
A

Construction of the Real Numbers

In Chapter 1 we have described the sets N, Z, and Q of natural numbers,
integers, and rational numbers, respectively, as follows:

N = {1, 2, 3, . . . }, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . },

and
Q =

{m

n
: m,n ∈ Z, n �= 0

}
.

The set R of “real numbers” was then introduced as a set containing Q and
the “irrational numbers” in such a way that the elements of R are in one-
to-one correspondence with the points on the “number line”. But R defies a
simplistic description such as that given above for N, Z, and Q. Thus, while
we can conceive easily what a rational number is, it is a little harder to say
precisely what a real number is. For this reason, we made an assumption that
there exists a set R containing Q that satisfies the three sets of properties given
in Section 1.1, namely the Algebraic Properties A1-A5, the Order Properties
O1-O2, and the Completeness Property. The main aim of this appendix is
to show that such a set R does indeed exist and is essentially unique. The
approach that we shall take is due to Cantor, and uses Cauchy sequences of
rational numbers. In what follows, we shall assume familiarity with the set Q
and the usual algebraic operations on Q as well as the usual order relation that
permits us to talk of the subset Q+ of positive rational numbers in such a way
that the properties A1-A5 and O1-O2 in Section 1.1 are satisfied if we replace
R by Q throughout. This appendix is divided into three sections, which are
organized as follows. In the first section below, we discuss some preliminaries
about equivalence relations and equivalence classes. Then in the next section,
we outline a construction of R using Cauchy sequences of rational numbers.
The “uniqueness” of R is formally established in the last section.

A.1 Equivalence Relations

The notion of an equivalence relation is basic to much of mathematics, and
it will be useful in our formal construction of R from Q. The most basic
equivalence relation on any set is that of equality denoted by =. Fundamental
properties of this relation motivate the following definition.
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504 A Construction of the Real Numbers

Let S be a set. A relation on S is a subset of S × S. If ∼ is a relation on
S and a, b ∈ S, then we usually write a ∼ b to indicate that the ordered pair
(a, b) is an element of the subset ∼ of S × S. A relation ∼ on S is called an
equivalence relation if (i) ∼ is reflexive, that is, a ∼ a for all a ∈ S, (ii)
∼ is symmetric, that is, b ∼ a whenever a, b ∈ S satisfy a ∼ b, and (iii) ∼ is
transitive, that is, a ∼ c whenever a, b, c ∈ S satisfy a ∼ b and b ∼ c.

If ∼ is an equivalence relation on a set S and if a ∈ S, then the set
{x ∈ S : x ∼ a} is called the equivalence class of a and is denoted1 by
[a]; in general, a subset E of S is called an equivalence class (with respect
to ∼) if E = [a] for some a ∈ S. A key fact about equivalence relations is
the following result, which basically says that an equivalence relation on a set
partitions the set into disjoint equivalence classes.

Proposition A.1. Let S be a set and let ∼ be an equivalence relation on
S. Then any two equivalence classes (with respect to ∼) are either disjoint
or identical. Consequently, if E denotes the collection of distinct equivalence
classes with respect to ∼, then

S =
⋃
E∈E

E,

where the union is disjoint.

Proof. Let a, b ∈ S and suppose the equivalence classes [a] and [b] are not
disjoint, that is, there exists c ∈ [a] ∩ [b]. Then c ∼ a and c ∼ b. Hence using
the fact that ∼ is an equivalence relation, we see that for every x ∈ S,

x ∈ [a] ⇐⇒ x ∼ a ⇐⇒ x ∼ c ⇐⇒ x ∼ b ⇐⇒ x ∈ [b].

This shows that [a] = [b]. Thus any two equivalence classes are either disjoint
or identical. Finally, since a ∈ [a] for each a ∈ S, we obtain S =

⋃
a∈S [a]. ��

We give several examples of equivalence relations and corresponding equiv-
alence classes below. The detailed verification of the assertions made in these
examples is left to the reader.

Examples A.2. (i) On the set N, define a relation ∼ by

m ∼ n ⇐⇒ m and n have the same parity, that is, (−1)m = (−1)n.

Then ∼ is an equivalence relation. There are exactly two equivalence
classes with respect to ∼, namely the set of odd positive integers and
the set of even positive integers.

1 When S ⊆ Q, the notation [a] for the equivalence class of an element a of S
conflicts with the notation used in the text for the integer part of a. To avoid any
possible confusion, we shall always use in this appendix the notation 
a� for the
integer part of a.
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(ii) On the set N× N, define a relation ∼ by

(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c for (a, b), (c, d) ∈ N× N.

Then ∼ is an equivalence relation, and the equivalence classes with respect
to ∼ are in one-to-one correspondence with the set Z of all integers.

(iii) Let S = {(m,n) : m,n ∈ Z and n �= 0}. The relation ∼ on S defined by

(a, b) ∼ (c, d) ⇐⇒ ad = bc for (a, b), (c, d) ∈ S

is an equivalence relation on S, and the equivalence classes with respect to
∼ are in one-to-one correspondence with the set Q of all rational numbers.

(iv) Let n ∈ N. Consider the relation ∼ on Z defined by

a ∼ b ⇐⇒ a− b is divisible by n for a, b ∈ Z.

Then ∼ is an equivalence relation, called congruence modulo n. There
are exactly n distinct equivalence classes with respect to ∼ given by
C0, C1, . . . , Cn−1, where for 0 ≤ i < n, the set Ci consists of integers
that leave remainder i when divided by n. These equivalence classes are
known as residue classes modulo n, and the set {C0, C1, . . . , Cn−1} of
all residue classes modulo n is sometimes denoted by Z/nZ.

We remark that examples (ii) and (iii) above can be used to formally
construct Z from N, and to construct Q from Z. For an axiomatic treatment
of N, we refer to the book of Landau [54].

A.2 Cauchy Sequences of Rational Numbers

We shall now define the notion of a Cauchy sequence in Q. This is completely
analogous to the notion discussed in Chapter 2, except that we will refrain
from using real numbers anywhere. In particular, ε will denote a positive ratio-
nal number, that is, ε ∈ Q

+. Note that since it is well understood what positive
rational numbers are, the notion of the absolute value of a rational number is
well-defined and satisfies the basic properties given in Proposition 1.8.

A sequence in Q is a function from N to Q. We usually write (an) to
denote the sequence a : N→ Q defined by a(n) := an for n ∈ N. The rational
number an is called the nth term of the sequence (an). A sequence (an) of
rational numbers is said to be

1. bounded above if there exists α ∈ Q such that an ≤ α for all n ∈ N,
2. bounded below if there exists β ∈ Q such that an ≥ β for all n ∈ N,
3. bounded if it is bounded above as well as bounded below,
4. Cauchy if for every ε ∈ Q

+, there exists n0 ∈ N such that |an − am| < ε
for all m,n ∈ N with m,n ≥ n0.
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We shall also say that a sequence (cn) of rational numbers is null, and write
cn → 0, if for every ε ∈ Q

+, there is n0 ∈ N such that |cn| < ε for all n ≥ n0.

Examples A.3. (i) Let (an) be the sequence in Q defined by an := 1/n
for n ∈ N. Then (an) is a null sequence. Indeed, given any ε ∈ Q

+, say
ε = p/q, where p, q ∈ N, the positive integer n0 := q+1 satisfies n0 > 1/ε.
Hence |an| < ε for all n ≥ n0.

(ii) Let (an) be the sequence in Q defined by an := (n−1)/n for n ∈ N. Then
(an) is a Cauchy sequence. To see this, let ε = p/q ∈ Q

+ be given, where
p, q ∈ N. Now the positive integer n0 := 2(q+1) satisfies n0 > 2/ε. Hence

|an − am| =
∣∣∣∣
n− 1

n
− m− 1

m

∣∣∣∣ =
∣∣∣∣
1

m
− 1

n

∣∣∣∣ ≤
2

n0
< ε for all m,n ≥ n0.

Note that although (an) is a Cauchy sequence, it is not a null sequence.
In fact, |an| ≥ 1/2 for all n ≥ 2.

Proposition A.4. (i) Every Cauchy sequence of rational numbers is bounded.
(ii) Every null sequence of rational numbers is Cauchy.
(iii) Let (an) be a Cauchy sequence of rational numbers that is not a null

sequence. Then there exist ε0 ∈ Q
+ and n0 ∈ N such that |an − an0

| < ε0
and |an| ≥ ε0 for all n ≥ n0.

Proof. (i) Let (an) be a Cauchy sequence. Then there exists k ∈ N such that
|an − am| < 1 for all m,n ≥ k. Consequently,

|an| ≤ α for all n ∈ N, where α := max {|a1|, . . . , |ak−1|, |ak|+ 1} .

Hence (an) is bounded.

(ii) Let (cn) be a null sequence. Given any ε ∈ Q
+, there exists n0 ∈ N

such that |cn| < ε/2 for all n ≥ n0. Then

|cn − cm| ≤ |cn|+ |cm| <
ε

2
+

ε

2
= ε for all n ≥ n0.

Hence (cn) is Cauchy.

(iii) Since (an) is not a null sequence, there exists ε ∈ Q
+ such that for

every k ∈ N, there exists n1 ≥ k satisfying |an1
| ≥ ε. Also, since (an) is

a Cauchy sequence, there exists n0 ∈ N such that |am − an| < ε/2 for all
m,n ≥ n0. Let k := n0, and find n1 ≥ n0 such that |an1

| ≥ ε. Then

ε ≤ |an1
| ≤ |an1

− an|+ |an| ≤
ε

2
+ |an|, and hence |an| ≥

ε

2
for all n ≥ n0.

