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Electric Potential 
 
Disclaimer: These lecture notes are not meant to replace the course textbook.  The 
content may be incomplete.  Some topics may be unclear.  These notes are only meant to 
be a study aid and a supplement to your own notes.  Please report any inaccuracies to the 
professor. 
 

Work and Potential Energy 
 
Applying a force over a distance requires work: 
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The work done by a force on an object to move it from point i to point f is opposite to the 
change in the potential energy: 
 

( )f iW U U U= −Δ = − −  
 
In other words, if the work expended by the force is positive, the potential energy of the 
object is lowered. For example, if an apple is dropped from the branch of a tree, the force 
of gravity does work to move (accelerate actually) the apple from the branch to the 
ground. The apple now has less gravitational potential energy.   
 
These concepts are independent of the type of force. So the same principal also applies to 
the electric field acting on an electric charge.   
 
We define the electric potential as the potential energy of a positive test charge divided 
by the charge q0 of the test charge. 
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It is by definition a scalar quantity, not a vector like the electric field. 
 
The SI unit of electric potential is the Volt (V) which is 1 Joule/Coulomb. The units of 
the electric field, which are N/C, can also be written as V/m (discussed later). 
 
Changes in the electric potential similarly relate to changes in the potential energy: 
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So we can compute the change in potential energy of an object with charge q crossing an 
electric potential difference: 
 

U q VΔ = Δ  
 
This motivates another unit for potential energy, since often we are interested in the 
potential energy of a particle like the electron crossing an electric potential difference. 
Consider an electron crossing a potential difference of 1 volt: 
 

( )( )19 191.6 10  C 1 V 1.6 10  J = 1 eVU q V e V − −Δ = Δ = Δ = × = ×  
This is a tiny number, which we can define as one electron-volt (abbreviated “eV”). It is a 
basic unit used to measure the tiny energies of subatomic particles like the electron. You 
can easily convert back to the SI unit Joules by just multiplying by the charge of the 
electron, e. 
 
A common convention is to set the electric potential at infinity (i.e. infinitely far away 
from any electric charges) to be zero.  Then the electric potential at some point r just 
refers to the change in electric potential in moving the charge from infinity to point r. 
 

r rV V V V∞Δ = − →  
 
The work done by the electric field in moving an electric charge from infinity to point r is 
given by: 
 

( )r rW U q V q V V qV∞= −Δ = − Δ = − − = −  
 
where the last step is done by our convention. But keep in mind that it is only the 
differences in electric potential that have any meaning. A constant offset in electric 
potential or potential energy does not affect anything. 
 

Electric Potential from Electric Field 
 
Consider the work done by the electric field in moving a charge q0 a distance ds: 
 

0dW d q d= ⋅ = ⋅F s E s  
 
The total work done by the field in moving the charge a macroscopic distance from initial 
point i to final point f is given by a line integral along the path: 
 

0
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This work is related to the negative change in potential energy or electric potential: 
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The last step changes the direction of the integration and reverses the sign of the integral. 

 

Equipotential Surfaces 
 
Equipotential surfaces are surfaces (not necessarily physical surfaces) which are at equal 
electric potential.  Thus, between any 2 points on the surface ΔV=0. This implies that no 
work can be done by the electric field to move an object along the surface, and thus we 
must have 0d⋅ =E s  
 
Therefore, equipotential surfaces are always perpendicular to the direction of the electric 
field (the field lines). 
 

 
 
The potential lines indicate surfaces at the same electric potential, and the spacing is a 
measure of the rate of charge of the potential. The lines themselves have no physical 
meaning. 
 

Potential of a Point Charge 
 
Let’s calculate the electric potential at a point a distance r away from a positive charge q. 
That is, let us calculate the electric potential difference when moving a test charge from 
infinity to a point a distance r away from the primary charge q. 
 

r

rV V V d∞ ∞
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      Field lines 
 
    Equipotential lines 
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Let us choose a radial path. Then d ds⋅ = −E s E   since the field points in the opposite 
direction of the path. However, if we choose integrating variable dr, then ds dr= − since r 
points radially outward like the field. We thus have: 
 

2 2

1

r r

r
r r

V E ds Edr

qdr dr qK Kq Kq K
r r r r

∞ ∞

∞ ∞
∞

′Δ = − ⋅ = −

′ ′
= − = − = =

′ ′ ′

∫ ∫

∫ ∫
 

 
Since the electric potential is chosen (and shown here) to be zero at infinity, we can just 
write for the electric potential a distance r away from a point charge q: 
 

( ) qV r K
r

=  

 
It looks similar to the expression for the magnitude of the electric field, except that it falls 
off as 1/r rather than 1/r2. 
 
