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Abstract

The project is focused on discrimination and classification with two or more populations. The

goal is to gain some basic knowledge of the classical theory of classification and discrimination

for two and more populations, in normal and non-normal setups. In the project, the notions

of separation and classification, as well as methods of evaluating the classification functions and

Fisher’s method for discriminating among several populations are introduced and discussed. These

methods are then used to solve selected theoretical and practical problems posed after Chapter

11 in the book of Johnson and Wichern [4]. To make the solutions more illustrative, MINITAB

and R are used.
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1 Introduction

Discrimination and classification are multivariate techniques that are based on a multivariate

observation X. The goal of discrimination is to describe the differential features of objects (ob-

servations) that can separate the known collections (populations). The goal of classification is to

allocate a new object (observation) to previously defined groups.

In practice, when we want to discriminate the known populations (observations), we first need to

allocate them. Conversely, a discriminator will be needed to allocate the objects (observations),

so the goals of discrimination and classification are frequently overlapped (see pp. 376–377 in [2]).

For example, in the university, the grades that students get for final exam could be classified as

pass or fail. The determination can be made on the basis of exam scores by professor.

2 Separation and Classification for Two (or More) Popu-

lations

2.1 Basic Definitions

The idea of the separation and classification is to separate two (or more) classes of objects or to

assign a new object into two (or more) labeled classes π1 and π2 (or π1, π2,. . . , πk). We shall first

focus on two-class classification.

Suppose that the observed values of X> = (X1, X2, . . . , Xp) from population π1 can be de-

scribed by probability density functions f1(x) and the observed values from population π2 can

be described by probability density functions f2(x). The set of all possible sample outcomes

x = (x1, . . . , xn)> is divided into two regions R1 and R2 such that if a new object is allocated to

π1, it belongs to R1, and if a new object is allocated to π2, it belongs to R2.

It is clear that classification rules cannot be completely precise; there might be some cases that

we cannot distinguish between the features of the measured population because of the following

possible conditions that might occur in practice (see [3]): (1) incomplete knowledge of future

performance; (2) perfect information requires destroying the object; (3) unavailable or expensive

information.

Then, it is possible that the errors occur when we try to classify the measured objects into

the incorrect population, for example, classifying a π2 object as belonging to π1 or a π1 object

as belonging to π2. However, it is assured that a “good” classification procedure should have as

small possibilities of misclassification as possible and minimize the cost of classification.

Let f1(x) and f2(x) be the probability density functions associated with the p × 1 random

vector X from the populations π1 and π2, respectively. An object with associated measurement

x must be assigned to either π1 or π2. Let Ω be the sample space – the collection of all possible
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realizations x of X. Typically, Ω is either Rn or a subset of Rn for some integer n. Let R1 be the

set of x-values for which we classify objects as belonging to π1 and R2 = Ω\R1 be the remaining

x-values for which we classify objects as belonging to π2. R1 and R2 are mutually exclusive since

any x must be assigned to one of the two populations (see Section 11.1 of [4]).

The conditional probability of classifying an object as π2 when it is actually from π1 is

P (2|1) := P (X ∈ R2|π1) =

∫
R2=Ω\R1

f1(x)dx.

Similarly, the conditional probability of classifying an object as π1 when it is, infact, from π2 is

P (1|2) := P (X ∈ R1|π2) =

∫
R1

f2(x)dx.

Let p1 and p2 be the prior probability of π1 and π2 respectively. We have p1 + p2 = 1.

Let P (π1) be the probability that observation comes from π1 and P (π2) be the probability that

observation comes from π2. Then, the overall probabilities of correctly or incorrectly classifying

objects can be derived as follows (see pp. 580–581 in [4]):

P (observation is correctly classified as π1)

= P (observation comes from π1 and is correctly classified as π1)

= P (X ∈ R1|π1)P (π1) = P (1|1)p1,

P (observation is misclassified as π1)

= P (observation comes from π2 and is misclassified as π1)

= P (X ∈ R1|π2)P (π2) = P (1|2)p2,

P (observation is correctly classified as π2)

= P (observation comes from π2 and is correctly classified as π2)

= P (X ∈ R2|π2)P (π2) = P (2|2)p2,

P (observation is misclassified as π2)

= P (observation comes from π1 and is misclassified as π2)

= P (X ∈ R2|π1)P (π1) = P (2|1)p1.

The costs of misclassification can be defined by a cost matrix :
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Classify as:
π1 π2

True population:
π1 0 c(2|1)
π2 c(1|2) 0

Consequently, the average, or expected cost of misclassification (ECM ) is

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2. (1)

Fact 1 (Result 11.1 in [4]). The regions R1 and R2 that minimize the ECM are known to be

defined as follows:

R1 :
f1(x)

f2(x)
≥
(
c(1|2)

c(2|1)

)(
p2

p1

)
, (2)

(density ratio) ≥ (cost ratio)(prior probability ratio)

R2 :
f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
p2

p1

)
.

(density ratio) < (cost ratio)(prior probability ratio)

Special Cases of Minimum Expected Cost Regions

a) If p2/p1 = 1 (equal prior probability), then

R1 :
f1(x)

f2(x)
≥ c(1|2)

c(2|1)
, R2 :

f1(x)

f2(x)
<
c(1|2)

c(2|1)
.

b) If c(1|2)/c(2|1) = 1 (equal misclassification costs), then

R1 :
f1(x)

f2(x)
≥ p2

p1

, R2 :
f1(x)

f2(x)
<
p2

p1

. (3)

c) If p2/p1 = c(1|2)/c(2|1) = 1 or p2/p1 = 1/(c(1|2)/c(2|1)) (equal prior probability and equal

misclassification costs), then

R1 :
f1(x)

f2(x)
≥ 1, R2 :

f1(x)

f2(x)
< 1. (4)
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2.2 Two Examples of Discriminating Between Two Multivariate Pop-

ulations

Exercise 11.1 in [4]. A researcher wants to determine a procedure for discriminating between

two multivariate populations. The researcher has enough data available to estimate the density

functions f1(x) and f2(x) associated with populations π1 and π2, respectively. Let c(2|1) = 50

(this is the cost of assigning items as π2, given that π1 is true) and c(1|2) = 100. In addition, it

is known that about 20% of all possible items (for which the measurements x can be recorded)

belong to π2.

(a) Give the minimum ECM rule (in general form) for assigning a new item to one of the two

populations.

(b) Measurements recorded on a new item yield the density values f1(x) = 0.3 and f2(x) = 0.5.

Given the preceding information, assign this item to population π1 or population π2.

Solution: By assumption, p2 = 0.2 and p1 = 0.8.

(a) By the definition of the ECM (1), we have

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2

= 40P (2|1) + 20P (1|2).

R1 :
f1(x)

f2(x)
≥ c(1|2)

c(2|1)

(
p2

p1

)
=

100

50
× 0.2

0.8
= 0.5,

that is,

R1 :
f1(x)

f2(x)
≥ 0.5,

and hence

R2 :
f1(x)

f2(x)
< 0.5.

(b) Since
f1(x)

f2(x)
=

0.3

0.5
= 0.6 > 0.5,

according to part (a), we assign this item to population π1.

Exercise 11.7 in [4]. Let f1(x) = (1−|x|) for |x| ≤ 1 and f2(x) = (1−|x−0.5|) for −.5 ≤ x ≤ 1.5.
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(a) Sketch the two densities.

(b) Identify the classification regions when p1 = p2 and c(1|2) = c(2|1).

(c) Identify the classification regions when p1 = .2 and c(1|2) = c(2|1).

Solution:

−1.0 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

f1(x)

f2(x)

Figure 1: The graphs of f1(x) and f2(x) in Exercise 11.7

(a)

(b) By assumption, p1 = p2 and c(1|2) = c(2|1). Therefore, using (4), we obtain

R1 :
f1(x)

f2(x)
≥ 1,

that is,

f1(x) ≥ f2(x).