Thus ε0 := ε/2 ∈ Q
+ and n0 ∈ N have the desired property. ��

Now let us define

C := the set of all Cauchy sequences of rational numbers.

Further, consider the relation ∼ on C defined by

(an) ∼ (bn) ⇐⇒ (an − bn) is a null sequence, where (an), (bn) ∈ C .
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Proposition A.5. The relation ∼ is an equivalence relation on C .

Proof. Clearly, ∼ is reflexive and symmetric. Suppose (an), (bn), (cn) ∈ C are
such that (an) ∼ (bn) and (bn) ∼ (cn). Given any ε ∈ Q

+, the number ε/2 is
also in Q

+. Hence there exist n1, n2 ∈ N such that

|an − bn| <
ε

2
for all n ≥ n1 and |bn − cn| <

ε

2
for all n ≥ n2.

Now if n0 = max{n1, n2}, then for each n ≥ n0,

|an − cn| = |(an − bn) + (bn − cn)| ≤ |an − bn|+ |bn − cn| <
ε

2
+

ε

2
= ε.

This shows that (an) ∼ (cn). Thus ∼ is transitive as well. ��

We are now ready to define a model for R that we seek to construct. Let

R := the set of all equivalence classes of elements of C with respect to ∼.

As in the previous section, the equivalence class of a Cauchy sequence (an)
in C with respect to ∼ will be denoted by [(an)]. Given any r ∈ Q, the constant
sequence (r), that is, the sequence (rn) with rn = r for all n ∈ N, is clearly
Cauchy. We will denote by Q the subset of R consisting of the equivalence
classes of constant sequences of rational numbers. It is clear that the map
from Q to Q given by r �−→ [(r)] is one-one and onto. Thus we can, and
will, identify Q with Q. In particular, the equivalence classes of the constant
sequences (0) and (1) will be denoted simply by 0 and 1, respectively.

We now define addition and multiplication on the set R as follows.

[(an)] + [(bn)] = [(an + bn)] and [(an)] · [(bn)] = [(anbn)] for (an), (bn) ∈ C .

Proposition A.6. The operations of addition and multiplication on R are
well-defined and satisfy the following algebraic properties:

A1. a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c for all a, b, c ∈ R.
A2. a+ b = b+ a and ab = ba for all a, b ∈ R.
A3. a+ 0 = a and a · 1 = a for all a ∈ R.
A4. Let a ∈ R. Then there exists a′ ∈ R such that a + a′ = 0. Further, if

a �= 0, then there exists a∗ ∈ R such that aa∗ = 1.
A5. a(b+ c) = ab+ ac for all a, b, c ∈ R.

Proof. To show that the operations of addition and multiplication on R are
well-defined, it suffices to show that for all (an), (a

′
n), (bn), (b

′
n) ∈ C ,

(an) ∼ (a′n) and (bn) ∼ (b′n) =⇒ (an + bn) ∼ (a′n + b′n) and (anbn) ∼ (a′nb
′
n).

The assertion (an + bn) ∼ (a′n + b′n) follows from the definition, since
|(an + bn)− (a′n + b′n)| ≤ |an − a′n| + |bn − b′n|. To see that (anbn) ∼ (a′nb

′
n),
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we use part (i) of Proposition A.4 and obtain α′, β ∈ Q
+ such that |a′n| ≤ α′

and |bn| ≤ β for all n ∈ N, so that

|anbn − a′nb
′
n| = |(an − a′n)bn + a′n(bn − b′n)| ≤ β|an − a′n|+ α′|bn − b′n|.

Now since an−a′n → 0 and bn−b′n → 0, it is readily seen that anbn−a′nb
′
n → 0.

Having established that addition and multiplication on R are well-defined,
we see that properties A1, A2, A3, and A5 are immediate consequences of the
definition and the corresponding properties of rational numbers.

Moreover, for every a = [(an)] ∈ R, the element a′ := [(−an)] is clearly
in R and it satisfies a + a′ = 0. Finally, suppose a = [(an)] ∈ R is such that
a �= 0. Then by part (iii) of Proposition A.4, there exist ε0 ∈ Q

+ and n0 ∈ N

such that |an| ≥ ε0 for all n ≥ n0. In particular, an �= 0 for all n ≥ n0.
Define the sequence (a∗n) in Q by a∗n := 1 for 1 ≤ n < n0 and a∗n = 1/an for
n ≥ n0. Then |a∗n − a∗m| ≤ (1/ε20)|an − am| for all n,m ≥ n0. Since (an) is a
Cauchy sequence, this implies that (a∗n) is also a Cauchy sequence. Moreover,
ana

∗
n − 1 = 0 for all n ≥ n0, and so (ana

∗
n) ∼ (1). This proves A4. ��

As noted in Section 1.1, several simple properties (such as, a · 0 = 0 for
all a ∈ R) are formal consequences of properties A1–A5 proved in Proposi-
tion A.6, and these will now be tacitly assumed; also uniqueness of the additive
inverse a′ ∈ R for a ∈ R, and of the multiplicative inverse a∗ ∈ R for a ∈ R
with a �= 0 as in A4, is a formal consequence of Proposition A.6, and we will
adopt the usual notation −a for a′, and 1/a or a−1 for a∗. We remark also
that as a consequence of Proposition A.6, the addition and multiplication on
R are compatible with the usual addition and multiplication on Q when Q is
identified with the subset Q of R as before.

Now let us turn to order properties. We shall say that a sequence (an) ∈ C
is positive if it satisfies the following property:

There exist r ∈ Q
+ and n0 ∈ N such that an ≥ r for all n ≥ n0.

Note that if (a′n) ∈ C is such that (a′n) ∼ (an) and (an) satisfies the above
property, then so does (a′n). Indeed, since (a′n) ∼ (an), there exists n1 ∈ N

such that |a′n − an| < r/2 for all n ≥ n1. Now if we let r′ := r/2 and
n2 := max{n0, n1}, then we obtain

a′n > an −
r

2
≥ r − r

2
= r′ for all n ≥ n2.

With this in view, we define R+ to be the set of all equivalence classes of
positive sequences in C . It is clear that R+ is a well-defined subset of R.

Proposition A.7. The set R+ satisfies the following order properties:

O1. Given any a ∈ R, exactly one of the following statements is true:

a ∈ R+; a = 0; −a ∈ R+.
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O2. If a, b ∈ R+, then a+ b ∈ R+ and ab ∈ R+.

Proof. Let (an) ∈ C be such that [(an)] �= 0. By part (iii) of Proposition A.4,
there exist ε0 ∈ Q

+ and n0 ∈ N such that |an − an0
| < ε0 and |an| ≥ ε0 for

all n ≥ n0. In particular, an0
�= 0. Now if an0

> 0, then the above inequalities
imply an = an0

+ (an − an0
) > ε0 − ε0 = 0 for all n ≥ n0, and consequently,

an ≥ ε0 for all n ≥ n0. Likewise, if an0
< 0, then −an ≥ ε0 for all n ≥ n0.

Thus [(an)] ∈ R+ or −[(an)] = [(−an)] ∈ R+. This proves O1.
Next, if (an), (bn) ∈ C are such that [(an)], [(bn)] ∈ R+, then there exist

r1, r2 ∈ Q
+ and n1, n2 ∈ N such that

an > r1 for all n ≥ n1 and bn > r2 for all n ≥ n2.

Now if we let n0 = max{n1, n2}, then we clearly have

an + bn > r1 + r2 for all n ≥ n0 and anbn > r1r2 for all n ≥ n0.

Since r1+r2, r1r2 ∈ Q
+, we obtain [(an)]+[(bn)] ∈ R+ and [(an)][(bn)] ∈ R+.

This proves O2. ��

Using the set R+, we can define an order relation on R exactly as in
Section 1.1, namely, for all a, b ∈ R, we write a < b or b > a if b − a ∈ R+.
Moreover, we shall write a ≤ b or b ≥ a to mean that either a < b or a = b.
The usual properties of this order relation, as listed in (i), (ii), and (iii) on
page 3 (with R replaced by R), and also the fact that 1 > 0 are formal
consequences of O1 and O2, and will thus be tacitly assumed. Moreover, the
notions of a subset of R being bounded above, bounded below, or bounded
as well as the notions of upper bound, lower bound, supremum, and infimum
for subsets of R can now be defined exactly as they were defined for subsets
of R in Chapter 1. Note also that the order relation on R that we have just
defined is compatible with the known order relation on the set Q, that is, if
r, s ∈ Q and if [(r)], [(s)] are the corresponding elements of Q, then r < s if
and only if [(r)] < [(s)].

We shall now proceed to prove that the set R, which we have constructed
from Q, has the completeness property. As a preliminary step, we will first
show that R has the archimedean property. It may be recalled that in Propo-
sition 1.3, the archimedean property of R was deduced from the assumption
that R has the completeness property. Here we will give a direct proof to
show that R has the archimedean property, and later, use it to derive the
completeness property of R.

Proposition A.8. Given any a ∈ R, there is some k ∈ N such that k > a.

Proof. First note that if a ∈ Q, then a corresponds to a unique rational
number p/q, where p ∈ Z and q ∈ N. Hence k := |p| + 1 clearly satisfies
k > a. Now suppose a = [(an)] is an arbitrary element of R, where (an) is a
Cauchy sequence of rational numbers. Then for ε = 1/2, there is n0 ∈ N such
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that |an − am| < 1/2 for all n,m ≥ n0. Since the archimedean property holds
for rational numbers, there exists � ∈ N such that |an0

| < �. Hence for each
n ≥ n0, we obtain

|an| ≤ |an−an0
|+|an0

| < 1

2
+� and hence |(1+�)−an| ≥ (1+�)−|an| >

1

2
.

