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1. Introduction
A real number can be represented in many ways. The most popular

representation is by decimal expansion; i.e., expressing a real number as
a geometric series with base 10. A modification of this representation
is expressing a real number as a geometric series with base n for any
positive integer n ≥ 2, called as the n-ary expansion.

The decimal expansion of a real number provides a convenient method
of representing rational and irrational numbers as well as approxima-
tions of irrational numbers by rational numbers. Furthermore, the
process of obtaining the decimal expansion of a real number has close
connections with dynamical systems and probability theory, which en-
ables one investigate its properties in more depth. In this presentation
I will briefly introduce the decimal expansion representation of real
numbers, obtain some important properties, and then focus on the dy-
namical properties of the “n-ary” map and some of its consequences.

The concept of decimal expansion goes back to 8th century when
Muhammad ibn-Musa Khwarizmi (c. 780-c. 850) introduced the ara-
bic number system in his book who on algebra. In its numerous trans-
lations into latin during 12th century, one encounters occasional use of
decimal notation. The regular use of the decimal point and decimal
notation appears to have been introduced about 1585 by Flemish sci-
entist Simon Stevinus (c. 1548-1620). It was Scottish mathematician
John Napier (1550-1617), the inventor of logarithms in 1614, who first
used and then popularized the decimal point to separate the whole part
from the fractional part of a number.

When |r| < 1, the geometric series
∑∞

k=0 r
k converges with the sum

1
1−r . If r = 1

10
and ai ∈ {0, 1, . . . , 8, 9}, for all i ≥ 0, then the series

∞∑
k=0

ak
10k

converges to a real number by comparison test. The idea of decimal
expansion is the process of obtaining the converse of this fact; namely,
given a real number x ∈ [0, 1), determining the sequence of integers
0 ≤ ai ≤ 9 such that x =

∑∞
k=0

ak
10k
. There is nothing special about the
1
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number 10; indeed, one can develop expansion of real numbers with
respect to any other base n ∈ N as well. In that case, the expansion is
called as the n-ary expansion.

2. Decimal Expansion Representation

Let’s look at the decimal expansion process closely. Given a real
number x ≥ 0.

(i) Let a0 = [x], where [�] is the greatest integer function. So,
x = a0 + p0, where 0 ≤ p0 < 1. Therefore, a0 ≤ x < a0 + 1, and
hence 10a0 ≤ 10x ≤ 10a0 + 9. Also, 0 ≤ 10p0 < 10.

(ii) Now, 10p0 = a1 + p1, where a1 = [10p0] is an integer and 0 ≤
p0 < 1. Thus, 0 ≤ a1 ≤ 9, and

a1 ≤ 10p0 < a1 + 1 ⇐⇒ a1 ≤ 10(x− a0) < a1 + 1,

which implies that

a0 +
a1
10
≤ x < a0 +

a1
10

+
1

10
.

(iii) Similarly, 10p1 = a2 + p2, where a2 = [10p1] is an integer and
0 ≤ p1 < 1. Thus, 0 ≤ a2 ≤ 9, and

a2 ≤ 10p1 < a2 + 1 ⇐⇒ a2 ≤ 10(10p0 − a1) < a2 + 1

⇐⇒ a2 ≤ 102p0 − 10a1 < a2 + 1

⇐⇒ a2 ≤ 102(x− a0)− 10a1 < a2 + 1,

which implies that

a0 +
a1
10

+
a2
102
≤ x < a0 +

a1
10

+
1

10
+

a2
102

.

Continuing in this process and letting 10pk−1 = ak + pk, where
ak = [10pk−1] and 0 ≤ pk < 1, we obtain integers ai ∈ {0, 1, . . . , 9},
0 ≤ i ≤ k, such that

a0 +
a1
10

+ · · ·+ ak
10k
≤ x < a0 +

a1
10

+ · · ·+ ak
10k

+
1

10
.

Observe that if an = 0 for some n, then ai = 0 for all i ≥ n; hence
the process terminates. Otherwise the process continues indefinitely.
In the case that the process terminates at the nth step, we have

(1) x = a0 +
a1
10

+ · · ·+ an
10n

;

and when the process continues indefinitely, we have

(2) x = a0 +
a1
10

+ · · ·+ an
10n

+ · · · =
∞∑
k=0

ak
10k

.
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These expressions (1) and (2) are called the decimal expansions of the
real number x, where (1) is finite and (2) is infinite, and are denoted
by

x = a0.a1a2 . . . an−1an, or x = a0.a1a2 . . . an . . . , respectively.