From this (see Figure 1),

−0.5 ≤ x ≤ 0.25,

and hence

R2 :
f1(x)

f2(x)
< 1,
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giving (see Figure 1)

0.25 < x ≤ 1.

Thus, R1 : −0.5 ≤ x ≤ 0.25 and R2 : 0.25 < x ≤ 1.

(c) By assumption, p1 = 0.2 and c(1|2) = c(2|1), that is, p2 = 0.8. By (3), we have

R1 :
f1(x)

f2(x)
≥ p2

p1

.

We consider the above inequality for those x ∈ [−0.5, 1] for which f1(x) > 0 and f1(x) > 0.

That is, the region R1 is given by
f1(x)

f2(x)
≥ 4,

or equivalently,
1− |x|

1− |x− 0.5|
≥ 4,

and hence,

(4|x− 0.5| − |x|) ≥ 3.

Case 1: for −0.5 ≤ x ≤ 0, the above inequality gives

4(0.5− x) + x ≥ 3,

−0.5 ≤ x ≤ −1/3,

Case 2: for 0 < x ≤ 0.5, we obtain

4(0.5− x)− x ≥ 3,

x ≤ −1/5,

Case 3: for 0.5 < x ≤ 1, we have

4(x− 0.5)− x ≥ 3,

x ≥ 5/3.

In conclusion, R1 : −0.5 ≤ x ≤ −1/3 and R2 : −1/3 < x ≤ 1.
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3 Classification with Two Multivariate Normal Popula-

tions

Assuming that f1(x) and f2(x) are multivariate normal densities, the corresponding mean vectors

are µ1 and µ2 and the common covariance matrix is Σ. The density of a multivariate normal

Np(µi,Σi) distribution is

fi(x) =
1

(2π)p/2|Σi|1/2
exp

[
−1

2
(x− µi)

>Σ−1
i (x− µi)

]
, i = 1, 2.

If the population parameters µ1, µ2 and Σ are known, then the minimum ECM regions become

R1 : exp

[
−1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2)

]
≥
(
c(1|2)

c(2|1)

)(
p2

p1

)
,

R2 : exp

[
−1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2)

]
<

(
c(1|2)

c(2|1)

)(
p2

p1

)
.

Taking the natural logarithms on the left-hand side, we obtain the following:

−1

2
(x−µ1)>Σ−1(x−µ1)+

1

2
(x−µ2)>Σ−1(x−µ2) = (µ1−µ2)>Σ−1x− 1

2
(µ1−µ2)>Σ−1(µ1+µ2).

Consequently, the allocation rule that minimizes the ECM is as follows: allocate x0 to π1 if

(µ1 − µ2)>Σ−1x0 −
1

2
(µ1 − µ2)>Σ−1(µ1 + µ2) ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
, (5)

allocate x0 to π2 otherwise (see Section 11.3 in [4]).

Suppose that we have n1 observations of random vector X> = (X1, X2, . . . , Xp) from π1 and

n2 measurements of this quantity from π2, with n1 + n2 − 2 ≥ p. That is, n1 observations

X11, . . . ,X1n1 are from population π1, and n2 observations X21, . . . ,X2n2 are from population π2.

Then the respective data matrices are (see [1] and [5])

X1
(n1×p)

=


X>11

X>12

. . .

X>1n1

 , X2
(n2×p)

=


X>21

X>22

. . .

X>2n2

 .

Let Xij be the element of Xi with i = 1, 2 and j = 1, 2, . . . , ni. The sample mean vectors and
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covariance matrices are defined as follows:

X̄1 =
1

n1

n1∑
j=1

X1j, S1 =
1

n1 − 1

n1∑
j=1

(X1j − X̄1)(X1j − X̄1)>,

X̄2 =
1

n2

n2∑
j=1

X2j, S2 =
1

n2 − 1

n2∑
j=1

(X2j − X̄2)(X2j − X̄2)>.

We assume the parent populations have the same covariance matrix Σ, and the sample covariance

matrices S1 and S2 are combined (pooled) to derive a single unbiased estimate of Σ. Namely,

Spooled =

[
n1 − 1

(n1 − 1) + (n2 − 1)

]
S1 +

[
n2 − 1

(n1 − 1) + (n2 − 1)

]
S2

is an unbiased estimate of Σ if the data matrices X1 and X2 contain random samples from the

population π1 and π2, respectively. Substituting X̄1 for µ1, X̄2 for µ2, and Spooled for Σ in (5)

gives the classification rule, called the estimated minimum ECM rule.

3.1 The Estimated Minimum ECM Rule for Two Normal Population

The estimated minimum ECM rule prescribes to allocate x0 to π1 if

(X̄1 − X̄2)>S−1
pooledx0 −

1

2
(X̄1 − X̄2)>S−1

pooled(X̄1 + X̄2) ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
, (6)

and to allocate x0 to π2 otherwise.

If in (6) we have (
c(1|2)

c(2|1)

)(
p2

p1

)
= 1,

then ln
[(

c(1|2)
c(2|1)

)(
p2
p1

)]
= 0, and the estimated minimum ECM rule for two normal populations

amounts to comparing the scalar variable (see p. 586 of [4])

ŷ = (X̄1 − X̄2)>S−1
pooledx =: â>x (7)

evaluated at x0, with the number

m̂ :=
1

2
(X̄1 − X̄2)>S−1

pooled(X̄1 + X̄2) =
1

2
(ȳ1 + ȳ2), (8)

where

ȳ1 = (X̄1 − X̄2)>S−1
pooledX̄1 = â>X̄1
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and

ȳ2 = (X̄1 − X̄2)>S−1
pooledX̄2 = â>X̄2.

The following approach to the separation problem is due to Fisher [2]. This approach does not

assume that the two populations are normal.

3.2 An allocation rule based on Fisher’s discriminant function

Allocate x0 to π1 if

ŷ0 = (X̄1 − X̄2)>S−1
pooledx0 ≥ m̂ =

1

2
(X̄1 − X̄2)>S−1

pooled(X̄1 + X̄2) (9)

or

ŷ0 − m̂ ≥ 0,

allocate x0 to π2 if

ŷ0 ≤ m̂

or

ŷ0 − m̂ ≤ 0.

Fisher’s linear discriminant rule as given in (9) was developed under the assumption of a com-

mon covariance matrix. In the case of two normal population with different covariance matrices,

substituting normal densities into (2) gives (see Section 11.3 in [4])

R1 : −1

2
X>(Σ−1

1 −Σ−1
2 )X + (µ>1 Σ−1

1 − µ>2 Σ−1
2 )X− k ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
,

R2 : −1

2
X>(Σ−1

1 −Σ−1
2 )X + (µ>1 Σ−1

1 − µ>2 Σ−1
2 )X− k < ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
,

where

k =
1

2
ln

(
|Σ1|
|Σ2|

)
+

1

2
(µ>1 Σ−1

1 µ1 − µ>2 Σ−1
2 µ2). (10)

Proof: The regions of minimum ECM depend on the ratio of the densities, f1(x)/f2(x), or

equivalently, the natural logarithm of the density ratio

ln[f1(x)/f2(x)] = ln f1(x)− ln f2(x).
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The density of a multivariate normal Np(µi,Σi) distribution is

fi(x) =
1

(2π)p/2|Σi|1/2
exp

[
−1

2
(x− µi)

>Σ−1
i (x− µi)

]
, i = 1, 2.

Hence,

ln f1(x)− ln f2(x) = − ln((2π)p/2)− 1

2
ln |Σ1| −

(x− µ1)>Σ−1
1 (x− µ1)

2

+ ln((2π)p/2) +
1

2
ln |Σ2|+

(x− µ2)>Σ−2
2 (x− µ2)

2

= −1

2
(ln |Σ1| − ln |Σ2|)−

1

2
(x>Σ−1

1 x− x>Σ−1
1 µ1 − µ>1 Σ−1

1 x + µ>1 Σ−1
1 µ1

+ x>Σ−1
2 x− x>Σ−1

2 µ2 − µ>2 Σ−1
2 x + µ>2 Σ−1

2 µ2)

= −1

2
ln

(
|Σ1|
|Σ2|

)
− 1

2
x>(Σ−1

1 −Σ−1
2 )x +

1

2
(µ>1 Σ−1

1 − µ>2 Σ−1
2 )x

− 1

2
(µ>1 Σ−1

1 µ1 − µ>2 Σ−1
2 µ2) +

1

2
(x>Σ−1

1 µ1 − x>Σ−1
2 µ2)

= −1

2
x>(Σ−1

1 −Σ−1
2 )x +

1

2
(µ>1 Σ−1

1 − µ>2 Σ−1
2 )x

+
1

2
(x>Σ−1

1 µ1 − x>Σ−1
2 µ2)− k, (11)

where k is defined in (10).

