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Abstract: Potential energy surfaces form a central concept in the application of electronic structure methods to the
study of molecular structures, properties, and reactivities. Recent advances in tools for exploring potential energy
surfaces are surveyed. Methods for geometry optimization of equilibrium structures, searching for transition states,
following reaction paths and ab initio molecular dynamics are discussed. For geometry optimization, topics include
methods for large molecules, QM/MM calculations, and simultaneous optimization of the wave function and the
geometry. Path optimization methods and dynamics based techniques for transition state searching and reaction path
following are outlined. Developments in the calculation of ab initio classical trajectories in the Born-Oppenheimer and
Car-Parrinello approaches are described.
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Introduction

From a computational point of view, many aspects of chemistry
can be reduced to questions about potential energy surfaces (PES).
A model surface of the energy as a function of the molecular
geometry is shown in Figure 1 to illustrate some of the features.
One can think of it as a hilly landscape, with valleys, mountain
passes and peaks. Molecular structures correspond to the positions
of the minima in the valleys on a potential energy surface. The
energetics of reactions are easily calculated from the energies or
altitudes of the minima for reactants and products. Reaction rates
can be obtained from the height and profile of the mountain pass
separating the valleys of the reactants and products. The shape of
the valley around a minimum determines the vibrational spectrum.
Each electronic state of a molecule has a separate potential energy
surface, and the separation between these surfaces yields the
electronic spectrum. Properties of molecules such as dipole mo-
ment, polarizability, NMR shielding, etc., depend on the response
of the energy to applied electric and magnetic fields. Thus, the
structure, properties, reactivity, and spectra of molecules can be
readily understood in terms of potential energy surfaces. Except in
very simple cases, the potential energy surface cannot be obtained
from experiment. However, the field of computational chemistry
has developed a wide array of methods for exploring potential
energy surface.

A potential energy surface arises naturally when the Born–
Oppenheimer approximation is invoked in the solution of the

Schrödinger equation for a molecular system. Essentially, this
assumes that the electronic distribution of the molecule adjusts
quickly to any movement of the nuclei. Except when potential
energy surfaces for different states get too close to each other or
cross, the Born–Oppenheimer approximation is usually quite good.
Thus, the energy and behavior of a molecule can be expressed as
a function of the positions of the nuclei, that is, a potential energy
surface. The task for computational chemistry is to explore this
potential energy surface with methods that are efficient and accu-
rate enough to describe the chemistry of interest.

“Tools for Exploring Potential Energy Surfaces” was the topic
of a recent ACS symposium organized by the author.1 The present
article provides an overview of some recent developments in this
area, highlighting a few of our own contributions to the Gaussian
series of programs.2 The focus is on potential energy surfaces
obtained by quantum chemical methods, because our interest is in
reactive systems. Such calculations tend to require considerable
computer resources, but with continuing advances in software and
hardware, they can be applied to rather sizeable systems with quite
respectable accuracy.3–6 Molecular mechanics calculations are
much cheaper, and have long been used to address questions of
structure and dynamics,5–7 but the types of reactions that can be
treated by molecular mechanics is rather limited. However,
QM/MM techniques that combine quantum mechanics (QM) for
the reactive region and molecular mechanics (MM) for the remain-
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der are very promising, especially for biochemical systems.8–18

The dynamics of molecules moving on potential energy surfac-
es19–24 have traditionally been calculated using analytic potential
energy surfaces obtained by fitting to experimental and computa-
tional data. Because of improvements in software and hardware,
molecular dynamics of modest size systems can now be explored
using direct methods (for a review, see ref. 25). In this approach,
often termed ab initio molecular dynamics (AIMD), electronic
structure methods are used to calculate the potential energy and its
derivatives “on the fly,” as they are needed for the integration of
the equations of motion of the system.

Topics considered in the present overview include geometry
optimization of equilibrium structures, searching for transition
states, following reaction paths and ab initio molecular dynamics.
Methods for geometry optimization of minima and transition states
have a long history and are discussed in a number of reviews.26–30

Some recent developments include methods for large mole-
cules,31–39 special techniques for QM/MM calculations,40–43 and
simultaneous optimization of the wave function and the geome-
try.44–47 Global optimization, conformational searching, etc., are
outside the scope of this article; discussions of these topics can be
found elsewhere.48–52 Once the appropriate structures on the po-
tential energy surface have been optimized, a reaction mechanism
can be mapped out by finding the lowest energy reaction path that
connects the reactants to the products via suitable transition states
and intermediates.53–56 New techniques in this area include path
optimization methods57–64 and dynamics-based methods.65–68 Re-
action path information can also be used to calculate reaction rates
by variational transition state theory and reaction path Hamiltonian
methods,70–74 but the details cannot be cover in this brief over-
view. Steepest descent reaction paths are only a crude approxima-
tion to the motion of a molecule across a potential energy surface.
The classical trajectories of a molecule moving on a potential
energy surface explore a wider region than are traced out by the
reaction path.19–24 The calculation of classical trajectories by ab
initio molecular dynamics methods is a comparatively new area25

and is expanding rapidly as affordability of computer power in-
creases and more efficient software is developed. Quantum dy-
namics on potential energy surfaces is outside the scope of the

present article.75–77 The intent of this article is not to provide a
thorough review of these fields, but only to provide highlights of
some recent developments in practical methods for exploring
potential energy surfaces.