Remarks. 1. In the case that the process continues indefinitely, the
decimal expansion process outlined above shows that, at any step n ≥
1, we have

a0 +
a1
10

+ · · ·+ an
10n
≤ x < a0 +

a1
10

+ · · ·+ an
10n

+
1

10
.

Hence, we obtain two sequences of finite decimals each converging to
x, one increasing from below and the other decreasing from above. By
repeating this procedure sufficiently many times, the decimal expansion
of x can be obtained to any desired degree of accuracy.

2. In the case that the process continues indefinitely, there are two
possibilities: either the sequence of terms {ai} has no repetition, or it
repeats, in the sense that, for some positive integers k and m, ak =
ak+m; hence, the decimal expansion has the form

a0.a1a2 . . . akak+1ak+2 . . . ak+m−1akak+1 . . . ,

which we denote, for convenience, as

a0.a1a2 . . . ak−1akak+1ak+2 . . . ak+m−1,

where akak+1ak+2 . . . ak+m−1 denotes that the string of terms ak, ak+1, . . . , ak+m−1
repeats indefinitely.

3. If a0.a1a2 . . . ak−1ak is a terminating decimal expansion, then it
can also be rewritten as as repeating decimal expansion as

a0.a1a2 . . . ak−1ak000 · · · = a0.a1a2 . . . ak0.

However, in order to distinguish such decimals from the decimals with
nonzero repeating parts, we will call them as finite decimal expansion.

Observe that if x = a0.a1a2 . . . ak0 =
∑k

i=0
ai
10i

; hence x ∈ Q. If x =
a0.a1a2 . . . ak−1akak+1ak+2 . . . ak+m−1, then letting y = a0.a1a2 . . . ak−1
and z = 0.akak+1ak+2 . . . ak+m−1, we see that y, z ∈ Q. Then,

akak+1ak+2 . . . ak+m−1 =
10m

10m − 1
z;

and hence x = y + 10m

10m−1z ∈ Q. Thus, any finite or repeating decimal
expansion represents a rational number. The converse of this statement
is also valid.
Fact.1 If x ∈ Q, then it has either finite or repeating decimal expan-
sion.
Proof. For convenience, we will assume that x ∈ (0, 1); hence, we
have a0 = [x] = 0. Let x = r

s
, r, s ∈ Z+, and recalling the process of
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obtaining decimal expansion of numbers above, we observe that p0 = r
s
,

and
10(

r

s
) = a1 +

r1
s
, where 0 ≤ r1

s
< 1,

10(
r1
s

) = a2 +
r2
s
, where 0 ≤ r2

s
< 1,

. . .

10(
rk−1
s

) = ak +
rk
s
, where 0 ≤ rk

s
< 1.

Multiplying both sides by s at each step above, we see that this process
is exactly the division algorithm:

10r = a1s+ r1, where 0 ≤ r1 < s,

10r1 = a2s+ r2, where 0 ≤ r2 < s,

. . .

10rk−1 = ak + rk, where 0 ≤ rk < s.

Notice that if one of rk = 0, then ri = 0 for all i ≥ k, i.e., the process
stops and we have finite decimal expansion. For otherwise, since ri ∈
{1, 2, . . . , 9}, there will be integers k < m such that rm = rk. Then,
by division algorithm, we will have rm+i = rk+i for 0 ≤ i ≤ m − k. In
turn, we also have that am+i = ak+i for 0 ≤ i ≤ m− k; hence the block
akak+1 . . . am−1 repats, which yields to repeating decimal expansion.

Corollary. A real number x is irrational if and only if it has a non-
repeating decimal expansion.

Remark. Observe that, if x = a0.a1a2 . . . an, i.e., x has finite decimal
expansion, then, by the division algorithm, we also have that

x = a0.a1a2 . . . an−1(an − 1)999 · · · = a0.a1a2 . . . an−1(an − 1)9.

Thus, decimal expansion of a rational numbers need not be unique!
This is an unpleasant situation.

Question. Can we circumvent this problem?

It turns out that the remedy is bringing some tolls of dynamical
systems into the process. Hence, dynamics comes to the rescue! Next
we will discuss this in length and at the same time study an interesting
type of dynamical systems.