It follows that [(an)] < [(1 + �)], that is, k := 1 + � ∈ N satisfies k > a. ��

The archimedean property proved in Proposition A.8 enables us to define
the integer part of every x ∈ R exactly as in the paragraph following Propo-
sition 1.3 of Chapter 1, and this, in turn, permits us to deduce that between
any two elements of R, there is a rational number. It is important to note
that this result uses only the algebraic and order properties together with the
archimedean property (Propositions A.6, A.7, and A.8).

Proposition A.9. Given any a, b ∈ R with a < b, there exists r ∈ Q such
that a < r < b.

Proof. The proof is identical to that of Proposition 1.6 and hence omitted. A
more general result (Proposition A.12) is proved in the next section. ��

Corollary A.10. Let (rn) ∈ C and let a = [(rn)] be the corresponding ele-
ment of R. If there exists n0 ∈ N such that rn ≥ 0 for all n ≥ n0, then a ≥ 0.
More generally, if there exist α, β ∈ R and n0 ∈ N such that β ≤ rn ≤ α for
all n ≥ n0, then β ≤ a ≤ α.

Proof. Suppose there exists n0 ∈ N such that rn ≥ 0 for all n ≥ n0. Let,
if possible, a < 0. Then by Proposition A.9, there exists s ∈ Q such that
a < s < 0. Now −s > 0 and rn − s ≥ −s for all n ≥ n0. So it follows from
the definition of R+ that a − s > 0, which is a contradiction. This proves
that a ≥ 0.

Next suppose α, β ∈ R and n0 ∈ N are such that β ≤ rn ≤ α for all n ≥ n0.
By Proposition A.9, there exist αn, βn ∈ Q such that β − 1

n < βn < β and
α < αn < α+ 1

n for each n ∈ N. This implies that (αn), (βn) ∈ C . Moreover,
α = [(αn)] and β = [(βn)]. (Verify!) Now applying the first assertion in the
corollary to (rn − βn) and (αn − rn), we obtain β ≤ a ≤ α. ��

We are now ready to prove that the set R has the completeness property.

Proposition A.11. Every nonempty subset of R that is bounded above has a
supremum.

Proof. Let S be a nonempty subset of R that is bounded above. Since S is
nonempty, there is some a0 ∈ S, and since S is bounded above, there is some
α0 ∈ R such that α0 is an upper bound of S, that is, a ≤ α0 for all a ∈ S.
Now let β1 := (a0 + α0)/2. If β1 is an upper bound of S, we let a1 := a0 and
α1 := β1, whereas if β1 is not an upper bound of S, then there exists b ∈ S



A.2 Cauchy Sequences of Rational Numbers 511

such that β1 < b, and in this case, we let a1 := b and α1 := α0. In any case,
a0 ≤ a1 and α0 ≥ α1, and moreover,

a1 ∈ S, α1 is an upper bound of S, and 0 ≤ α1 − a1 ≤
α0 − a0

2
.

Next, we replace (a0, α0) by (a1, α1) and proceed as before. In general, given
n ∈ N and ai ∈ S and upper bounds αi of S with 0 ≤ (αi−ai) ≤ (α0−a0)/2

i

for 0 ≤ i ≤ n− 1 and with a0 ≤ a1 ≤ · · · ≤ an−1 and α0 ≥ α1 ≥ · · · ≥ αn−1,
we choose an ∈ S and an upper bound αn of S as follows. Let βn := (an−1 +
αn−1)/2. If βn is an upper bound of S, we let an := an−1 and αn := βn,
whereas if βn is not an upper bound of S, then there exists b ∈ S such that
βn < b, and in this case, we let an := b and αn := αn−1. In any case, an−1 ≤ an
and αn−1 ≥ αn, and moreover,

an ∈ S, αn is an upper bound of S, and 0 ≤ αn − an ≤
α0 − a0

2n
.

Note that if an = αn for some n ≥ 0, then clearly αn is the supremum of S.
Now suppose an < αn for all n ≥ 0. By Proposition A.9, for each n ∈ N,

there exists rn ∈ Q such that an < rn < αn. We claim that (rn) is a Cauchy
sequence. To see this, let ε ∈ Q

+ be given. Applying Proposition A.8 to
a = (α0 − a0)/ε, we see that there exists k ∈ N such that

α0 − a0
k

< ε and hence
α0 − a0

2k
< ε,

where the last inequality follows by noting that 2j ≥ j for all j ∈ N, as can
be seen easily by induction on j. Now given any m,n ∈ N with m ≥ n ≥ k,
since am < rm < αm, an < rn < αn, and am ≥ an, we obtain

rn − rm < αn − rm < αn − am ≤ αn − an.

In a similar way, since αm ≤ αn, we obtain

rn − rm > an − rm > an − αm ≥ an − αn.

It follows that

|rn − rm| < αn − an ≤
α0 − a0

2n
≤ α0 − a0

2k
< ε for all m,n ≥ k.

Thus (rn) ∈ C , and so α := [(rn)] ∈ R. We shall now show that α is the
supremum of S. To this end, let us first observe that for every fixed m ∈ N,
the inequalities am ≤ an < rn < αn ≤ αm hold for all n ≥ m, and so by
Corollary A.10, we see that am ≤ α ≤ αm.

Now suppose, if possible, α is not an upper bound of S. Then there is a ∈ S
such that a > α. By Proposition A.9, there exists δ ∈ Q

+ such that δ < a−α.
Further, by Proposition A.8, there is m ∈ N such that m > (α0−a0)/δ, and so
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0 ≤ αm − am ≤ α0 − a0
2m

≤ α0 − a0
m

< δ.

Hence αm < am + δ ≤ α+ δ < a. But this contradicts the fact that αm is an
upper bound of S. Hence α is an upper bound of S.

Next, suppose α is not the least upper bound of S. Then there exists
β ∈ R with β < α such that β is an upper bound of S. Again, choose δ ∈ Q

+

such that 0 < δ < α − β and m ∈ N such that 0 ≤ αm − am < δ. Then
am > αm− δ ≥ α− δ > β, which is a contradiction, since am ∈ S and β is an
upper bound of S. It follows that α is the supremum of S. ��

A.3 Uniqueness of a Complete Ordered Field

In the previous section, we have shown that the set R possesses all the prop-
erties that were postulated for R in Chapter 1. In other words, we have es-
tablished the existence of the set of all real numbers. We will now prove its
“uniqueness”. First, we introduce some useful terminology.

By a field we shall mean a set F that has operations of addition and
multiplication (that is, maps from F × F to F that associate elements a + b
and ab of F to (a, b) ∈ F ×F ) and has distinct elements 0F and 1F in it such
that the five algebraic properties A1–A5 in Proposition A.6 are satisfied with
R replaced throughout by F , and with 0 and 1 replaced by 0F and 1F . It is
easy to see that in a field F , elements 0F and 1F satisfying A3 are unique, and
these are sometimes called the additive identity and the multiplicative identity
of F , respectively. Note that Q and R are examples of fields. A special case
of Example A.2 (iv), namely the set Z/pZ of residue classes modulo a prime
number p, is a field having only finitely many elements.

If a field F contains a subset F+ satisfying the two order properties O1–
O2 with R+ replaced throughout by F+, then F is called an ordered field;
in this case, for every a, b ∈ F , we write a < b or b > a if b − a ∈ F+; also,
we write a ≤ b or b ≥ a if either a < b or a = b. The notions of boundedness,
supremum, etc. are defined for subsets of an ordered field in exactly the same
way as in the case of R. Note that Q and R are ordered fields, but Z/pZ is
not. In fact, an ordered field F cannot be finite. Indeed, 1F > 0F (because
otherwise −1F > 0F , and so 1F = (−1F )(−1F ) > 0F , which would be a
contradiction). Hence for every n ∈ N, if we let nF := 1F + · · ·+1F (n times),
then nF > 0F ; moreover, 0F < 1F < 2F < · · · , and so F contains infinitely
many elements. Furthermore, in an ordered field F , for every m ∈ Z with
m < 0, we let mF denote the additive inverse of (−m)F , that is, the unique
element of F satisfying (−m)F +mF = 0F . For every r = m/n in Q, where
m ∈ Z and n ∈ N, we let rF := (mF )(nF )

−1. It is easily seen that r �−→ rF
gives a well-defined, one-one map of Q → F , which preserves algebraic and
order operations, that is, for all r, s ∈ Q,

(r + s)F = rF + sF , (rs)F = rF sF , and r < s =⇒ rF < sF .
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Thus F contains a copy of Q, namely QF := {rF : r ∈ Q}. In an ordered field
F , the absolute value of an element can be defined as in the case of Q or R.
Thus for every a ∈ F , we let |a| := a if a ≥ 0F and |a| := −a if a < 0F . It is
easily seen that |ab| = |a||b| and |a+ b| ≤ |a|+ |b| for all a, b ∈ F .

Let F be an ordered field. We say that F is archimedean if for every
a ∈ F , there exists n ∈ N such that nF > a. and we say that F is complete
if every nonempty subset of F that is bounded above has a supremum in
F . For example, both Q and R are archimedean ordered fields, and R is
complete (thanks to Proposition A.11), but Q is not. In general, by arguing
as in the proof of Proposition 1.3, we readily see that a complete ordered field
is archimedean.