Since

1

2
(x>Σ−1

1 µ1 − x>Σ−1
2 µ2)> =

1

2
(µ>1 Σ−1

1 x− µ>2 Σ−1
2 x) =

1

2
(µ>1 Σ−1

1 − µ>2 Σ−1
2 )x,

we have

1

2
(µ>1 Σ−1

1 − µ>2 Σ−1
2 )x +

1

2
(x>Σ−1

1 µ1 − x>Σ−1
2 µ2) = (µ>1 Σ−1

1 − µ>2 Σ−1
2 )x. (12)

Combining (11) and (12) with (2) yields

R1 : −1

2
x>(Σ−1

1 −Σ−1
2 )x + (µ>1 Σ−1

1 − µ>2 Σ−1
2 )x− k ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
,

R2 : −1

2
x>(Σ−1

1 −Σ−1
2 )x + (µ>1 Σ−1

1 − µ>2 Σ−1
2 )x− k < ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
,

where k is given by (10).
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3.3 An Example of Allocation Based on Fisher’s Discriminant Func-

tion

Exercise 11.10 in [4]. Suppose that n1 = 11 and n2 = 12 observations are made on two random

variables X1 and X2, where X1 and X2 are assumed to have a bivariate normal distribution with a

common covariance matrix Σ, but possibly different mean vectors µ1 and µ2 for the two samples.

The sample mean vectors and pooled covariance matrix are

X̄1 =

(
−1

−1

)
, X̄2 =

(
2

1

)
, Spooled =

(
7.3 −1.1

−1.1 4.8

)
.

(a) Test for the difference in population mean vectors using Hotelling’s two-sample T 2-statistic.

Let α = 0.10.

(b) Construct Fisher’s (sample) linear discriminant function. (See relations (7) and (9)).

(c) Assign the observation x>0 = (0,1) to either population π1 or π2. Assume equal costs and

equal prior probabilities.

Solution: First, we recall the following result (see Result 6.2 in [4]): If X11,X12, . . . ,X1n1 is

a random sample of size n1 from Np(µ1,Σ) and X21,X22, . . . ,X2n1 is an independent random

sample of size n2 from Np(µ2,Σ), then the Hotelling’s two-sample test statistics for testing the

hypothesis H0 : µ1 − µ2 = δ0 is given by

T 2 := [X̄1 − X̄2 − δ0]>
[(

1

n1

+
1

n2

)
Spooled

]−1

[X̄1 − X̄2 − δ0]

where X̄2 and X̄2 are as in (5) and (6), and, under H0, it is distributed as follows:

(n1 + n2 − p− 1)

p(n1 + n2 − 2)
T 2 ∼ Fp,n1+n2−p−1.

Consequently,

PH0

[
(X̄1 − X̄2 − δ0)>

[(
1

n1

+
1

n2

)
Spooled

]−1

(X̄1 − X̄2 − δ0) ≤ c2

]
= 1− α,

where

c2 =
(n1 + n2 − 2)p

n1 + n2 − p− 1
Fp,n1+n2−p−1(1− α)

and Fp,n1+n2−p−1(1−α) is the upper α percentage point of an F -distribution with p and n1 +n2−
p− 1 degrees of freedom.
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(a) The hypotheses for the test of difference in population mean vectors are:

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

Then Hotelling’s two-sample T 2-statistic is given by

T 2 = (X̄1 − X̄2)>
[(

1

n1

+
1

n2

)
Spooled

]−1

(X̄1 − X̄2).

By assumption, X̄1 − X̄2 =

(
−3

−2

)
, n1 = 11, n2 = 12, Spooled =

(
7.3 −1.1

−1.1 4.8

)
and p = 2.

Plugging these values and vectors into the expression for T 2, we obtain that the observed

value of T 2 is equal to

T 2
calculated =

(
−3

−2

)>(
1

11
+

1

12

(
7.3 −1.1

−1.1 4.8

))−1(
−3

−2

)

=
(
−3, −2

)( 1.2719 −0.1917

−0.1917 0.8363

)−1(
−3

−2

)

=
(
−2.8163, −3.0369

)(−3

−2

)
= 14.5225.

Under the null hypothesis,

(n1 + n2 − p− 1)

p(n1 + n2 − 2)
T 2 ∼ Fp,n1+n2−p−1,

thus,
(23− 2− 1)

2× 21
T 2 ∼ F2,20,

that is,
10

21
T 2 ∼ F2,20,

Since α = 0.1, using R, we get that the 90th percentile of the F distribution with (2,20)

degrees of freedom equals 2.5893. Since 10
21
× 14.5225 > 2.5893, we reject the null hypothesis

and accept the alternative hypothesis.

(b) By assumption, X̄1 + X̄2 =

(
1

0

)
and S−1

pooled =
1

33.83

(
4.8 1.1

1.1 7.3

)
. According to (7), the

estimated minimum ECM rule for two normal population amounts to comparing the scalar
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variable

Ŷ = (X̄1 − X̄1)>S−1
pooledx0 =: â>x0

with m̂ defined in (8). Plugging X̄1 − X̄2 and S−1
pooled into the above formula, we get

ŷ =
1

33.83

(
−3, 2

)(4.8 1.1

1.1 7.3

)
x0,

that is,

ŷ =

(
−1660

3383
, −1790

3383

)
x0.

An allocation rule based on Fisher’s discriminant function (9) is: allocate x0 to π1 if

ŷ0 = (X̄1 − X̄2)>S−1
pooledx0 ≥ m̂ =

1

2
(X̄1 − X̄2)>S−1

pooled(X̄1 + X̄2)

or

ŷ0 − m̂ ≥ 0,

and allocate x0 to π2 otherwise.

In this problem, we have

m̂ =
1

2

(
−1660

3383
, −1790

3383

)(
1

0

)
= − 830

3383
= −0.245.

(c) For the observation x>0 = (0, 1), we have

ŷ0 = −1790

3383
= −0.529 < m̂,

so we allocate x0 to π2.

4 Evaluating Classification Functions

One important way of judging the performance of any classification procedure is to calculate the

misclassification probabilities. The total probability of misclassification (TPM) is

TPM = p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx.

15



The smallest value of this quantity obtained by a judicious choice of R1 and R2 is called the

optimum error rate (OER):

OER = p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx,

where R1 and R2 are determined by (3). That is, the OER is the error rate for the minimum

TPM classification rule.

The performance of sample classification functions can be evaluated by calculating the actual

error rate (AER)

AER = p1

∫
R̂2

f1(x)dx + p2

∫
R̂1

f2(x)dx,

where R̂1 and R̂2 represent the classification regions determined by samples of sizes n1 and n2,

respectively. The AER indicates how the sample classification function will perform in future

samples.

The apparent error rate (APER) is defined as the fraction of observations in the training

sample that are misclassified by the sample classification function. It can be calculated from the

confusion matrix which shows actual versus predicted group membership. For n1 observations

from π1 and n2 observations from π2, the confusion matrix has the form

Predicted membership
π1 π2

Actual membership
π1 n1C n1M = n1 − n1C n1

π2 n2M = n2 − n2C n2C n2

where

n1C = number of π1 items correctly classified as π1 items,

n1M = number of π1 items misclassified as π2 items,

n2C = number of π2 items correctly classified as π2 items,

n2M = number of π2 items misclassified as π1 items.