3. The Connection with the Ten-fold Map

Let’s look at the process of finding the (decimal) digits in decimal
expansion process in an alternative way. Again, we will focus on x ∈
[0, 1).

Partition [0, 1) into 10 equal subintervals [ i
10
, i+1

10
), 0 ≤ i ≤ 9, and, if

x ∈ [ i
10
, i+1

10
), let a1 = i. Then divide [ i

10
, i+1

10
) into 10 equal subintervals
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[ i
10

+ j
102
, i+1

10
+ j

102
), 0 ≤ j ≤ 9, and, if x ∈ [ i

10
+ j

102
, i+1

10
+ j

102
), let

a2 = j. Continuing in this manner, we obtain all the digits ak such that

x = 0.a1a2a3 . . . an . . . .

At each step, this process is the same as multiplication of x by 10 and
taking mod 1. Namely, repeated the action of the ten-fold map T on
[0, 1), where

T (x) =



10x− 0 if 0 ≤ x <
1

10

10x− 1 if
1

10
≤ x <

2

10
. . .

10x− 9 if
9

10
≤ x < 1.

Therefore,

a1 = i1 if i1
10
≤ x < i1+1

10
⇐⇒ Tx = 10x− i1

a2 = i2 if i2
10
≤ Tx < i2+1

10
⇐⇒ T 2x = 10(Tx)− i2

. . .

ak = ik if ik
10
≤ x < ik+1

10
⇐⇒ T kx = 10(T k−1x)− ik,

and consequently,

x =
a1
10

+
1

10
Tx

=
a1
10

+
1

10
(
a2
10

+
1

10
T 2x)

. . .

=
a1
10

+
a2
102

+
a3
103

+ · · ·+ ak
10k

T kx.

Remark. It also follows from the arguments above that ak = [10T k−1x]
when x = 0.a1a2a3 . . . an . . . .

If x = m
10k

for some k,m ∈ Z+, then T kx = 0; and hence, x =∑k−1
i=1

ai
10i
. On the other hand, if T kx 6= 0, ∀k ∈ Z+, then taking limit

as k →∞, we have x =
∑∞

i=1
ai
10i
. In particular,

a) if x has finite (terminating) decimal expansion, then T kx = 0
eventually,

b) if x has periodic infinite decimal expansion, then T kx = x for
some k, and

c) if x has non-periodic infinite decimal expansion, then T kx wan-
ders in [0, 1).
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Remark. In this process no decimal expansion with infinite 999 . . .
occur. Hence, we settled the non-uniqueness problem!

If one looks at the behavior of T observed above more closely, much
more interesting properties of T can be exhibited. For, let’s define the
orbit of T by OT (x) = {T kx}∞k=0. Hence,

a) if x ∈ Q ∩ [0, 1), then OT (x) is finite, and
b) if x ∈ Qc ∩ [0, 1), then OT (x) is finite,

which is a more descriptive characterization.

Next, observe that if x =
∑∞

k=1
ak
10k
, then Tx =

∑∞
k=2

ak
10k
. In other

words
T (0.a1a2a3 . . . ak . . . ) = 0.a2a3a4 . . . ak+1 . . . ,

so, the action of T on the decimal expansion of any real number is
moving the decimal point one step right (right-shift)! These (and other)
properties of T are special case of properties of a more general map,
known as n-fold map and its properties as a dynamical system. That
is why, in the rest of this note we will study this map in the dynamical
system context.

4. The n-fold Map Tn
A topological dynamical system is a pair (X,T ), where X is a topo-

logical space and T : X → X is a map compatible with the topology.
Typically X is a metric space and T is a continuous map, or a map
with finitely many discontinuities. Among such dynamical systems the
n-fold (or n-ary) system has some special properties. In this section we
will define and provide some basic features of the n-fold system that
will pave way to an important class of symbolic dynamical systems
called shift spaces.

Let X = [0, 1) with the usual Euclidean metric and, for any n ≥ 2,
let Tn : [0, 1) → [0, 1) be defined by Tn(x) = nx(modn), x ∈ [0, 1).
Hence,

Tn(x) =


nx if 0 ≤ x < 1/n

nx− 1 if 1/n ≤ x < 2/n

. . .

nx− (n− 1) if (n− 1)/n ≤ x < 1.