Let F be an archimedean ordered field and let a ∈ F . Then there exist
m,n ∈ N such that mF > −a and nF > a, that is, −mF < a < nF . Thus
if k is the largest among the finitely many integers satisfying −m ≤ k ≤ n
and kF ≤ a, then kF is called the integer part of a in F , and is denoted
by �a�. Note that �a� ≤ a < �a� + 1F . The following result is similar to
Proposition A.9. The proof is similar to that of Proposition 1.6, but this time
we include it.

Proposition A.12. Let F be an archimedean ordered field and let a1, a2 ∈ F
satisfy a1 < a2. Then there is r ∈ Q such that a1 < rF < a2.

Proof. Since F is archimedean, there exists n ∈ N such that nF > (a2−a1)
−1,

that is, (nF )
−1 < (a2−a1). Let m ∈ N be such that mF = �nFa1�+1F . Then

mF − 1F ≤ nFa1 < mF . Hence

a1 < mF (nF )
−1 ≤ (nF a1 + 1F )(nF )

−1 = a1 + (nF )
−1 < a1 + (a2 − a1) = a2.

Thus r = m/n ∈ Q satisfies a1 < rF < a2. ��

Corollary A.13. Let F be an archimedean ordered field. Suppose a ∈ F sat-
isfies |a| < εF , that is, −εF < a < εF , for all ε ∈ Q

+. Then a = 0F .

Proof. In case a > 0F , by Proposition A.12, there exists r ∈ Q such that
0F < rF < a. Thus the hypothesis is contradicted if we take ε = r. Likewise,
we arrive at a contradiction if a < 0F . Hence a = 0F . ��

Let K and F be ordered fields. A map f : K → F is called an order
isomorphism if f is both one-one and onto, and f preserves algebraic and
order operations, that is, for all x, y ∈ K,

f(x+ y) = f(x) + f(y), f(xy) = f(x)f(y), and x < y =⇒ f(x) < f(y).

If such a map exists, then we say that F is order isomorphic to K.

Proposition A.14. Every complete ordered field is order isomorphic to R.
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Proof. Let F be a complete ordered field. Define f : R → F by

f(x) := supFx, where Fx := {rF : r ∈ Q and r ≤ x} for x ∈ R.

Note that f is well-defined. Indeed, given any x ∈ R, by Proposition A.9, there
exist s, t ∈ Q such that x − 1 < s < x < t < x + 1. It follows that sF ∈ Fx

and tF is an upper bound of Fx. Thus supFx exists, since F is complete. Note
also that f(r) = rF for all r ∈ Q. Indeed, f(r) < rF as well as f(r) > rF will
both lead to a contradiction using Proposition A.12.

Let x, y ∈ R be such that x < y. Then x < (x+ y)/2 < y, and using
Corollary A.9, we can find u, v ∈ Q such that x < u < (x+ y)/2 < v < y.
Now uF is an upper bound of Fx and vF is an element of Fy. Hence we obtain
f(x) ≤ uF < vF ≤ f(y). Thus f is order-preserving, and therefore one-one.

To show that f is onto, suppose a ∈ F . In case a = rF ∈ QF for some
r ∈ Q, then a = f(r). Now suppose a �∈ QF . Let Qa := {r ∈ Q : rF ≤ a}.
Since F is complete, it is archimedean, and therefore by Proposition A.12,
there exist r, s ∈ Q such that a − 1 < rF < a and a < sF < a + 1. This
implies that the set Qa is nonempty and bounded above. Hence x := supQa

is a well-defined element of R. We shall now show that f(x) = a.
First, suppose x ∈ Q. Then f(x) = xF . Now if xF < a, then by Propo-

sition A.12, there exists r ∈ Q such that xF < rF < a, and this leads to a
contradiction, because on the one hand x < r, since x, r ∈ Q and xF < rF ,
but on the other hand, r ≤ x, since rF < a implies r ∈ Qa and x = supQa.
Likewise, if xF > a, then by Proposition A.12, there exists s ∈ Q such that
a < sF < xF , but then s is an upper bound of Qa (because r ∈ Q and rF ≤ a
implies rF < sF and hence r < s ), and therefore x = supQa ≤ s, which
implies xF ≤ sF , and this contradicts sF < xF . Thus f(x) = a when x ∈ Q.

Next, suppose x �∈ Q. Let r ∈ Q with r ≤ x. Since x �∈ Q, we obtain r < x,
and since x = supQa, there exists s ∈ Qa such that r < s ≤ x. Consequently,
rF < sF ≤ a. It follows that a is an upper bound of Fx. Hence f(x) ≤ a.
Furthermore, if f(x) < a, then by Proposition A.12, there exists t ∈ Q such
that f(x) < tF < a. But then t ∈ Qa, and so t ≤ x, which implies tF ≤ f(x),
and so we obtain a contradiction. It follows that f(x) = a. Thus f is onto.

It remains to show that f preserves the algebraic operations. Let x, y ∈ R
and let ε ∈ Q

+ be given. By Proposition A.9, there exist r, s, u, v ∈ Q such that

x− ε

4
< r < x < s < x+

ε

4
and y − ε

4
< u < y < v < y +

ε

4
.

Then 0 < s − r < ε/2 and 0 < v − u < ε/2. Since f is order-preserving,
rF < f(x) < sF and uF < f(y) < vF . Hence rF +uF < f(x)+f(y) < sF +vF .
Moreover, r + u < x + y < s + v, and again since f is order-preserving,
rF + uF < f(x+ y) < sF + vF . Consequently,

f(x+ y)− f(x)− f(y) < (sF − rF ) + (vF − uF ) <
εF
2F

+
εF
2F

= εF .

By a similar argument, f(x+y)−f(x)−f(y) > −εF . Now by Corollary A.13,
we obtain f(x+ y) = f(x) + f(y). Thus, f preserves addition.
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To show that f preserves multiplication, first consider x, y ∈ R with x > 0
and y > 0. Let ε ∈ Q

+ be given. By Proposition A.8, there exists n ∈ N

such that n > x, n > y, and n > ε/6. Now using Proposition A.9 and the
assumption that x > 0 and y > 0, we obtain r, s, u, v ∈ Q

+ such that

x− ε

6n
< r < x < s < x+

ε

6n
and y − ε

6n
< u < y < v < y +

ε

6n
.

Next, we use the usual trick of adding and subtracting suitable terms to write

xy−ru = (x−r)y+r(y−u) and sv−xy = (s−x)(v−y)+x(v−y)+y(s−x).

Consequently, xy − ru < (ε/6n)y + r(ε/6n) < (ε/6) + (ε/6) < ε/2 and

sv − xy <
( ε

6n

)2

+ x
ε

6n
+ y

ε

6n
<

ε

6n
+

ε

6
+

ε

6
≤ ε

6
+

ε

3
=

ε

2
.

Thus sv− (ε/2) < xy < ru+(ε/2), and since f is order-preserving, we obtain

sF vF −
εF
2F

< f(xy) < rFuF +
εF
2F

.

Again, since f is order-preserving, by arguing as before, we obtain

sF vF −
εF
2F

< f(x)f(y) < rFuF +
εF
2F

.

It follows that −εF < f(xy) − f(x)f(y) < εF . By Corollary A.13, we obtain
f(xy) = f(x)f(y). Finally, since f preserves addition, it is easily seen that
f(0) = 0 and f(−x) = −f(x) for all x ∈ R. Hence the result just proved,
namely f(xy) = f(x)f(y) for all positive x, y ∈ R, implies that f(xy) =
f(x)f(y) for all x, y ∈ R. So f preserves multiplication as well. ��

Remark A.15. In view of the results of the previous section and the unique-
ness result in Proposition A.14, it makes sense to refer to any set satisfying
the algebraic, order, and completeness properties as the set of all real num-
bers. The construction of R given in the previous section is one of the ways of
constructing R. Several other constructions are possible. The most prominent
among these is a construction due to Dedekind, where the basic idea is to
determine a real number x by means of the pair (Lx, Rx) of subsets of Q,
where Lx := {r ∈ Q : r < x} and Rx := {r ∈ Q : r ≥ x}. Such a pair
is called a Dedekind cut, or simply a cut. More formally, a cut is a pair
(L,R) of nonempty disjoint subsets of Q such that (i) L ∪ R = Q , (ii) L is
downwards closed, that is, s ∈ L whenever s < t for some t ∈ L, (iii) R is
upwards closed, that is, s ∈ R whenever s > t for some t ∈ R, and (iv) L
has no maximum element. One defines addition, multiplication, and an order
on the set of all cuts, and shows that this set is a complete ordered field. For
more details about this approach, one can refer to the essays of Dedekind [24]
or the appendix to Chapter 1 of Rudin [71]. For a host of other constructions
for R, we refer to the article of Weiss [87]. At any rate, by Proposition A.14,
all these constructions yield essentially the same ordered field. �
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Remark A.16. In this book, we have used the word completeness (of R, or
more generally, of any ordered field F ) to mean that every nonempty subset
that is bounded above has a supremum. This is sometimes referred to as
order completeness, especially when contrasted with other notions such as
monotone completeness and Cauchy completeness that are defined as
follows. An ordered field F is said to be monotone complete (resp. Cauchy
complete) if every monotonic bounded sequence (resp. Cauchy sequence) in
F is convergent. Note that in an ordered field, the notions of absolute value and
of a sequence being monotonic, bounded, convergent, or Cauchy are defined in
the same way as in the case of R. Arguing as in the proofs of Propositions 2.8
and 2.22, we readily see that for every ordered field F ,

F is complete =⇒ F is monotone complete =⇒ F is Cauchy complete.