The apparent error rate is then

APER =
n1M + n2M

n1 + n2

,

which is recognized as the proportion of items in the training set that are misclassified (see Section

11.4 in [4]). The apparent error rate can be any number between 0 and 1. The smaller the apparent

error rate is, the better the classification will be.
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5 Classification with Several Populations

5.1 The Minimum Expected Cost of Misclassification Method

Let fi(x) be the density associated with population πi, i = 1, 2, . . . , g. We define

pi := the prior probability of population πi, i = 1, 2, . . . , g,

c(k|i) := the cost of allocating an item to πk when, in fact, it belongs to πi

for k, i = 1, 2, . . . , g.

For k = i, c(i|i) = 0.

Let Rk be the set of x’s classified as πk and

P (k|i) = P (classifying item as πk|πi) =

∫
Rk

fi(x)dx,

for k, i = 1, 2, . . . , g with P (i|i) = 1 −
∑g

k=1k 6=i P (k|i). The conditional expected cost of misclas-

sifying an x from π1 into π2, or π3,. . ., or πg is

ECM(1) = P (2|1)c(2|1) + P (3|1)c(3|1) + . . .+ P (g|1)c(g|1)

=

g∑
k=2

P (k|1)c(k|1).

We can obtain the conditional expected costs of misclassification ECM(2),. . ., ECM(g) in a similar

way. Multiplying each conditional ECM by its prior probability and summing everything gives

the overall ECM:

ECM = p1ECM(1) + p2ECM(2) + . . .+ pgECM(g)

= p1

(
g∑

k=2

P (k|1)c(k|1)

)
+ p2

(
g∑

k=1, k 6=2

P (k|2)c(k|2)

)

+ . . .+ pg

(
g−1∑
k=1

P (k|g)c(k|g)

)

=

g∑
i=1

pi

(
g∑

k=1, k 6=i

P (k|i)c(k|i)

)
.

In order to determine an optimal classification procedure, we need to find the partition R1, . . . , Rg

of the sample space Ω for which the value of ECM is minimal(see Section 11.5 in [4]).

Fact 2 (Result 11.5 in [4]): The classification regions that minimize the ECM are defined
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by allocating x to that population πk, k = 1, 2, . . . , g, for which

g∑
i=1, i6=k

pifi(x)c(k|i)

is smallest. If a tie occurs, x can be assigned to any of the tied populations.

Suppose all the misclassification costs are equal, in which case the minimum expected cost of

misclassification rule is the minimum total probability of misclassification rule. (As a particular

case, we set all the misclassification costs equal to 1.) Using Result 11.5, we would allocate x to

that population πk, k = 1, 2, . . . , g, for which

g∑
i=1, i6=k

pifi(x)

is smallest. This sum will be smallest when the omitted term pkfk(x) is largest. Hence, in

case of equal misclassification costs, we arrive at the following rule, called the minimum ECM

classification rule with equal misclassification costs.

5.2 Minimum ECM Classification Rule with Equal Misclassification

Costs

When the misclassification costs are the same, we allocate x0 to πk if

pkfk(x) > pifi(x) for all i 6= k,

or, equivalently, allocate x0 to πk if

ln (pkfk(x)) > ln (pifi(x)) for all i 6= k. (13)

The classification rule above is identical to the one that maximizes the “posterior” probability

P (πk|x) = P (x comes from πk given that x was observed), where

P (πk|x) =
pkfk(x)∑g
i=1 pifi(x)

=
(prior)× (likelihood)∑
[(prior)× (likelihood)]

for k = 1, 2, . . . , g,

see Section 11.5 in [4] for more details.

We shall now consider how this classification rule could be applied in case of two normal

populations with different covariance matrices.

18



5.3 Classification with Several Normal Populations (Unequal Σi)

We now assume that fi(x) are multivariate normal densities, the corresponding mean vectors are

µi and covariance matrices are Σi. If, further, c(i|i) = 0, c(k|i) = 1, k 6= i (or, equivalently, the

misclassification costs are all equal), then (13) becomes: allocate x to πk if

ln (pkfk(x)) = ln pk −
(p

2

)
ln(2π)− 1

2
ln |Σk| −

1

2
(x− µk)>Σ−1

k (x− µk)

= max
i

ln (pifi(x)) .

Since (p/2) ln(2π) is constant, it can be ignored and we therefore define the quadratic discrim-

ination score for the ith population to be

dQi (x) = −1

2
ln |Σi| −

1

2
(x− µi)

>Σ−1
i (x− µi) + ln pi, i = 1, 2, . . . , g.

Using discriminant scores, we arrive at the following

Minimum Total Probability of Misclassification (TPM) Rule for Normal

Populations with Unequal Σi

Allocate x to πk if

the quadratic score dQk (x) = the largest of dQ1 (x), dQ2 (x), . . . , dQg (x).

In practice, the µi and Σi are unknown, but a training set of correctly classified observations is

often available for the construction of estimates. The relevant sample quantities for population πi

are

x̄i = sample mean vector,

Si = sample covariance matrix,

ni = sample size.

The estimator of the quadratic discrimination score d̂Qi (x) is then

d̂Qi (x) = −1

2
ln |Si| −

1

2
(x− x̄i)

>S−1
i (x− x̄i) + ln pi, i = 1, 2, . . . , g, (14)

and the classification rule based on the sample is as follows (see Section 11.5 in [4]):

Estimated Minimum TPM Rule for Several Normal Populations with Unequal Σi

Allocate x to πk if

the quadratic score d̂Qk (x) = the largest of d̂Q1 (x), d̂Q2 (x), . . . , d̂Qg (x). (15)
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If the population covariance matrices Σi are equal, that is, Σi = Σ for i = 1, 2, . . . , g, the

discriminant score becomes

d̂Qk (x) = −1

2
ln |Σ| − 1

2
x>Σ−1x + µ>i Σ−1x− 1

2
µ>i Σ−1µi + ln pi, i = 1, 2, . . . , g.

Since ci = ln pi − 1
2
µ>i Σ−1µi is constant, we can ignore them for allocative purposes and then

define the linear discriminant score

di(x) = µ>i Σ−1x− 1

2
µ>i Σ−1µi + ln pi for i = 1, 2, . . . , g. (16)

An estimator d̂i(x) of the linear discriminant score di(x) is based on the pooled estimate of Σ,

which is defined by

Spooled =
1

n1 + n2 + . . .+ ng − g
((n1 − 1)S1 + (n2 − 1)S2 + . . .+ (ng − 1)Sg),

and is given by

d̂i(x) = x̄>i S−1
pooledx−

1

2
x̄>i S−1

pooledx̄i + ln pi for i = 1, 2, . . . , g. (17)

Consequently, we have the following rule (see Section 11.5 in [4]):

Estimated Minimum TPM Rule for Equal-Covariance Normal Populations

Allocate x to πk if

the linear discriminant score d̂k(x) = the largest of d̂1(x), d̂2(x), . . . , d̂g(x). (18)

When we try to compare two linear discriminant scores at a time, we can obtain that the

condition that dk(x) as in (16) is the largest linear discriminant score among d1(x), d2(x), . . . , dg(x)

is equivalent to

dk(x)− di(x) = (µk − µi)
>Σ−1x− 1

2
(µk − µi)

>Σ−1(µk + µi) + ln

(
pk
pi

)
≥ 0,

for all i = 1, 2, . . . , g. From this, noting that ln(pk/pi) = − ln(pi/pk), we can obtain the alternative

classification rule: allocate x to πk if

(µk − µi)
>Σ−1x− 1

2
(µk − µi)

>Σ−1(µk + µi) ≥ ln

(
pi
pk

)
,

for all i = 1, 2, . . . , g such that i 6= k.
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To get the sample version of the classification rule above, we can substitute x̄i for µi and

Spooled for Σ, and obtain the following rule: allocate x to πk if

d̂ki(x) = (x̄k − x̄i)
>S−1

pooledx−
1

2
(x̄k − x̄i)

>S−1
pooled(x̄k + x̄i) ≥ ln

(
pi
pk

)
, (19)

for all i = 1, 2, . . . , g such that i 6= k.