The system ([0, 1), Tn) is called the n-fold (or n-ary) system. When
n = 2 it is called the doubling system (map). Some simple properties
of the n-fold map are as follows:

1. Tn has n branches, i-th branch is maps the interval [ i−1
n
, i
n
) to

[0, 1), 1 ≤ i ≤ n.
2. Tn has periodic points of all orders. (A point x ∈ X is called a

periodic point of period n of a system (X,T ) if T nx = x and n
is the smallest such positive integer.) Periodic points of period
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one are also called fixed points. 0 is the only periodic point for
all n-fold maps. Indeed, an n-fold map has n − 1 fixed points;
for instance, binary map has only 0 as fixed point, 10-fold map
has 0, 1

9
, 2
9
, 3

9
, . . . , 8

9
as fixed points. Also, for the binary map,

among others, 1/3 has period 2, 4/7 has period 3, 1/5 has period
4, . . . etc. Indeed, every rational point is a periodic point for
the n-fold map. The converse is also valid.

3. Tn is transitive, that is, there exists x ∈ [0, 1) such that the set
{T kx}∞k=0 is dense in [0, 1). In a dynamical system (X,T ) the
set OT (x) = {T kx}∞k=0 is called as the orbit of the point x ∈ X.
Since rational points are those with periodic orbits by (3) above,
irrational points are not periodic; hence, the transitive points
of the n-fold map are among rationals. We will not exhibit an
example of a transitive point of this system here, it’ll be left
to the next section when we investigate the shift spaces. If
OT (x) = X for all x ∈ X in a dynamical system (X,T ), it is
called a minimal system. Clearly, ([0, 1), Tn) is not minimal.

For a dynamical system (X,T ), if X is endowed with a measure
µ (with the associated sigma algebra of measurable subsets of X, the
triple (X,µ, T ) is also called a measurable dynamical system. If µ(E) =
µ(T−1E) for all measurable E, then we say that T preserves µ, and µ
is T -invariant. If [0, 1) is endowed with the Lebesgue measure m, then
Tn preserves m. For, it is enough to show the m(Tn(I)) = m(I) for any
interval I ⊂ [0, 1). If I = [a, b), then T−1I = ∪n−1i=0 [ a

n
+ i

n
, b
n

+ i
n
). Hence,

m(T−1n [a, b)) =
n−1∑
i=0

m([
a

n
+
i

n
,
b

n
+
i

n
)) = b− a = m([a, b)).

m is not the only Tn-invariant measure on [0, 1), indeed there are un-
countably many measures µ on [0, 1) (equivalent to m) that are Tn-
invariant. Again, we will exhibit such measure in the next section.
If µ is the only T -invariant measure of a dynamical system (X,µ, T ),
then the system is called uniquely ergodic. Thus, ([0, 1),m, Tn) is not
uniquely ergodic.

A map T of a dynamical system (X,µ, T ) is called ergodic if any
measurable set E with E = T−1E (called T -invariant set) has either
measure 0 or full measure. It turns out that Tn is ergodic. In order to
prove the ergodicity of Tn, we need a few technicalities.

A class C of subintervals of [0, 1) is called a covering class for [0, 1)
if every subinterval of [0, 1) is a countable disjoint union of elements
from C.
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Lemma. (Knopp’s Lemma) Let B ⊂ [0, 1) be a measurable set and C
be a covering class for [0, 1). If

(∗) ∀A ∈ C, m(A ∩B) ≥ γm(A),

where γ > 0 is independent of A, then m(B) = 1.

Proof. We will prove the statement by contradiction. Assume that
m(B) < 1, i.e., m(Bc) > 0. Since B is a measurable set, B = C ∪D,
where C is a Borel set with m(B) = m(C) and m(D) = 0. Thus
m(Cc) > 0 as well. Now, given ε > 0, there a set Eε which is a finite
disjoint union of open intervals in [0, 1) such that m(Cc4Eε) < ε.
Hence, Eε is a countable disjoint union of elements from C. Therefore,
by (*), it follows that m(C ∩ Eε) ≥ γm(Eε). Then,

m(Cc4Eε) ≥ m(C ∩ Eε) ≥ γm(Eε) ≥ γm(Cc ∩ Eε) > γ(m(Eε)− ε).
This implies that γ(m(Eε)− ε) < m(Cc4Eε) < ε. Therefore, we must
have γm(Cc) < ε+γε. Since ε is arbitrary, this implies that m(Cc) = 0,
contradiction.

Fact.1 Tn is ergodic.