It can be shown that Cauchy completeness implies (order) completeness, pro-
vided that the ordered field is archimedean. (Compare Exercise 2.42 of Chap-
ter 2.) Thus for an archimedean ordered field, the three notions of complete-
ness are equivalent. Moreover, an ordered field that is monotone complete
is necessarily archimedean (because otherwise, the sequence (nF ) would be
convergent, and if nF converges to a, then there exists n0 ∈ N such that
a−1F < nF < a+1F for n ≥ n0, but then (n+2)F > a+1F , which would be
a contradiction!) and consequently, order complete. However, there do exist
ordered fields that are Cauchy complete, but not archimedean and therefore
neither order complete nor monotone complete; see, for instance, Ex. 4 and 7
in Chapter 1 of Gelbaum and Olmsted [32]. For more on various notions of
completeness and related matters, see the article of Hall and Todorov [36].
Finally, we remark that the notion of Cauchy completeness can be readily
defined for any field F that (is not necessarily ordered, but) has an “absolute
value function”, that is, a map from F to R

+ given by a �−→ |a| satisfying for
all a, b ∈ F , the following: (i) |a| = 0 ⇐⇒ a = 0F , (ii) |ab| = |a||b|, and (iii)
|a + b| ≤ |a| + |b|. In the next section, we will formally introduce the field C

of complex numbers and show that C is not an ordered field, but C has an
absolute value function. Moreover, it is easy to show (using Proposition 2.22)
that C is Cauchy complete. �



B

Fundamental Theorem of Algebra

Although the set R of all real numbers is “complete”, it has a lacuna from an
algebraic point of view. Namely, there are polynomials with real coefficients
that have no root in R. The simplest among these is the polynomial x2+1. By
adjoining to R an “imaginary” root i of x2+1, we obtain the complex numbers,
which are sometimes “defined” as the numbers of the form x + iy, where
x, y ∈ R. It is not difficult to give a formal and precise definition of complex
numbers and in particular, of the number i. We do this in Section B.1, and then
outline how several of the notions about real-valued functions can be extended
to complex-valued functions. Next, in Section B.2, we prove a remarkable
result known as the Fundamental Theorem of Algebra, which basically says
that if one can solve x2+1 = 0, then one can solve every polynomial equation
in one variable with real or complex coefficients!

B.1 Complex Numbers and Complex Functions

A complex number is defined as an ordered pair of real numbers. The set
of all complex numbers is denoted by C. Addition and multiplication in C are
defined as follows. For all (x1, y1), (x2, y2) ∈ C, let

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2), and

(x1, y1)(x2, y2) := (x1x2 − y1y2, x1y2 + y1x2).

It is easily seen that with respect to these algebraic operations, C is a field.
Moreover, the map given by x �−→ (x, 0) gives a one-one map from R to C,
which preserves the algebraic operations. With this in view, we regard R as a
subset of C by identifiyng a real number x with the ordered pair (x, 0) in C.
We define i := (0, 1). With the identification of R with a subset of C as above,
we can write any (x, y) ∈ C as x + iy. Note that i2 = −1, where we have
again identified −1 with (−1, 0). Let z ∈ C. As noted above, z = x + iy for
unique x, y ∈ R. We call x the real part of z and denote it by �(z), and we
call y the imaginary part of z and denote it by  (z). The complex number
x − iy is called the conjugate of z = x + iy and is denoted by z. We also
define the absolute value or the modulus of z to be the nonnegative real
number |z| :=

√
zz =

√
x2 + y2. Note that this definition is consistent with
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that of the absolute value of a real number, and that the Triangle Inequality
|z1 + z2| ≤ |z1|+ |z2| holds for all z1, z2 ∈ C. Also, note that

max {|�(z)|, | (z)|} ≤ |z| ≤ |�(z)|+ | (z)| for all z ∈ C.

Observe that C is not an ordered field. Indeed, if C had a subset C+ satisfying
the two order properties O1 and O2 (as in Proposition A.7 with R+ replaced
by C

+ and R replaced by C), then by O1, either i ∈ C
+ or −i ∈ C

+. Now O2
implies that −1 = (±i)2 ∈ C

+ and 1 = (−1)2 ∈ C
+. This contradicts O1.

The complex exponential of a complex number z is defined by

ez := ex(cos y + i sin y), where x = �(z) and y =  (z).

Note that |ez| = e�(z) and therefore ez �= 0 for all z ∈ C. Note also that
eiθ = cos θ + i sin θ for all θ ∈ R. In particular, eiπ + 1 = 0.

We now consider complex-valued functions of a real variable, that is,
functions whose codomain is C and whose domain is a subset of R. For exam-
ple, h : R → C defined by h(t) := eit is a complex-valued function of a real
variable. In general, if D ⊆ R and if h : D → C is a complex-valued function
of a real variable, then there are unique functions f, g : D → R such that
h(t) = f(t) + ig(t) for t ∈ D. We call f the real part and g the imaginary
part of h, and write h = f + ig. The notions of boundedness, continuity, dif-
ferentiability and Riemann integration extend to complex-valued functions of
a real variable in a straightforward manner. In fact, we define h : D → C to be

• bounded on D if both f and g are bounded on D,
• continuous at a point c of D if both f and g are continuous at c,
• differentiable at an interior point c of D if both f and g are differentiable

at c; in this case, the complex number h′(c) := f ′(c) + ig′(c) is called the
derivative of h at c,

In case D := [a, b] for some a, b ∈ R with a ≤ b, and h : D → C is bounded,
then we define h to be integrable on [a, b] if both f and g are integrable

[a, b], and in this case, the complex number
∫ b

a
f(t)dt+ i

∫ b

a
g(t)dt is called the

integral of h over [a, b] and denoted by
∫ b

a
h(t)dt.

For example, if D = [0, π] and h : D → R is defined by h(t) := eit, then h
is differentiable at each t ∈ D and h′(t) = ieit. Also, h is integrable and

∫ b

a

h(t)dt =

∫ π

0

cos tdt+ i

∫ π

0

sin tdt = 0− i((−1)− 1) = 2i =
1

i

(
eiπ − e0

)
.

In a similar way, we can consider complex-valued functions of two or more
real variables. Thus, for example, if D ⊆ R

2 and h : D → C is a complex-
valued function of two real variables, then there are unique real-valued func-
tions f, g : D → R such that h(t, u) = f(t, u) + ig(t, u) for (t, u) ∈ D. As in
Section 10.6, we can fix one variable and differentiate or integrate with respect
to another. Thus we let
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D1h(t, u) = D1f(t, u) + iD1g(t, u) and D2h(t, u) = D2f(t, u) + iD2g(t, u),

where D1 indicates differentiation with respect to the first variable t (treating
u as a constant) and D2 indicates differentiation with respect to the second
variable u (treating t as a constant). Likewise, if D ⊆ R

2 is of the form
D = [a, b] × E for some a, b ∈ R with a ≤ b and E ⊆ R, and if h : D → C is
continuous in t (which means both f and g are continuous in t), then we can
consider the integral function H : E → C given by

H(u) =

∫ b

a

h(t, u)dt :=

∫ b

a

f(t, u)dt+ i

∫ b

a

g(t, u)dt for u ∈ E.

Moreover, the following analogue of Proposition 10.52 holds.

Proposition B.1. Let E be an interval in R, and let a, b ∈ R with a ≤ b.
Suppose h : [a, b] × E → C is a complex-valued function of two real variables
such that D2h exists and is bounded on [a, b] × E, and for each u ∈ E, the

integral
∫ b

a
D2h(t, u)dt exists. Then the integral function H : E → C given by

H(u) :=
∫ b

a
h(t, u)dt is differentiable and H ′(u) =

∫ b

a
D2h(t, u)dt for u ∈ E.

Proof. Use Proposition 10.52 for the real and imaginary parts of h. ��

B.2 Polynomials and Their Roots

In this section, we shall give a proof due to Paul Loya [60] of the Fundamen-
tal Theorem of Algebra. The statement involves polynomials (in one variable)
with complex coefficients, which are defined in the same way as polynomi-
als with real coefficients. (See Section 1.3.) Notions of the degree and of the
leading coefficient of a nonzero polynomial are also defined in the same way.
In particular, by a nonconstant polynomial we mean a polynomial of pos-
itive degree. Also, by a monic polynomial we mean a polynomial whose
leading coefficient is 1. We will begin by proving an elementary property of
polynomials that will be useful later.

Lemma B.2. Let p(z) be a polynomial with coefficients in C. Then for every
z0 ∈ C, there exists δ0 > 0 such that |p(z)| ≥ |p(z0)|/2 for all z ∈ C with
|z − z0| < δ0.

Proof. Write p(z) = cdz
d+ cd−1z

d−1+ · · ·+ c1z+ c0, where c0, c1, . . . , cd ∈ C.
Let us first consider z0 := 0, so that p(z0) = c0. Note that if c0 = 0, then
there is nothing to prove. Let us now assume that c0 �= 0. By writing c0 =
p(z) − z

(
cdz

d−1 + cd−1z
d−2 + · · ·+ c1

)
, we see that the triangle inequality

gives |p(z)| ≥ |c0| − |z|
(
|cd||z|d−1 + · · ·+ |c1|

)
. Consider δ0 ∈ R defined by

δ0 := |c0|/2 (|cd|+ · · ·+ |c1|+ |c0|). Then 0 < δ0 ≤ 1/2 < 1 and
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|z| < δ0 =⇒ |z|
(
|cd||z|d−1 + · · ·+ |c1|

)
≤ δ0 (|cd|+ · · ·+ |c1|) <

|c0|
2

.