5.4 An Example of Finding The Quadratic Discriminator

Exercise 11.5 in [4]. Suppose x comes from one of two p-variate normal populations: either

normal with mean µ1 and covariance matrix Σ1 (population π1) or normal with mean µ2 and

covariance matrix Σ2 (population π2). If the respective density functions are denoted by f1(x)

and f2(x), find the expression for the quadratic discrimininator

Q := ln

[
f1(x)

f2(x)

]
. (20)

If Σ1 = Σ2 = Σ, Q becomes

(µ1 − µ2)>Σ−1x− 1

2
(µ1 − µ2)>Σ−1(µ1 + µ2).

Solution: The density of a multivariate normal Np(µi,Σi) distribution is

fi(x) =
1

(2π)p/2|Σi|1/2
exp

[
−1

2
(x− µi)

>Σ−1
i (x− µi)

]
, i = 1, 2.

Hence, the quadratic discrimininator in (20) takes the form

Q = ln

[
f1(x)

f2(x)

]
= ln

[
exp

(
−1

2
(x− µ1)>Σ−1(x− µ1)

)
exp

(
−1

2
(x− µ2)>Σ−1(x− µ2)

)]
= −1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2)

= −1

2
(x>Σ−1x− x>Σ−1µ1 − µ>1 Σ−1x + µ>1 Σ−1µ1 + x>Σ−1x−

x>Σ−1µ2 − µ>2 Σ−1x + µ>2 Σ−1µ2)

= (µ1 − µ2)>Σ−1x− 1

2
(µ1 − µ2)>Σ−1(µ1 + µ2).
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6 Fisher’s Method for Discriminating among Several Pop-

ulations

We shall now discuss an extension of Fisher’s discriminant method for two populations to the

case of several populations. To use Fisher’s method, we need to find a reasonable representation

of the populations that involve only a few linear combinations of the observations, such as a>1 x,

a>2 x, and a>3 x. Now, it is not necessary to assume that the g populations are multivariate normal.

However, we do assume that p × p population covariance matrices are equal and of full rank .

That is, Σ1 = Σ2 = · · · = Σg = Σ and rank(Σ) = p.

Let µ̄ denote the mean vector of the combined populations and let Bµ be the between groups

sum of cross products, that is,

Bµ =

g∑
i=1

(µi − µ̄)(µi − µ̄)>, where µ̄ =
1

g

g∑
i=1

µi.

We consider the linear combination

Y = a>X

which has expected value

E(Y) = a>E(X|πi) = a>µi, for population πi, i = 1, 2, . . . , g,

and variance

Var(Y) = a>Cov(X)a = a>Σa, for all populations πi, i = 1, 2, . . . , g.

Consequently, the expected value µiY = a>µi changes as the population from which X is selected

changes. We first define the overall mean

µ̄Y =
1

g

g∑
i=1

µiY =
1

g

g∑
i=1

a>µi = a>

(
1

g

g∑
i=1

µi

)
= a>µ̄,

and form the ratio ∑g
i=1(µiY − µ̄Y)2

σ2
Y

=

∑g
i=1(a>µi − a>µ̄)2

a>Σa

=
a>
(∑g

i=1(µi − µ̄)(µi − µ̄)>
)
a

a>Σa
,
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or ∑g
i=1(µiY − µ̄Y)2

σ2
Y

=
a>Bµa

a>Σa
,

where σ2
Y is the variance of Y.

Typically, Σ and µi, i = 1, 2, . . . , g, are unavailable, but the training set consists of correctly

classified observations. Suppose the training set consists of a random sample of size ni from

population πi, i = 1, 2, . . . , g. Denote the ni × p data set, from population πi, by Xi and its jth

row by X>ij. Consider the sample mean vectors defined by

X̄i =
1

ni

ni∑
j=1

Xij,

and the covariance matrices denoted by Si, i = 1, 2, . . . , g. We then define the “overall average”

vector

X̄ =
1

g

g∑
i=1

X̄i,

which is the p× 1 vector average of the individual sample averages. The sample between groups

matrix B is defined by

B =

g∑
i=1

(X̄i − X̄)(X̄i − X̄)>.

Also, a natural estimator of Σ is based on the sample within groups matrix

W =

g∑
i=1

(ni − 1)Si =

g∑
i=1

ni∑
j=1

(X̄ij − X̄i)(X̄ij − X̄i)
>,

and is equal to

Spooled = W/(n1 + n2 + . . .+ ng − g).

We note that W is the constant (n1 + n2 + · · · + ng − g) times Spooled , so the same â that

maximizes â>Bâ/â>Spooledâ also maximizes â>Bâ/â>Wâ. Moreover, we can present the opti-

mizing â in the form of eigenvectors êi of W−1B, because if W−1Bê = λ̂ê, then S−1
pooledBê =

λ̂(n1 + n2 + . . . + ng − g)ê, where λ̂ is the nonzero eigenvalue of W−1B corresponding to the

eigenvalue ê (See pp.621–623 in [4])

6.1 Fisher’s Sample Linear Discriminants

Let λ̂1, λ̂2, . . . , λ̂s > 0 denote the s ≤ min(g−1, p) nonzero eigenvalues of W−1B and let ê1, . . . , ês

be the corresponding eigenvectors (scaled so that ê>k Spooledêk = 1, k = 1, . . . , s). Then (see
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Exercise 11.21 in [4]) the vector of coefficients â that maximizes the ratio

â>Bâ

â>Wâ
=

â>
(∑g

i=1(x̄i − x̄)(x̄i − x̄)>
)

â

â>
[∑g

i=1(ni − 1)Si =
∑g

i=1

∑ni

j=1(x̄ij − x̄i)(x̄ij − x̄i)>
]

â

is given by â1 = ê1. The linear combination â>1 x is called the sample first discriminant. The choice

â2 = ê2 produces the sample second discriminant, â>2 x, and continuing, we obtain â>k x = ê>k x,

the sample kth discriminant, k ≤ s. For more details, see Section 11.6 in [4].

Fisher’s discriminants are used to obtain a low-dimensional representation of the data that

separates populations as much as possible. In spite of the fact that they were obtained for the

purpose of separation, the discriminants also provide the basis for a classification rule.

Consider the separatory measure given by (see relation (11-68) in [4])

42
S =

g∑
i=1

(µi − µ̄)>Σ−1(µi − µ̄), (21)

where

µ̄ =
1

g

g∑
i=1

µi

and (µi−µ̄)>Σ−1(µi−µ̄) is the squared statistical (Mahalanobis) distance from the ith population

mean µi to the centroid µ̄.

Exercise 11.22 in [4]. Show that 42
S = λ1 + λ2 + . . . + λp = λ1 + λ2 + . . . + λs, where λ1,

λ2, . . . , λs are the nonzero eigenvalues of Σ−1Bµ (or Σ−1/2BµΣ−1/2) and 42
S is given by (21).

Also, show that λ1 + λ2 + . . . + λr is the resulting separation when only the first r discriminants

Y1, Y2, . . . , Yr are used.

Solution: Let P be the orthogonal matrix whose ith row e>i is the eigenvector of Σ−1/2BµΣ−1/2

corresponding to the ith largest eigenvalue, i = 1, 2, . . . , p. Consider

Y =



Y1

...

Ys
...

Yp


=



e>1 Σ−1/2X
...

e>s Σ−1/2X
...

e>p Σ−1/2X


= PΣ−1/2X.