Proof. We will prove the that T2 is ergodic for simplicity, ergodicity
of Tn follows the same lines. Let B be a T2-invariant measurable sub-
set of [0, 1). Consider dyadic intervals Dn,k = [ k

2n
, k+1

2n
), where n is a

positive integer and k = 0, 1, 2, . . . , 2n − 1. Then the collection C of all
dyadic intervals is a covering class for [0, 1). Also, m(Dn,k) = 2−n and
T n2 (Dn,k) = [0, 1) for each k = 0, 1, 2, . . . , 2n − 1. Also, it follows by
induction that, for any measurable set A,

m(T−n2 A ∩Dn,k) = 2−nm(A) = m(A)m(Dn,k), k = 0, 1, 2, . . . , 2n − 1.

Since B is T2-invariant, his implies that

m(B ∩Dn,k) = m(B)m(Dn,k), for all n > 0, k = 0, 1, 2, . . . , 2n − 1.

If γ = m(B) > 0, then it follows that m(B ∩ C) ≥ γm(C) for any
C ∈ C. Hence, by Knopp’s Lemma, m(B) = 1, i.e., T2 is ergodic.

Remark. A map T of a dynamical system (X,µ, T ) is called totally
ergodic if Tm is ergodic for all m ≥ 1. Since Tn is ergodic and since
Tmn = Tnm, it follows that Tn is totally ergodic.

A map T of a dynamical system (X,µ, T ) is called mixing if for all
measurable sets A and B, limn→∞ µ(T−nA∩B) = µ(A)µ(B). Observe
that in the proof of ergodicity of T2 we have shown that, for any mea-
surable set A,

m(T−n2 A ∩Dn,k) = m(A)m(Dn,k).

Since dyadic intervals area generating σ-algebra for measurable sets, it
follows that

lim
n
m(T−n2 A ∩B) = m(A)m(B),
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for all measurable sets A and B. Thus T2 is mixing. By the same proof
(adapted to n-adic intervals), it follows that Tn is mixing.

There is an intermediate property between ergodicity and mixing. A
map T of a dynamical system (X,µ, T ) is called weakly mixing if for
all measurable sets A and B,

lim
n→∞

1

n

n−1∑
k=0

|µ(T−kA ∩B)− µ(A)µ(B)| = 0.

By the Fact .2 below we have that

mixing ⇒ weak mixing ⇒ ergodicity,

hence, Tn is weakly mixing.

Fact.2 For a dynamical system, mixing ⇒ weak mixing ⇒ ergodicity.

Proof. By the Ergodic Theorem (see [5]) T is ergodic if and only if
for all measurable A,B,

(1) lim
n→∞

1

n

n−1∑
k=0

µ(T−kA ∩B) = µ(A)µ(B).

Also, it is known that, for any sequence (an) of real numbers,

(2) lim an = 0 ⇒ lim
n

1

n

n∑
k=1

|ak| = 0 ⇒ lim
n

1

n

n∑
k=1

ak = 0.

From (1) and (2) the assertion follows.

Two (topological) dynamical systems (X,T ) and (Y, S) are called
conjugate, and denoted by X ≡ Y, if there exists a homeomorphism
φ : X → Y such that φ ◦ T = S ◦ φ. Let Σ2 = {0, 1}N, the space of all
sequences of 0’s and 1’s. Define a metric d : Σ2 × Σ2 → R+ by

d((ak), (bk)) =
∞∑
k=1

|ak − bk|
2k

, (ak), (bk) ∈ Σ2.

Then (Σ2, d) is a metric space. Since {0, 1} is a compact metric space,
by Tychonoff’s Theorem, so is (Σ2, d). Now, define a map, called as the
(left) shift map, σ : Σ2 → Σ2 by σ((ak)) = (ak+1). The the dynamical
system (Σ2, σ) is called the 2-shift space (or shift space).

Remarks. 1. The metric space (Σ2, d) has topological dimension zero.

2. Σ2 is homeomorphic to Cantor set.