Consequently, |p(z)| ≥ |c0|/2 = |p(0)|/2 whenever |z| < δ0.
Next, consider any z0 ∈ C. Substituting z = (z − z0) + z0 in p(z), we see

that p(z) = p∗(z−z0), where p
∗(w) = c∗dw

d+ · · ·+ c∗1w+ c∗0 is a polynomial in
w whose coefficients c∗0, . . . , c

∗
d ∈ C are determined by c0, . . . , cd and z0, and

moreover, c∗0 = p(z0). From the first part of the proof, we find δ0 > 0 such
that |p∗(w)| ≥ |c∗0|/2 for all w ∈ C with |w| < δ0. Puting w = z − z0, we
obtain the desired result. ��

We remark that the above lemma can also be deduced from the continuity
of polynomial functions of a complex variable. However, since we have not
discussed continuity of functions of a complex variable, we have chosen to
give a direct proof.

Proposition B.3 (Fundamental Theorem of Algebra). Every noncon-
stant polynomial with coefficients in C has a root in C.

Proof. Let p(z) be a nonconstant polynomial of degree d with coefficients in
C. Dividing p(z) by its leading coefficient, we may assume that p(z) is monic.
Thus we can write p(z) = zd+cd−1z

d−1+· · ·+c1z+c0, where c0, . . . , cd−1 ∈ C.
Suppose p(z) has no root in C, that is, p(z0) �= 0 for all z0 ∈ C. In particular,
c0 = p(0) �= 0. Consider the function h : [−π, π]× R→ C defined by

h(t, u) :=
1

p (ueit)
=

1

udeidt + · · ·+ c1ueit + c0
for t ∈ [−π, π] and u ∈ R.

Clearly, h is differentiable in each of the two variables t and u. Moreover, a
direct computation shows that

D2h(t, u) =
−
(
dud−1eidt + · · ·+ c1e

it
)

(udeidt + · · ·+ c1ueit + c0)
2 for t ∈ [−π, π] and u ∈ R.

It is clear that for each fixed u ∈ R, the function from [−π, π] to C given by
t �−→ D2h(t, u) is continuous. Now let α ∈ R with α > 0. Then

∣∣dud−1eidt + · · ·+ c1e
it
∣∣ ≤ dαd−1+ · · ·+ |c1| for t ∈ [−π, π] and u ∈ [−α, α].

Next, we show that there exists δ > 0 such that
∣∣p (ueit)∣∣ ≥ δ for all t ∈ [−π, π]

and u ∈ [−α, α]. Suppose this is not the case. Then there are sequences (tn) in
[−π, π] and (un) in [−α, α] such that

∣∣p (une
itn

)∣∣ < 1/n for all n ∈ N. By the
Bolzano–Weierstrass Theorem (Proposition 2.17), there exist a subsequence
(tnk

) of (tn) and t0 ∈ [−π, π] such that tnk
→ t0. In turn, there exist a

subsequence (unkj
) of (unk

) and u0 ∈ [−α, α] such that unkj
→ u0. Let

zj := unkj
e
itnkj for j ∈ N and let z0 := u0e

it0 . Then p(z0) �= 0, and by

Lemma B.2, there exists δ0 > 0 such that |p(z)| ≥ |p(z0)|/2 for all z ∈ C with
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|z − z0| < δ0. Since zj → z0, there exists j0 ∈ N such that |zj − z0| < δ0 for
j ≥ j0, and hence

0 <
|p(z0)|

2
≤ |p(zj)| <

1

nkj

for all j ≥ j0.

But this is impossible, since nkj
→ ∞ as j → ∞. Hence there exists δ > 0

such that
∣∣p (ueit)∣∣ ≥ δ for all t ∈ [−π, π] and u ∈ [−α, α]. It follows that

|D2h(t, u)| ≤
dαd−1 + · · ·+ |c1|

δ2
for all t ∈ [−π, π] and u ∈ [−α, α].

Thus the hypothesis of Proposition B.1 is satisfied with E = [−α, α]. Since
α > 0 is arbitrary, we see that the integral function H : R → C given by
H(u) =

∫ π

−π
h(t, u)dt is differentiable and

H ′(u) =

∫ π

−π

D2h(t, u)dt for all u ∈ R.

If u = 0, then D2h(t, u) = D2h(t, 0) = −c1eit/c20 for t ∈ [−π, π], and so
H ′(0) = −

(
c1/c

2
0

) ∫ π

−π
eitdt = −

(
c1/ic

2
0

) (
eiπ − e−iπ

)
= 0, whereas

D2h(t, u) =
−
(
udideidt + · · ·+ c1uie

it
)

iu (udeidt + · · ·+ c1ueit + c0)
2 =

1

iu
D1h(t, u), if u �= 0.

Consequently, for all u ∈ R with u �= 0,

H ′(u) =
1

iu

∫ π

−π

D1h(t, u)dt =
1

iu
[h(π, u)− h(−π, u)] = 0,

where the second equality follows from the Fundamental Theorem of Calculus
(part (ii) of Proposition 6.24) and the last equality follows since eπi = e−πi.
Thus H ′(u) = 0 for all u ∈ R. Hence by Corollary 4.23, H is a constant
function, and so

H(u) = H(0) =

∫ π

−π

h(t, 0)dt =
2π

c0
�= 0 for all u ∈ R.

On the other hand, we show that H(n)→ 0 as n→∞. To this end, let

gn(t) := h(t, n) =
1

p(neit)
for n ∈ N and t ∈ [−π, π].

Now for all n ∈ N and t ∈ [−π, π],
|p(neit)| = |ndeidt + · · ·+ c1ne

it + c0|
≥

∣∣ndeidt
∣∣− ∣∣cd−1n

d−1ei(d−1)t + · · ·+ c1ne
it + c0

∣∣
= nd

(
1−

∣∣∣cd−1

n
ei(d−1)t + · · ·+ c1

nd−1
eit +

c0
nd

∣∣∣
)

≥ nd

(
1− |cd−1|

n
− · · · − |c1|

nd−1
− |c0|

nd

)

≥ nd

2
, provided n ≥ 2 (|c0|+ |c1|+ · · ·+ |cd−1|) .
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This implies that gn(t)→ 0 as n→∞ for each t ∈ [−π, π], and also that the
sequence (|gn|) is uniformly bounded on [−π, π]. So by applying the Arzelà
Bounded Convergence Theorem (Proposition 10.40) to the real and imaginary
parts of gn, we obtain

H(n) =

∫ π

−π

h(t, n)dt =

∫ π

−π

gn(t)dt −→
∫ π

−π

0 dt = 0.

But since H(u) = 2π/c0 �= 0, this is a contradiction. It follows that p(z) must
have a root in C. ��

Corollary B.4. (i) Every nonzero polynomial p(z) of degree d with coeffi-
cients in C can be factored into d linear factors as

p(z) = c(z − α1) · · · (z − αd),

where c ∈ C with c �= 0 and α1, . . . , αd are complex numbers.
(ii) Every nonzero polynomial p(z) of degree d with coefficients in C is a prod-

uct of powers of distinct linear factors as

p(z) = c(z − λ1)
m1 · · · (z − λk)

mk ,

where c ∈ C with c �= 0 and λ1, . . . , λk are distinct complex numbers and
m1, . . . ,mk are positive integers satisfying m1 + · · ·+mk = d.

(iii) (Real Fundamental Theorem of Algebra) Every nonzero polynomial
p(x) with coefficients in R can be factored as a finite product of linear
polynomials and quadratic polynomials with negative discriminants.

Proof. (i) The result is obvious when d = 0, since an empty product equals 1.
For d ≥ 1, it follows from Proposition B.3 by induction on d.

(ii) This follows from (i) by collating equal linear factors.

(iii) Note that if α ∈ C is a root of a polynomial p(x) with real coefficients,
that is, if p(α) = 0, then p(α) = p(α) = 0, and hence the conjugate α of α is
also a root of p(x). Thus linear factors of p(x) of the form (x−α), where α is
a nonreal complex number, occur in conjugate pairs. Since (x − α)(x − α) is
the polynomial x2 − 2�(α)x + |α|2 with real coefficients whose discriminant
is negative, we see that (i) implies (iii). ��

Recall that part (iii) of Corollary B.4 was stated earlier in Chapter 1.