We also could integrated in the opposite sense: 
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Potential of Many Point Charges 
 
By the superposition principal, the electric potential arising from many point charges is 
just: 
 

i
i

i

qV K
r

=∑  

where iq is the charge of the ith charge, and ir  is the distance from the charge to some 
point P where we wish to know the total electric potential. The advantage of this 
calculation is that you only have to linearly add the electric potential arising from each 
point charge, rather than adding each vector component separately as in the case of the 
electric field. 
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Electric Dipole 
 
Let’s see how to calculate the electric potential  
at point P due to an electric dipole. 
 
By the superposition principle, the total potential is: 
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where r+ is the distance from the positive charge to point P, and r- the distance from the 
negative charge. 
 
Now for large distances, cosr d r r d θ− +⇒ − ≈ , where d is the separation of the 
electric dipole. 
 

2 2

cos cosd pV Kq K
r r

θ θ
= =  

where r r r+ −= ≈  and p qd≡  is the electric dipole moment. 
 

Potential of Continuous Charge Distributions 

Potential between 2 Parallel Plates 
 
Let’s calculate the electric potential difference between 2 large parallel conducting plates 
separated by a distance d, with the upper plate (denoted “+”) at higher electric potential 
than the lower. 

       
From what we learned by Gauss’s Law and conductors, we know that the electric field 

arising from a conductor with a charge density σ is 
0

σ
ε

=E . It is thus a constant between 

the two plates in this example. The electric potential difference is given by a line integral: 
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           opposite directionsV V V d d ds
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Another way to view this result is that if we apply an electric potential difference 
between two conducting plates (large compared to their separation d), the magnitude of 
the electric field between them is: 
 

V
d
Δ

=E  

 
This motivates the alternate units for electric field of V/m. 
 

See more examples in the textbook on continuous charge 
distributions! 
 

Electric Field from Electric Potential 
 
We have seen in the previous example of the electric potential between two parallel 
plates, that  
 

V
s

Δ
=
Δ

E  
 
where Δs is the spacing between the plates, where the path is parallel to the field direction 
(and perpendicular to equipotential surfaces). In fact, the field points in direction opposite 
to increasing electric potential difference along path s: 
 

ˆV
s

Δ
= −

Δ
E s  

 
Now in the infinitesimal limit,  
 

ˆdV
ds

= −E s  

which applies to the field calculated in any region, uniform or not.  Writing this into the 
usual Cartesian coordinates: 
 

V= −∇E  where ∇  is the gradient operator. It is a short-hand for: 
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So the electric field is related to the negative rate of change of the electric potential. 
 
This is a specific manifestation of a more general relation that a force is related to the rate 
of change of the corresponding potential energy: 
 

U= −∇F       ( in one dimension: dUF
dx

= −  ) 

 
For the case of the electric field, q=F E  and U qV= , so 
 
q q V V= − ∇ ⇒ = −∇E E  
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Conductors and Electric Potential 
 
Recall that the valence electrons in a conductor are free to move, but that in electrostatic 
equilibrium they have no net velocity. Another consequence of this is that: 
 
ΔV = 0 across a conductor 
 
If not, electrons would move from higher to lower potential, and thus not be in static 
equilibrium.  This implies that the surface of the conductor, no matter what shape, is also 
an equipotential surface.  We learned already that the electric field is perpendicular to the 
surface of a conductor (otherwise charges would accelerate along the surface), and 
equipotential lines are always perpendicular to the electric field lines. 
 

 

Example: 

 
Let’s consider as an example 2 conducting spheres connected by a thin conducting wire. 
One sphere has a smaller radius (r1) than the other (r2); and the charges on the two 
spheres are q1 and q2 respectively.  
 
By the above argument, all surfaces are at the same electric potential. Let’s raise the 
entire system to potential V with respect to a point infinitely far away.  The two spheres 
must have the same potential, so by equating the potential energy of each charged sphere 
(which is the same as that of a point charge at the center of the sphere) we get: 
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Equipotential line 
 
Surface of conductor  

r2           q2 
 

r1            

     q1 
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Now let’s determine the surface charge densities. Since 24
q
r

σ
π

= , the last equation can 

be written: 
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i.e. the surface charge density is inversely proportional to the radius of the sphere. 
 
Now the magnitude electric field at the surface of the sphere is: 
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Thus, the field strength is proportional to the surface charge density, which is inversely 
proportional to the radius of the sphere. 
 
For a large enough charge q1 and small enough radius r1, the breakdown electric field 
strength in air could be exceeded ( 63 10  V/m× ) and a discharge (lightening bolt) occur. 
 
This is the basis of a lightening rod. Let the large sphere represent a large surface, such as 
the Earth, and the small sphere a small narrow point such as a rod. If the two surfaces 
accrue a large charge, such as during a lightening storm, the electric field is strongest at 
the narrow rod and a breakdown is most likely to occur there. Do not stand near tall 
narrow objects (like trees!) in an electrical storm! 
 
 
 
 
 
 