3. The shift map σ : Σ2 → Σ2 is two-to-one map (in the case σ : Σn →
Σn, it is an n-to-one map).

4. If Σ∗n = {0, 1, . . . , n−1}Z, then the map σ : Σ∗n → Σ∗n is a one-to-one,
onto and homeomorphism.
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It is well-known that any x ∈ [0, 1) can be represented in binary
expansion

x =
∞∑
k=1

ak
2k

= 0.a1a2a3 . . . ak . . . ,

where ak ∈ 0, 1. This representation is unique except for countably
many (rational) numbers, i.e., for those with binary expansion of the
form ∗1000 . . . 0 . . . , which also has binary expansion of the form ∗0111 . . . 1 . . . .
One can remedy this non-uniqueness by accepting the second expansion
only. Observe that, for any x ∈ [0, 1) with binary expansion (ak)k,

T2(x) = 2(
∞∑
k=1

ak
2k

)(mod2) =
∞∑
k=2

ak
2k−1

=
∞∑
k=1

ak+1

2k
= 0.a2a3a4 . . . ak+1 . . . .

Thus, T2(0.a1a2a3 . . . ak . . . ) = 0.a2a3a4 . . . ak+1 . . . . Now, if we define
the map φ : [0, 1)→ Σ2 by φ(x) = (ak)

∞
k=1, where x = 0.a1a2a3 . . . ak . . . ,

then φ is a bijection and a continuos map with continuous inverse. Fur-
thermore,

φ(T2x) = φ(0.a2a3a4 . . . ak+1 . . . ) = (a2a3a4 . . . ak+1 . . . )

= σ(a1a2a3 . . . ak . . . ) = σ(φ(0.a1a2a3 . . . ak . . . ))

= σ(φ(x)).

Hence, φ ◦ T2 = σ ◦ φ, i.e., ([0, 1), T2) and (Σ2, σ) are conjugate spaces.
Notice that, for anym ≥ 1, Tm2 (x) ≡ σm(ak), where x = 0.a1a2a3 . . . ak . . . .

Let Σn = {0, 1, 2, . . . , n − 1}N, the space of all sequences of letters
from the alphabet A = {0, 1, 2, . . . , n − 1}. As in the case of Σ2, this
space is also a compact metric space with the metric

d((ak), (bk)) =
∞∑
k=1

|ak − bk|
nk

, (ak), (bk) ∈ Σn.

If we define the shift map as above, the system (Σn, σ) is called the
n-shift space (or shift space). Similarly, it follows that ([0, 1), Tn) and
(Σn, σ) are conjugate spaces with the same conjugacy map φ.

5. The Full n-shift Space Σn

In this section we will investigate the (symbolic) dynamical system
(Σn, σ). Since it is conjugate to ([0, 1), Tn), we will also obtain some
(topological) properties of the n-fold map. In what follows, for sim-
plicity, we will only deal with Σ = Σ2.
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As in the case of n-fold map, Σ also has periodic point of all orders.
Indeed, it is very easy to exhibit such points: any point x ∈ Σ (i.e.,
any periodic sequence) of the form

x = (a1, a2, . . . , am, a1, a2, . . . , am, a1, . . . )

is a periodic point of periodm. Since ai ∈ {0, 1}, there are 2m−1 periodic
points of period m (we omit the point 1 = (1, 1, 1, . . . ) since it is not
in Σ). Consequently, there are only countable many periodic points of
Σ and they form a dense set.

Since the n-fold map T2 is transitive, so is σ. On the other hand it is
much easier to exhibit a point with dense orbit for Σ than for T2 : let

x = (01000110110000010100111001011101110000 . . . ).

Observe that x contains strings of all possible combinations of 0’s and
1’s in any length.

Claim. Oσ(x̄) = Σ. For, let y = (a1, a2, . . . , an, . . . ) ∈ Σ be arbitrary
and let ε > 0 be given. Pick n > 1 such that 1

2n
< ε. Since x contains

all possible strings of 0’s and 1’s of length n, applying σ to x sufficiently
many times, say N, we have σNx = (a1, a2, . . . , an, ∗∗∗∗∗). Then σNx
and y agree at the first n coordinates; hence,

d(σNx,y) ≤
∞∑

k=n+1

1

2k
=

1

2n
< ε.

Thus, the orbit of x is dense in Σ; hence, Σ is transitive. Notice that
since it has many periodic points, Σ is not minimal.

Remark. The set of transitive points of Σ form a dense Gδ-set in Σ.

These observations suggest that instead of studying Tn, one might
study Σn and transfer the properties that are invariant under conju-
gacy (i.e., topological invariants) to the former. How about measurable
properties? For, one needs to put a (suitable) measurable structure on
Σ and show that ([0, 1), T2) and (Σ, σ) are measure theoretically con-
jugate (i.e., isomorphic) as well.