We have µiY = E(Y|πi) = PΣ−1/2µi and µ̄Y = PΣ−1/2µ̄, so

(µiY − µ̄Y)>(µiY − µ̄Y) = (µi − µ̄)>Σ−1/2P>PΣ−1/2(µi − µ̄)

= (µi − µ̄)>Σ−1(µi − µ̄).
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Therefore, 42
S =

∑g
i=1(µiY − µ̄Y)>(µiY − µ̄Y). Using Y1, we have

g∑
i=1

(µiY1 − µ̄Y1)
2 =

g∑
i=1

e1
>Σ−1/2(µi − µ̄)(µi − µ̄)>Σ−1/2e1

= e1
>Σ−1/2BµΣ−1/2e1 = λ1,

because e1 has eigenvalue λ1. Similarly, Y2 produces

g∑
i=1

(µiY2 − µ̄Y2)
2 = e2

>Σ−1/2BµΣ−1/2e2 = λ2,

and Yp produces
g∑

i=1

(µiYp − µ̄Yp)2 = ep
>Σ−1/2BµΣ−1/2ep = λp.

Thus,

42
S =

g∑
i=1

(µiY − µ̄Y)>(µiY − µ̄Y)

=

g∑
i=1

(µiY1 − µ̄Y1)
2 +

g∑
i=1

(µiY2 − µ̄Y2)
2 + . . .+

g∑
i=1

(µiYp − µ̄Yp)2

= λ1 + λ2 + . . .+ λp = λ1 + λ2 + . . .+ λs,

where we used the fact that λs+1 = . . . = λp = 0. If only the first r discriminants are used, their

contribution to 42
S is λ1 + λ2 + . . .+ λr.

6.2 Two Examples of Fisher’s Sample Discriminants for Two (or More)

Populations

Exercise 11.23 in [4]. Consider the data given in Table 1 (see Table 1.6 in [4]).

(a) Check the marginal distributions of the xi’s in both the multiple-sclerosis (MS) group and

non-multiple-sclerosis (NMS) group for normality by graphing the corresponding observa-

tions as normal probability plots. Suggest appropriate data transformations if the normality

assumption is suspect.

(b) Assume that Σ1 = Σ2 = Σ. Construct Fisher’s linear discriminant function. Do all the

variables in the discriminant function appear to be important? Discuss your answer. Develop

a classification rule assuming equal prior probabilities and equal costs of misclassification.
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(c) Using the results in (b), calculate the apparent error rate.

Table 1: Multiple-Sclerosis Data

Non-Multiple-Sclerosis Group Data

Subject x1 x2 x3 x4 x5

Number (Age) (S1L+ S1R) |S1L− S1R| (S2L+ S2R) |S2L− S2R|
1 18 152 1.6 198.4 0

2 19 138 0.4 180.8 1.6

3 20 144 0 186.4 0.8

4 20 143.6 3.2 194.8 0

5 20 148.8 0 217.6 0

6 21 141.6 0.8 181.6 0.8

7 21 136 1.6 180 0.8

8 21 137.6 1.6 185.6 3.2

9 22 140.4 3.2 182 3.2

10 22 137.2 0 181.8 0.2

11 22 125.4 1 169.2 0

12 22 142.4 4.8 185.6 0

13 22 150.4 0 214.4 3.2

14 22 145.6 1.6 203.6 5.2

15 23 147.2 3.2 196.8 1.6

16 23 139.2 1.6 179.2 0

17 24 169.6 0 204.8 0

18 24 139.2 1.6 176 3.2

19 24 153.6 0 212 0.8

20 25 146.8 0 194.8 3.2

21 25 139.2 1.6 198.4 3.2

22 25 136 1.6 181.6 2.4

23 26 138.8 1.6 191.6 0

24 26 150.4 0 205.2 0.4

25 26 139 1.4 178.6 0.2

26 27 133.8 0.2 180.8 0

27 27 139 1.8 190.4 1.6

28 28 136 1.6 193.2 3.6

29 28 146.4 0.8 195.6 2.8

30 29 145.2 4.8 194.2 3.8

31 29 146.4 0.8 208.2 0.2

32 29 138 2.8 181.2 0.4

33 30 148.8 1.6 196.4 1.6

34 31 137.2 0 184 0

35 31 147.2 0 197.6 0.8

36 32 144 0 185.8 0.2

37 32 156 0 192.8 2.4

38 34 137 0.2 182.4 0
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39 35 143.2 2.4 184 1.6

40 36 141.6 0.8 187.2 1.6

41 37 152 1.6 189.2 2.8

42 39 157.4 3.4 227 2.6

43 40 141.4 0.6 209.2 1.6

44 42 156 2.4 195.2 3.2

45 43 150.4 1.6 180 0.8

46 43 142.4 1.6 188.8 0

47 46 158 2 192 3.2

48 48 130 3.6 190 0.4

49 49 152.2 1.4 200 4.8

50 49 150 3.2 206.6 2.2

51 50 146.4 2.4 191.6 2.8

52 54 146 1.2 203.2 1.6

53 55 140.8 0 184 1.6

54 56 140.4 0.4 203.2 1.6

55 56 155.8 3 187.8 2.6

56 56 141.6 0.8 196.8 1.6

57 57 144.8 0.8 188 0.8

58 57 146.8 3.2 191.6 0

59 59 176.8 2.4 232.8 0.8

60 60 171 1.8 202 3.6

61 60 163.2 0 224 0

62 60 171.6 1.2 213.8 3.4

63 60 146.4 4 203.2 4.8

64 62 146.8 3.6 201.6 3.2

65 67 154.4 2.4 205.2 6

66 69 171.2 1.6 210.4 0.8

67 73 157.2 0.4 204.8 0

68 74 175.2 5.6 235.6 0.4

69 79 155 1.4 204.4 0

Multiple-Sclerosis Group Data

Subject

Number x1 x2 x3 x4 x5

1 23 148 0.8 205.4 0.6

2 25 195.2 3.2 262.8 0.4

3 25 158 8 209.8 12.2

4 28 134.4 0 198.4 3.2

5 29 190.2 14.2 243.8 10.6

6 29 160.4 18.4 222.8 31.2

7 31 227.8 90.2 270.2 83

8 34 211 3 250.8 5.2

9 35 203.8 12.8 254.4 11.2

10 36 141.2 6.8 194.4 21.6

11 39 157.4 3.4 227 2.6
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12 42 166.4 0 226 0

13 43 191.8 35.4 243.6 40.8

14 44 156.8 0 203.2 0

15 44 202.8 29.3 246.4 24.8

16 44 165.2 18.4 254 46.4

17 45 162 5.6 224.4 8.8

18 45 138.4 0.8 176.8 4

19 45 158.4 1.6 214.4 0

20 46 155.4 1.8 201.2 6

21 46 214.8 9.2 290.6 0.6

22 47 185 19 274.4 7.6

23 48 236 20 328 0

24 57 170.8 24 228.4 33.6

25 57 165.6 16.8 229.2 15.6

26 58 238.4 8 304.4 6

27 58 164 0.8 216.8 0.8

28 58 169.8 0 219.2 1.6

29 59 199.8 4.6 250.3 1

Solution:

(a) The normal probability plots for each of the variables x1,x2,x3,x4,x5 are the following:
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We can see from the above that variables x2 and x4 appear to be normal. We can use the

transformations ln(x1), ln(x3 + 1) and ln(x5 + 1) for variables x1, x3 and x5, respectively,

to bring them closer to the normality assumption since these three variables look like being

exponentially distributed. For x3 and x5, the asymptotes seem to have one unit downward

shift comparing to x1. Therefore, for logarithmic function, we have to shift ln(x3) and ln(x5)

to the right.
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(b) From the output using Minitab, we obtain that the linear discriminant function is

ŷ = [(−0.079)− (−0.103)]x1 + [(0.330)− (0.364)]x2 + [(−1.498)− (−1.708)]x3

+[(0.351)− (0.435)]x4 + [(1.076)− (1.329)]x5 + [(−56.833)− (−80.067)]

= 0.024x1 − 0.034x2 + 0.21x3 − 0.084x4 − 0.253x5 − 23.234,

and m̂ = −23.234. The classification rule is therefore: allocate x0 to π1 (NMS group) if

â>x0 − m̂ = 0.024x1 − 0.034x2 + 0.21x3 − 0.084x4 − 0.253x5 − 23.234 ≥ 0,

and allocate x0 to π2 (MS group) otherwise.