Remark B.5. Numerous proofs of the Fundamental of Algebra are known,
and in fact, the theorem can be proved using techniques developed in many
of the advanced courses in mathematics such as complex analysis, topology,
and Galois theory. The proof that we have chosen is closer to the spirit of this
book and uses some of the ideas developed in Chapter 10. For a variety of
other proofs, see the nice book of Fine and Rosenberger [30]. �
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R
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n
√
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(−∞, a) semi-infinite interval {x ∈ R : x < a} 9
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A.M. arithmetic mean 12
G.M. geometric mean 12
D \ C {x ∈ D : x �∈ C} 13
D × E {(x, y) : x ∈ D and y ∈ E} 14
f|C restriction of f : D → E to a subset C of D 16
g ◦ f composite of g with f 16
f−1 inverse of an injective function f 16
f = 0 f is the zero function (on its domain) 17
f ≤ g f(x) ≤ g(x) for all x 17
f ≥ 0 f(x) ≥ 0 for all x 17
R[x] set of all polynomials in x with coefficients in R 18

deg p(x) degree of a nonzero polynomial p(x) 18
IVP intermediate value property 29
H.M. harmonic mean 34
GCD greatest common divisor 37
LCM least common multiple 37
(an) sequence whose nth term is the real number an 41

an → a sequence (an) tends to a real number a 42
lim

n→∞
an limit of the sequence (an) 43

an = O(bn) (an) is big-oh of (bn) 51
an = o(bn) (an) is little-oh of (bn) 52
an ∼ bn (an) is asymptotically equivalent to (bn) 52
an →∞ sequence (an) tends to ∞ 52
an → −∞ sequence (an) tends to −∞ 52

�→ does not tend to 53
lim sup
n→∞

an limit superior of (an) 60

lim inf
n→∞

an limit inferior of (an) 60

lim
x→c

f(x) limit of f(x) as x tends to c 84

lim
x→c−

f(x) left limit of f(x) as x tends to c 89

lim
x→c+

f(x) right limit of f(x) as x tends to c 90

f(x) = O(g(x)) f(x) is big-oh of g(x) as x→∞ 92
f(x) = o(g(x)) f(x) is little-oh of g(x) as x→∞ 92
f(x) ∼ g(x) f(x) is asymptotically equivalent to g(x) 93

f ′(c),
df

dx

∣∣∣∣
x=c

derivative of f at c 106

f ′′(c),
d2f

dx2

∣∣∣∣
x=c

second derivative of f at c 114

f (n)(c),
dnf

dxn

∣∣∣∣
x=c

nth derivative of f at c 114
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f ′
−(c) left derivative of f at c 115
f ′
+(c) right derivative of f at c 115

MVT Mean Value Theorem 122
≈ approximately equal 126

L’HR L’Hôpital’s Rule 135, 136
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m(f) infimum of {f(x) : x ∈ [a, b]} 182
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U(f) upper Riemann integral of f 183∫ b

a
f(x)dx Riemann integral of f on [a, b] 185
f+ positive part of f 202
f− negative part of f 202
FTC Fundamental Theorem of Calculus 204∫
f(x)dx an indefinite integral of f 206[

F (x)
]b
a
, F (x)

∣∣b
a
F (b)− F (a) 206

S(P, T , f) Riemann sum for f corresponding to
a partition P and a tag set T 211

μ(P ) mesh of a partition P 211
�(D) length of a bounded subset D of R 221
ln logarithmic function 234
e unique real number such that ln e = 1 234

exp exponential function 236
arctan arctangent function 246

π 2 sup{arctanx : x ∈ (0,∞)} 247
∠(OP1, OP2) angle between OP1 and OP2 269

L1 ‖ L2 lines L1 and L2 are parallel 271
L1 ∦ L2 lines L1 and L2 are not parallel 271
�(L1, L2) (acute) angle between L1 and L2 271
L1 ⊥ L2 lines L1 and L2 are perpendicular 272
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�(C1, C2;P ) angle at P between C1 and C2 273
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Vol (D) volume of a solid body D 303, 307
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Area (S) area of a surface S 325
Av(f) average of f 329
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R
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k=1 fk sum function of

∑
k≥1 fk, when convergent 438
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Definition/Description Page

Bn(f) nth Bernstein polynomial function associated with f 449
ak(f), bk(f) Fourier coefficients of f 453

Sn(f) nth partial sum of the Fourier series of f 453
σn(f) arithmetic mean of S0(f), S1(f), . . . , Sn(f) 453
Dn nth Dirichlet kernel 454
Kn nth Fejér kernel 454

fn → f boundedly (fn) converges boundedly to f 458
f(·, u) function given by t �−→ f(t, u) for a fixed u 467
f(t, ·) function given by u �−→ f(t, u) for a fixed t 467∫ b

a
f(t, ·)dt integral function given by u �−→

∫ b

a
f(t, u)dt 467

D1f(·, u) derivative of the function f(·, u) for a fixed u 469
D2f(t, ·) derivative of the function f(t, ·) for a fixed t 469∫

t≥a
f(t, ·)dt improper integral of f on [a,∞) depending on a parameter 472

∫∞
a

f(t, ·)dt improper integral function given by u �−→
∫∞
a

f(t, u)dt 472
Fs(f) Fourier sine integral of f 476
Fc(f) Fourier cosine integral of f 476
L(f) Laplace integral of f 477∫

a<t≤b
f(t, ·)dt improper integral of f on (a, b] depending on a parameter 486

∫ b

a+ f(t, ·)dt improper integral function given by u �−→
∫ b

a+ f(t, u)dt 486

Q
+ set of positive rational numbers 503

[a] equivalence class of a 504
C set of all Cauchy sequences of rational numbers 506
R set of all equivalence classes of elements of C 507

[(an)] equivalence class of a sequence (an) in C 507
(r) constant sequence having each term equal to r 507
Q set of all equivalence classes of constant sequences in C 507
R+ set of all equivalence classes of positive sequences in C 508
0F additive identity in a field F 512
1F multiplicative identity in a field F 512
C set of all complex numbers 517
�(z) real part of a complex number z 517
 (z) imaginary part of a complex number z 517
z conjugate of a complex number z 517
|z| absolute value of a complex number z 517
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α-δ condition, 93
β-δ condition, 94
ε-α condition, 91
ε-δ condition, 72, 83, 88
γ, 279
π, 247
e, 234
kth Term Test, 372
nth term, 505

A.M.-G.M. inequality, 12
A.M.-H.M. inequality, 38
Abel kth Term Test, 372, 417
Abel Inequality, 34
Abel Lemma, 382
Abel Test, 419, 421, 494, 496
Abel Theorem, 498, 499
abscissa of convergence, 443, 478
absolute extremum, 150
absolute maximum, 149
absolute minimum, 149
absolute value, 10, 513, 517
absolutely convergent, 370, 396
accumulation point, 83
acute angle, 269
algebraic function, 20
algebraic number, 22
alternating series, 368
angle, 269
angle between two curves, 273
angle between two lines, 271
antiderivative, 205
arc length, 316, 318

archimedian ordered field, 513
archimedian property, 5, 509
arctangent function, 246, 247
area, 185, 296
arithmetic–geometric mean, 63
Arzelà Theorem, 461, 462
asymptote, 94
asymptotic error constant, 180
asymptotically equivalent, 93
attains bounds, 23
average, 328, 329

base, 239
base of the natural logarithm, 243
basic inequalities for absolute values, 10
basic inequalities for powers and roots,

10
basic inequality for rational powers, 38
basic inequality for Riemann integrals,

186
Bernstein polynomial function, 449
Bernstein Theorem, 450
beta function, 413, 502
bijective, 15
binomial coefficient, 32
Binomial Inequality, 11, 38
binomial series, 390, 423
Binomial Theorem, 6, 33, 449
Bliss Theorem, 231
Bolzano–Weierstrass Theorem, 55
boundary, 220
boundary point, 150
bounded, 4, 22, 505, 518
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bounded above, 4, 22, 505
bounded below, 4, 22, 505
bounded convergence, 458, 464, 486
bounded interval, 9
bounded variation, 417

Carathéodory Lemma, 108
cardioid, 267
Cartesian coordinates, 266
Cartesian equation, 267
Cauchy completeness, 58, 516
Cauchy Condensation Test, 417
Cauchy condition, 232
Cauchy Criterion, 58, 89, 91, 368, 394,

430, 439, 474
Cauchy form of remainder, 148
Cauchy Mean Value Theorem, 134
Cauchy principal value, 406, 408
Cauchy product, 422
Cauchy Root Test, 376
Cauchy sequence, 56, 505
Cauchy–Schwarz Inequality, 12
ceiling, 6
ceiling function, 21
centroid, 330, 331, 333
Cesàro convergent, 53, 371
Cesàro mean, 371
Cesàro sum, 371
Cesàro summable, 371
Chain Rule, 113
closed interval, 9
closed set, 73
cluster point, 59
codomain, 14
coefficient, 18, 382
common refinement, 183
Comparison Test, 373, 401, 410, 464
complete ordered field, 513
completeness property, 5, 510
complex exponential, 518
complex number, 517
complex-valued function, 518
composite, 16
Compound Midpoint Rule, 343
Compound Rectangular Rule, 343
Compound Simpson Rule, 345
Compound Trapezoidal Rule, 344
concave, 24
concave downward, 24

concave upward, 24
conditionally convergent, 371, 396
congruence modulo n, 505
conjugate, 517
constant function, 16
constant polynomial, 18
content zero, 218
continuous, 67, 518
Continuous Inverse Theorem, 79
continuously differentiable, 120
contraction, 179
contractive, 179
Convergence of Newton sequences, 170
Convergence Test for Fourier Integrals,

405
Convergence Test for Trigonometric

Series, 380
convergent, 42, 366, 392, 406–408, 411
converges, 42, 366, 392
converges boundedly, 458, 464, 485
converges pointwise, 426, 438, 472
converges uniformly, 429, 438, 473
convex, 24
coprime, 8
cosecant function, 255
cosine function, 250
cotangent function, 256
countable, 15
countably infinite, 15
criss-cross function, 80
critical point, 150
cubic polynomial, 18
cut, 515

D’Alembert Ratio Test, 375
decimal expansion, 65
decreasing, 24, 47
Dedekind cut, 515
definite integral, 206
degree, 18, 20
degree measure, 270
denumerable, 15
derivative, 106, 518
differentiable, 106, 518
Differentiable Inverse Theorem, 114
digamma function, 502
digit, 65
Dini Theorem, 432
Dirichlet function, 68, 186
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Dirichlet kernel, 454
Dirichlet series, 442
Dirichlet Test, 379, 404, 422, 440, 464,