Let [a]k := {(xn) ∈ Σ : xk = a}, where a ∈ {0, 1}. In general, let

[a0, a1, . . . , am]k := {(xn) ∈ Σ : xk = a0, xk+1 = a1, . . . , xk+m = am},

where ai ∈ {0, 1}, 0 ≤ i ≤ m. Notice that

[a0, . . . , am]k = {0, 1}×· · ·×{0, 1}×{a0}×{a1}×· · ·×{am}×{0, 1}×. . . ;

hence, such subsets of Σ are called the (basic) cylinder sets.

Fact.3 The cylinder sets are both open and closed, and the collection
C of cylinder sets forms a countable base for the topology of Σ.
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Proof. Let C = [a0, . . . , am]k. First, we will show that C is open. For,
if x ∈ C, then x = (x1, x2, . . . , xk−1, a0, a1, . . . , am, xk+m+1, . . . ). Let
ε = 1

2k+m+1 . Then

y ∈ B(x, ε) ⇐⇒
∞∑
i=1

|xi − yi|
2i

<
1

2k+m+1

⇐⇒ xi = yi for 1 ≤ i ≤ n+ k + 1,

which implies that yi = ai for k ≤ i ≤ n + k + 1; equivalently, y ∈ C.
Therefore, B(x, ε) ⊂ C; i.e., C is open.

Nest, let (xn) ⊂ C be a sequence such that xn → x. So, for all ε >
0, ∃N > 0 such that r ≥ N implies d(xr,x) < ε. Thus, for r ≥ N, we

must have
∑∞

i=1
|xi−xri |

2i
< ε. Therefore, if ε is small enough, this implies

that for all except finitely many r′s we have xri = xi, 1 ≤ i ≤ n+k+1.
Since such xr’s are in C, for r ≥ N, we have

x = (xi) = (∗, ∗, . . . , ∗, a0, a1, . . . , am, ∗, ∗ . . . ) ∈ C.
Therefore, C is closed.

Clearly, there are countably many cylinder sets of the form C. Given
any x ∈ Σ and ε > 0, there is a cylinder set C such that x ∈ C ⊂
B(x, ε). Hence the collection C forms a countable base for the topology
of Σ.
Remarks. 1. By the Fact above, every open set is a countable union
of cylinder sets. Since the cylinder sets are clopen and generate the
topology of Σ, the metric space Σ has topological dimension zero.

2. The collection C also forms a covering class for Σ; namely, (i) ∅ ∈ C,
and (ii) ∀ Ai ⊂ Σ, ∃ {Cn} ∈ C such that A ⊂ ∪nCn.

Since C is a covering class for Σ, any non-negative R#-valued set
function λ with domain C satisfying λ(∅) = 0 gives rise to an outer
measure µ∗ by

µ ∗ (A) = inf{
∑
n

λ(Cn) : {Cn} ⊂ C, A ⊂ ∪nCn}.

This, in turn, defines a measure on the Borel σ-algebra of subsets of
Σ. So, let’s construct such a measure.

Let p = (p0, p1) such that 0 ≤ p0, p1 ≤ 1 and p0 + p1 = 1. Define
ν({0}) = p0 and ν({1}) = p1. Then ν : {0, 1} → R+ is a probability
measure (on {0, 1}). Now, on the collection of cylinder sets C define a
set function λ : C → R+ by

λ([a0, a1, . . . , am]k) = Πm
i=0pai , ai ∈ {0, 1}.

Let µ be the restriction of the outer measure µ∗ generated by λ to the
Borel σ-algebra of subsets of Σ. Then, by Kolmogorov Extension The-
orem, the measure µ is uniquely defined. Notice that one can construct
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uncountable many such measures, called Bernoulli measures, and de-
noted by µp. Thus, (Σ,B, µp) is a probability measure for each choice
of p.

Now, observe that if C = [a0, a1, . . . , am]k is a cylinder set, then

σ−1(C) = {(xn) ∈ Σ : σ(xn) ∈ C}
= {(xn) ∈ Σ : xk+i+1 = ai, 0 ≤ i ≤ m},

which is also a cylinder set. Thus, σ is a measurable function on cylin-
der sets; hence, it is measurable on B. Furthermore,

µp(C) = Πm
i=0pai = µp(σ

−1(C));

hence, σ preserves µp. It follows that the system (Σ,B, µp, σ) is a mea-
sure preserving dynamical system!
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