We can see from the above that each variable has a non-zero coefficient in the discriminant

function so all the variables appear to be important.

(c) From the output using Minitab, we have the confusion matrix in the form
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Hence, we obtain

APER =
n1M + n2M

n1 + n2

=
3 + 7

69 + 29
= 0.102.

Exercise 11.27 in [4]. The data in Table 2 contain observations on x2 = sepal width and x4

= petal width for samples from three species of iris. There are n1 = n2 = n3 = 50 observations in

each sample.

(a) Plot the data in the (x2,x4) variable space. Do the observations for the three groups appear

to be bivariate normal?

(b) Assume that the samples are from bivariate normal populations with a common covariance

matrix. Test the hypothesis H0 : µ1 = µ2 = µ3 versus H1 : at least one µi is different from

the others at the α = 0.05 significance level. Is the assumption of a common covariance

matrix reasonable in this case? Explain.
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(c) Assuming that the populations are bivariate normal, construct the quadratic discriminate

scores d̂Qi (x) given by (14) with p1 = p2 = p3 = 1/3. Using the rule given by (15), classify

the new observation x>0 = (3.5, 1.75) into population π1, π2, or π3.

(d) Assume that the covariance matrices Σi are the same for all three bivariate normal pop-

ulations. Construct the linear discriminate score d̂i(x) given by (17), and use it to as-

sign x>0 = (3.5, 1.75) to one of the populations π1, i = 1, 2, 3 according to (18). Take

p1 = p2 = p3 = 1/3. Compare the results in parts (c) and (d). Which approach do you

prefer? Explain.

(e) Assuming equal covariance matrices and bivariate normal populations and supposing that

p1 = p2 = p3 = 1/3, allocate x>0 = (3.5, 1.75) to π1, π2, or π3 using rule (19). Compare

the result with that in part (d). Delineate the classification regions R̂1, R̂2 and R̂3 on your

graph from part (a) determined by the linear functions d̂ki(x0) in (19).

(f) Using the linear discriminant scores from part (d), classify the sample observations. Calcu-

late the APER.

Table 2: Data on Irises

π1 : Irissetosa π2 : Irisversicolor π3 : Irisvirginica

Sepal

length

x1

Sepal

width

x2

Sepal

length

x3

Sepal

width

x4

Sepal

length

x1

Sepal

width

x2

Sepal

length

x3

Sepal

width

x4

Sepal

length

x1

Sepal

width

x2

Sepal

length

x3

Sepal

width

x4

5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5

4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9

4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3 5.9 2.1

4.6 3.1 1.5 0.2 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8

5 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3 5.8 2.2

5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3 6.6 2.1

4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7

5 3.4 1.5 0.2 4.9 2.4 3.3 1 7.3 2.9 6.3 1.8

4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8

4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5

5.4 3.7 1.5 0.2 5 2 3.5 1 6.5 3.2 5.1 2

4.8 3.4 1.6 0.2 5.9 3 4.2 1.5 6.4 2.7 5.3 1.9

4.8 3 1.4 0.1 6 2.2 4 1 6.8 3 5.5 2.1

4.3 3 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5 2

5.8 4 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4

5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3

5.4 3.9 1.3 0.4 5.6 3 4.5 1.5 6.5 3 5.5 1.8

5.1 3.5 1.4 0.3 5.8 2.7 4.1 1 7.7 3.8 6.7 2.2

5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
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5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6 2.2 5 1.5

5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3

5.1 3.7 1.5 0.4 6.1 2.8 4 1.3 5.6 2.8 4.9 2

4.6 3.6 1 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2

5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8

4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1

5 3 1.6 0.2 6.6 3 4.4 1.4 7.2 3.2 6 1.8

5 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8

5.2 3.5 1.5 0.2 6.7 3 5 1.7 6.1 3 4.9 1.8

5.2 3.4 1.4 0.2 6 2.9 4.5 1.5 6.4 2.8 5.6 2.1

4.7 3.2 1.6 0.2 5.7 2.6 3.5 1 7.2 3 5.8 1.6

4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9

5.4 3.4 1.5 0.4 5.5 2.4 3.7 1 7.9 3.8 6.4 2

5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2

5.5 4.2 1.4 0.2 6 2.7 5.1 1.6 6.3 2.8 5.1 1.5

4.9 3.1 1.5 0.2 5.4 3 4.5 1.5 6.1 2.6 5.6 1.4

5 3.2 1.2 0.2 6 3.4 4.5 1.6 7.7 3 6.1 2.3

5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4

4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8

4.4 3 1.3 0.2 5.6 3 4.1 1.3 6 3 4.8 1.8

5.1 3.4 1.5 0.2 5.5 2.5 4 1.3 6.9 3.1 5.4 2.1

5 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4

4.5 2.3 1.3 0.3 6.1 3 4.6 1.4 6.9 3.1 5.1 2.3

4.4 3.2 1.3 0.2 5.8 2.6 4 1.2 5.8 2.7 5.1 1.9

5 3.5 1.6 0.6 5 2.3 3.3 1 6.8 3.2 5.9 2.3

5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5

4.8 3 1.4 0.3 5.7 3 4.2 1.2 6.7 3 5.2 2.3

5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5 1.9

4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3 5.2 2

5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3

5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8

Solution:

(a) From the figure above by using Minitab, with X-data being x2 and Y -data being x4, we can

see that all the points from each group fall in an elliptical form, that is, the three groups

appear to be bivariate normal.

(b) The output is given above. Since 0.05 is greater than p-value (it is close to 0) shown above, we

reject the null hypothesis. The assumption of a common covariance matrix is not reasonable

because from the plot in part (a), we can see that the points of the group 1 are in a different

ellipse from the points of groups 2 and 3.

(c) By assumption, we have p1 = p2 = p3 = 1/3 and x>0 = (3.5, 1.75). Using R, we obtain
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S1 =

(
0.1437 0.0093

0.0093 0.0111

)
, S2 =

(
0.0985 0.0412

0.0412 0.0391

)
, S3 =

(
0.1437 0.0093

0.0093 0.0111

)
,

and also

X̄1 =

(
3.428

0.246

)
, X̄2 =

(
2.77

1.326

)
, X̄3 =

(
2.974

2.026

)
.

According to (14) and the classification rule (15), the estimates of the quadratic discrimina-

tion scores are

d̂Q1 (x0) = −1

2
ln |S1| −

1

2
(x0 − x̄1)>S−1

1 (x0 − x̄1) + ln p1 = −104.9361,

d̂Q2 (x0) = −1

2
ln |S2| −

1

2
(x0 − x̄2)>S−1

2 (x0 − x̄2) + ln p2 = −1.0554,

d̂Q3 (x0) = −1

2
ln |S3| −

1

2
(x0 − x̄3)>S−1

3 (x0 − x̄3) + ln p3 = −2.3244,

and we allocate x0 to population 2 (Irisversicolor) since d̂Q2 (x0) is the greatest among the

three discrimination scores.

(d) Using part (c), we get

Spooled =
S1 + S2 + S3

3
=

(
0.1731 0.0491

0.0491 0.0628

)
.

According to (17) and the classification rule (18), the estimated linear discriminant scores

are

d̂1(x0) = x̄>1 S−1
pooledx0 −

1

2
x̄>1 S−1

pooledx̄1 + ln p1 = 17.6437,

d̂2(x0) = x̄>2 S−1
pooledx0 −

1

2
x̄>2 S−1

pooledx̄2 + ln p2 = 38.1425,

d̂3(x0) = x̄>3 S−1
pooledx0 −

1

2
x̄>3 S−1

pooledx̄3 + ln p3 = 37.5175.

Therefore we allocate x0 to population 2 (Irisversicolor) since d̂2(x) is the greatest among

the three discrimination scores. We get the same result in part (c) and (d) but I prefer using

the quadratic discrimination score since there is no need to assume the covariance matrices

are the same for all bivariate normal population.

