et al., 2010). With the tractogram template as 

a reference space, group-wise and cross-group analysis can be performed in the future, 

providing a new framework for investigating structural-functional properties in neuroscience 
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and clinical applications. Particularly, our template can be used to enhance the fixel-based 

analysis(Dhollander et al., 2021) at the gray-white matter boundaries and the peripheral white 

matter (close to gray matter) to detect anomaly. The tractogram template itself is a high-

resolution connectome(Mansour L et al., 2021), which reflects the commonality of the human 

brain. This is different from the traditional region-region connectome, but a fibre-centred 

connectome. As a reference system, the fractogram template provides a new mean to aggregate 

features from multiple subjects and datasets for machine learning approaches(Ganesan et al., 

2021; Lv et al., 2017, 2015). 

5. Conclusion 

We have proposed a new methodology framework for building a tissue-unbiased FOD template 

based on multimodal registration. Based on the resulting FOD template, a tractography 

template using anatomical constrain was demonstrated. It has provided a new potential for joint 

grey matter and white matter analysis, and joint structure and function analysis. 
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