475, 500
discontinuous, 67
discriminant, 19
disk method, 310
divergent, 42, 366, 392, 406–408
diverges, 52, 366, 392
domain, 14
domain additivity, 190, 229
Dominated Convergence Theorem, 435

elementary function, 277
elementary transcendental function, 274
endpoint, 9
enumeration, 15
equivalence class, 504
equivalence relation, 504
error function, 363
error in linear approximation, 160
error in quadratic approximation, 161
Euler constant, 279
Euler Summation Formula, 398
even function, 16
exponent, 239
exponential function, 236
exponential series, 367
Extended Mean Value Inequality, 125
Extended Mean Value Theorem, 124
extended real numbers, 9

factorial, 32
Fejér kernel, 454
Fejér Theorem, 456
Fichtenholz–Lichtenstein Theorem, 468
field, 512
finite set, 15
First Derivative Test, 153, 154
fixed point, 163
floor, 6
floor function, 21
folium of Descartes, 358
for all large k ∈ N, 366
for all large t ∈ [a,∞), 391
Fourier coefficient, 453
Fourier cosine integral, 476
Fourier integral, 476
Fourier series, 453

Fourier sine integral, 476
FTC, 202
function, 14
Fundamental Theorem of Calculus, 204
Fundamental Theorem of Riemann

Integration, 207

G.M.-H.M. Inequality, 34
gamma function, 414, 487
GCD, 37, 39
Generalized AM-GM Inequality, 286
Generalized Binomial Inequality, 11
geodesic, 320
geometric series, 367
graph, 13
great circle, 321
greatest common divisor, 37, 39
greatest lower bound, 4
grouping of terms, 423
growth rate, 52, 93

Hölder Inequality, 286
half-open interval, 9
harmonic mean, 34
harmonic series, 367
Hausdorff property, 34
helix, 319
horizontal asymptote, 94
hyperbolic cosine, 280
hyperbolic sine, 280
hypergeometric series, 418

identity function, 16
imaginary part, 517, 518
implicit differentiation, 117
implicitly defined curve, 116
improper integral, 391, 407
improper integral function, 472
increasing, 24, 47
increment function, 109
indefinite integral, 206
induction, 33
inequality for rational roots, 38
infimum, 4
infinite interval, 9
infinite series, 365
infinite set, 15
infinitely differentiable, 114
infinity, 9
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injective, 15
instantaneous speed, 106
instantaneous velocity, 106
integer part, 6, 513
integer part function, 21
integrable, 185, 216, 518
integral, 518
integral function, 467
Integral Test, 397
Integration by Parts, 208
Integration by Substitution, 209
interior point, 106
Intermediate Value Property, 29
Intermediate Value Theorem, 79
interval, 9
interval of convergence, 383
inverse function, 16
inverse trigonometric function, 256
irrational number, 7
IVP, 29, 120

Jensen Inequality, 36

L’Hôpital’s Rule, 135, 136
Lagrange form of remainder, 125
Lagrange Identity, 13
Laplace integral, 477
laws of exponents, 6, 245
laws of indices, 6, 245
LCM, 37
leading coefficient, 18
least common multiple, 37
least upper bound, 4
left (hand) derivative, 115
left (hand) limit, 89
Leibniz Rule, 115, 228
Leibniz Test, 380, 441, 465
lemniscate, 268
length, 218, 221, 318, 363
limaçon, 268
limit, 42, 84, 91
Limit Comparison Test, 373, 402
limit inferior, 60
limit of composition, 101
limit point, 83
limit superior, 60
Limit Theorem, 43, 86
linear approximation, 159
linear convergence, 179

linear polynomial, 18
Lipschitz condition, 203
local extremum, 26, 153
local maximum, 26
local minimum, 26
log-convex, 415
log-convexity of the gamma function,

424
logarithmic function, 234
logarithmic function with base a, 243
lower bound, 4
lower Riemann integral, 185
lower sum, 183

Maclaurin series, 386
map, 14
maximum, 5
Mean Value Inequality, 122
Mean Value Theorem, 122
Mean Value Theorem for Integrals, 231,

232
mesh, 211
Midpoint Rule, 341
minimum, 5
Minkowski Inequality, 286
modulus, 10, 517
monic polynomial, 18, 519
monotone completeness, 516
Monotone Convergence Theorem, 435,

460
monotonic, 24, 47
monotonic sequence of functions, 432
monotonically decreasing, 24, 47
monotonically increasing, 24, 47
multiplicity, 146, 147
MVT, 119

natural logarithm, 234
natural number, 1
negative, 3
negative part, 202
Nested Interval Theorem, 66
Newton method, 169
Newton sequence, 169
Newton–Raphson method, 169
nodes, 341
nonconstant polynomial, 519
nonexpansive, 179
nonnegative function, 17
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normal, 117, 118
null sequence, 506
number line, 1

oblique asymptote, 95
obtuse angle, 269
odd function, 16
one-dimensional content zero, 218
one-one, 15
one-to-one correspondence, 15
onto, 14
open interval, 9
order completeness, 516
order isomorphism, 513
order of convergence, 180
ordered field, 512
orthogonal intersection of curves, 273
orthogonality relations, 282

Pólya Theorem, 497
Pappus Theorem, 337, 338
parameter domain, 307
parametrically defined curve, 116
parity, 504
partial fraction decomposition, 19
partial integral, 392
partial integral function, 392, 472
partial sum function, 438
Partial Summation Formula, 379
partition, 182
Pascal triangle, 32
Pascal triangle identity, 32
periodic, 227
perpendicular lines, 272
Picard Convergence Theorem, 165
Picard method, 165
Picard sequence, 165
piecewise smooth, 318
point of inflection, 26, 157
pointwise bounded, 492
pointwise convergence, 426, 438, 472
pointwise equicontinuous, 499
pointwise limit, 426
polar coordinates, 266
polar equation, 267
polynomial, 17
polynomial function, 20
positive, 508
positive part, 202

power, 6, 7, 239
power function, 241, 243
power mean, 39
power mean inequality, 291
power series, 382, 446
prime number, 37
primitive, 205
Prismoidal Formula, 363

quadratic approximation, 161
quadratic convergence, 180
quadratic polynomial, 18
quadrature rule, 341
quotient, 17
quotient rule, 111

Raabe Test, 377, 418
radian measure, 270
radius of convergence, 383
range, 14
Ratio Test, 375
rational function, 19, 20
rational number, 1
real analytic function, 391
Real Fundamental Theorem of Algebra,

19, 522
real part, 517, 518
real-valued function, 17
rearrangement of terms, 423
reciprocal, 3
rectangular coordinates, 266
Rectangular Rule, 341
rectifiable, 363
recurring decimal expansion, 65
reduced form, 8
refinement, 183
reflexive, 504
relation, 504
relatively prime, 8
remainder, 125
residue classes modulo n, 505
restriction, 16
rhodonea curves, 268
Riemann condition, 188
Riemann integral, 185, 216
Riemann sum, 211
right (hand) derivative, 115
right (hand) limit, 90
right angle, 269
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Rolle Theorem, 121
root, 7, 18, 147
root mean square, 39
Root Test, 376, 402
rose, 268

Sandwich Theorem, 45, 87, 368, 394
Schlömilch form of remainder, 148
secant function, 255
second derivative, 114
Second Derivative Test, 154
semiopen interval, 9
sequence, 41, 490, 505
sequence of partial sums, 366
sequence of terms, 366
series, 365, 490
shell method, 311
signed angle, 270
Simpson Rule, 342
sine function, 250
slice, 302
sliver, 306
smooth, 316
solid angle, 326
solid of revolution, 309
spiral, 267
steradian, 327
Stirling Formula, 288
strict local extremum, 27
strict local maximum, 27
strict local minimum, 27
strict point of inflection, 27
strictly concave, 26
strictly convex, 26
strictly decreasing, 26
strictly increasing, 26
strictly monotonic, 26
subinterval, 9
subinterval induced by a partition, 182
subsequence, 54
sum, 366, 438
sum function, 438
supremum, 4
surface area, 307
surjective, 14
symmetric, 16, 504

tag set, 211
tail of a series, 366
tail of an improper integral, 392
tangent, 117

tangent function, 249
tangent line approximation, 160
Taylor Formula, 125
Taylor polynomial, 125
Taylor series, 386
Taylor Theorem, 124, 230
telescoping series, 369
tends, 52
term, 41
Test for Uniform Convergence, 429, 439,

473
Thomae function, 88, 146, 195
transcendental function, 21, 274
transcendental number, 22
transitive, 504
Trapezoidal Rule, 342
Triangle Inequality, 10, 518
trigonometric function, 256
trigonometric polynomial function, 452
trigonometric series, 441, 452

unbounded interval, 9
unbounded set, 4
uncountable, 15
uniform Cesàro convergence, 456, 498
uniform convergence, 429, 438, 442, 446,

473, 476, 477
uniform limit, 429
uniformly bounded, 430
uniformly Cauchy, 430
uniformly continuous, 81
uniformly equicontinuous, 499
upper bound, 4
upper Riemann integral, 185
upper sum, 183

value of an improper integral, 392,
406–408

vertical asymptote, 95

Wallis Formula, 287
washer method, 310
Weierstrass Approximation Theorem,

451, 457
Weierstrass M-Test, 439, 474, 486
weight, 341
weight function, 329
weighted average, 329

zero function, 17
zero polynomial, 18


	A Construction of the Real Numbers
	A.1 Equivalence Relations
	A.2 Cauchy Sequences of Rational Numbers
	A.3 Uniqueness of a Complete Ordered Field

	B Fundamental Theorem of Algebra
	B.1 Complex Numbers and Complex Functions
	B.2 Polynomials and Their Roots

	References
	List of Symbols and Abbreviations
	Index