(e) Recall the classification rule (19), according to which we allocate x0 to πk if

(x̄k − x̄i)
>S−1

pooledx0 −
1

2
(x̄k − x̄i)

>S−1
pooled(x̄k + x̄i) ≥ ln

(
pi
pk

)
= 0, (22)
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for i = 1, 2, 3 such that i 6= k.

Case 1 (checking the conditions for allocating x0 to π1):

(x̄1 − x̄2)>S−1
pooledx0 −

1

2
(x̄1 − x̄2)>S−1

pooled(x̄1 + x̄2) = −20.4988 < 0,

(x̄1 − x̄3)>S−1
pooledx0 −

1

2
(x̄1 − x̄3)>S−1

pooled(x̄1 + x̄3) = −19.8738 < 0.

Case 2 (checking the conditions for allocating x0 to π2):

(x̄2 − x̄1)>S−1
pooledx0 −

1

2
(x̄2 − x̄1)>S−1

pooled(x̄2 + x̄1) = 20.4988 > 0,

(x̄2 − x̄3)>S−1
pooledx0 −

1

2
(x̄2 − x̄3)>S−1

pooled(x̄2 + x̄3) = 0.625 > 0.

Case 3 (checking the conditions for allocating x0 to π3):

(x̄3 − x̄1)>S−1
pooledx0 −

1

2
(x̄3 − x̄1)>S−1

pooled(x̄3 + x̄1) = 19.8738 > 0,

(x̄3 − x̄2)>S−1
pooledx0 −

1

2
(x̄3 − x̄2)>S−1

pooled(x̄3 + x̄2) = −0.625 < 0.

We therefore allocate x0 to π2 and it is the same conclusion as we get in part (d). In order

to sketch the regions, we have to calculate d̂12(x0), d̂23(x0) and d̂13(x0). We have

d̂12(x0) = 11.1399x2 − 25.8982x4 − 14.1664,

d̂13(x0) = 13.6826x2 − 39.0308x4 + 0.5409,

d̂23(x0) = 2.5427x2 − 13.1325x4 + 14.7073.

The classification regions are shown on the graph below:
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(f) Hence, the apparent error rate is

APER =
n1M + n2M + n3M

n1 + n2 + n3

=
0 + 2 + 1

50 + 50 + 50
= 0.02.

7 Conclusion

The project aims at presenting, analytically and numerically, some basic methods of the classi-

fication and discrimination analysis that have not been covered by the statistical courses offered

by the School of Mathematics and Statistics. The theory of classification is different from the

estimation and hypothesis testing theories. In the course of writing this project, we have learnt

various interesting methods and tools of the classification theory and have also practiced with

applying them to real-life data.

For instance, in the last example related to Fisher’s method for discriminating among several

populations, we have used different ways to allocate the given variables to one of four predefined

groups under the assumption of bivariate normally distributed populations. The graphics obtained

by using MINITAB allow us to visually examine multivariate data. The obtained APER of 0.02

indicates that the misclassification rate is small. From the output in MINITAB, there are 3

observations misclassified and they are all from groups 2 and 3. This indicates that the whole

group 1 is correctly classified.

Lastly, classification and discrimination might be useful in various practical applications in

many fields of industry, medicine and science.

References

[1] Anderson,T. W. An Introduction to Multivariate Statistical Analysis, 3d ed. New York: John

Wiley, 2003.

[2] Fisher, R. A. The Statistical Utilization of Multiple Measurements. Annals of Eugenics, 8

(1938), 376–386.

[3] Kendall, M. G. Multivariate Analysis. New York: Hafner Press, 1975.

[4] Johnson, R. A. and Wichern, D. W. Applied Multivariate Analysis, 6th ed. New Jersey:

Pearson Prentice Hall, 2019.

38



[5] Wald, A.On a Statistical Problem Arising in the Classification of an Individual into One of

Two Groups (1944). Annals of Mathematical Statistics, 15, 145–162.

8 Appendix

1. Code for example in 11.2

x1<= seq (=1 ,1 ,0 .05)

y1<=1=abs ( x1 )

x2<= seq ( =0 . 5 , 1 . 5 , 0 . 05 )

y2<=1=abs ( x2=0.5)

plot ( x1 , y1 , type=” l ” , col=” red ” , xlim = c (=1 ,1 .5) , yl im =

c ( 0 , 1 ) , x lab=”x” , ylab=”y” )

l ines ( x2 , y2 , col=” blue ” )

legend ( ” t o p l e f t ” , legend = c ( ” f 1 ( x ) ” , ” f 2 ( x ) ” ) ,

col = c ( ” red ” , ” blue ” ) , l t y = 1 : 1 )

2. Code for calculation in the example 2 of 11.6

x <=matrix ( c ( 3 . 5 , 1 . 7 5 ) ,nrow=2,ncol=1,byrow=TRUE)

x0<=matrix ( c ( a , b ) ,nrow=2,ncol=1,byrow=TRUE)

s1 <=matrix ( c ( 0 . 1 4 3 7 , 0 . 0 0 9 3 , 0 . 0 0 9 3 , 0 . 0 1 1 1 ) ,nrow=2,ncol=2,byrow=TRUE)

s2 <=matrix ( c ( 0 . 0 9 8 5 , 0 . 0 4 1 2 , 0 . 0 4 1 2 , 0 . 0 3 9 1 ) ,nrow=2,ncol=2,byrow=TRUE)

s3 <=matrix ( c ( 0 . 1 0 4 , 0 . 0 4 7 6 , 0 . 0 4 7 6 , 0 . 0 7 5 4 ) ,nrow=2,ncol=2,byrow=TRUE)

x1 <=matrix ( c ( 3 . 4 2 8 0 , 0 . 2 4 6 ) ,nrow=2,ncol=1,byrow=TRUE)

x2 <=matrix ( c ( 2 . 7 7 , 1 . 3 2 6 ) ,nrow=2,ncol=1,byrow=TRUE)

x3 <=matrix ( c ( 2 . 9 7 4 , 2 . 0 2 6 ) ,nrow=2,ncol=1,byrow=TRUE)

d1x<= =(1/2)* log ( det ( s1 ))=(1/2)* ( t (x=x1 )%*%solve ( s1 )%*%(x=x1))+ log (1/3)

d2x<= =(1/2)* log ( det ( s2 ))=(1/2)* ( t (x=x2 )%*%solve ( s2 )%*%(x=x2))+ log (1/3)

d3x<= =(1/2)* log ( det ( s3 ))=(1/2)* ( t (x=x3 )%*%solve ( s3 )%*%(x=x3))+ log (1/3)

Spooled<= (1/2)* ( s1+s2+s3 )

d11x<=t ( x1 )%*%solve ( Spooled )%*%x=(1/2)*t ( x1 )\\
%*%solve ( Spooled )%*%x1+log (1/3)

d12x<=t ( x2 )%*%solve ( Spooled )%*%x=(1/2)*t ( x2 )\\
%*%solve ( Spooled )%*%x2+log (1/3)

d13x<=t ( x3 )%*%solve ( Spooled )%*%x=(1/2)*t ( x3 )\\
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%*%solve ( Spooled )%*%x3+log (1/3)

t ( x2=x1 )%*%solve ( Spooled )%*%x=(1/2)*t ( x2=x1 )%*%solve ( Spooled )%*%( x2+x1 )

t ( x2=x3 )%*%solve ( Spooled )%*%x=(1/2)*t ( x2=x3 )%*%solve ( Spooled )%*%( x2+x3 )

t ( x1=x2 )%*%solve ( Spooled )%*%x=(1/2)*t ( x1=x2 )%*%solve ( Spooled )%*%( x1+x2 )

t ( x1=x3 )%*%solve ( Spooled )%*%x=(1/2)*t ( x1=x3 )%*%solve ( Spooled )%*%( x1+x3 )

t ( x3=x1 )%*%solve ( Spooled )%*%x=(1/2)*t ( x3=x1 )%*%solve ( Spooled )%*%( x3+x1 )

t ( x3=x2 )%*%solve ( Spooled )%*%x=(1/2)*t ( x3=x2 )%*%solve ( Spooled )%*%( x3+x2 )
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