Optimizing Equilibrium Geometries

In any optimization problem, the choice of coordinates can have an
important influence on the efficiency of the optimization. Cartesian
coordinates provide a simple and unambiguous representation for
molecular geometries, and are used for calculating the molecular
energy and its derivatives. However, the potential energy surface
has very strong coupling between coordinates when represented in
Cartesians. Bond lengths, valence angles, and torsions about bonds
are more appropriate coordinates to describe the behavior of mol-
ecules. Because they express the natural connectivity of chemical
structures, there is much less coupling between these internal
coordinates. For cyclic molecules, there are more bonds, angles
and dihedrals than the three Natoms � 6 internal degrees of free-
dom, and the coordinate system has some redundancy. There are a
number of different flavors of redundant internal coordinate sys-
tems (primitive, natural, delocalized),78–83 and all work better
than Cartesians or nonredundant internals (e.g., Z-matrix coordi-
nates), especially for polycyclic systems. The transformation of
Cartesian coordinates and displacements to internals is straightfor-
ward, but the transformation of the gradients (and Hessian, if
necessary) requires a generalized inverse of the transformation
matrix.78

�q � B�x, gq � B�1gx, Hq � B�T�Hx � �B/�x gq�B�1 (1)

Figure 1. Model potential energy surface showing minima, transition
states, a second-order saddle point, reaction paths, and a valley ridge
inflection point (from ref. 26 with permission from World Scientific
Publishing).

Figure 2. Schematic for a QM/MM calculation of bacteriorhodopsin
(ONIOM(PM3:Amber) calculation, with � helices (show in ribbon
format) calculated with the Amber force field, and the retinal chro-
mophore (shown in tube format) calculated at the PM3 level) (adapted
from ref. 43 with permission).
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where x are the Cartesian coordinates, q are the (redundant)
internal coordinates, B � �q/�x is the Wilson B matrix84 and gx �
dE/dx is the Cartesian gradient, and Hx � d2E/dx2 is the Cartesian
Hessian. Because of the redundancy and the curvilinear nature of
the internal coordinates, the transformation back to Cartesians
involves an iterative process as well as a generalized inverse.78

The calculation of a generalized inverse scales as O(N3), where N
is the number of atoms or the number of redundant internals. For
small molecules, this is not a problem. However, for larger systems
or inexpensive levels of theory, these transformations can become
a bottleneck. In recent years, a number of methods have been
developed to overcome these difficulties,31–39 using techniques
such as iterative solutions to linear equations, Cholesky decompo-
sition and sparse matrix methods. For electronic structure calcu-
lations, the extra work required to transform to internal coordinates
for the optimization is more than compensated by the reduced
number of steps required to reach the minimum. Even for molec-
ular mechanics calculations (and the MM part of QM/MM calcu-
lations), the trade-off may be favorable in some circumstances.

For optimization of molecular geometries, it is well estab-
lished26–30 that quasi-Newton methods85–88 are one of the best
approaches. The displacement toward the minimum is given by

�q � �H�1g (2)

The Hessian is not usually calculated explicitly, but is obtained
by updating an initial estimate. Suitable estimates of the Hessian
can be readily obtained from empirical estimates,46,89,90 molecular
mechanics or semiempirical methods. The Broyden–Fletcher–
Goldfarb–Shanno (BFGS) formula91–94 is acknowledged as one of
the best updating schemes.

Hnew � Hold � �HBFGS (3)

�HBFGS � �g�gT/�xT�g � Hold�x�xTHold/�xTHold�x (4)

We have found that a modification of Bofill’s update95 for
transition states is very useful for minima,

�H � ��HBFGS � �1 � ���HMS,

� � ��xT��g � Hold�x��/��x� ��g � Hold�x� (5)

�HMS � ��g � Hold�x���g � Hold�x�T/�xT��g � Hold�x� (6)

which combines BFGS with the Murtagh-Sargent (MS) symmetric
rank 1 update. For very large systems, storage of the full Hessian
is impractical, and methods such as limited memory BFGS
(LBFGS) are useful.46,96–104 These store a diagonal Hessian and
vectors to perform a limited series of updates (this requires only
O(N) cpu and storage).

In determining the displacement toward the minimum, the
Newton step needs to be controlled in some fashion.85–88 If some
of the eigenvalues of the Hessian are small or are negative, the step
will be too large or in the wrong direction. Rational function
optimization (RFO), trust radius method (TRM), and their variants

are quite satisfactory for controlling the step size,95,105–109 for
example:

�q � ��H � �I��1g (7)

where � is chosen so that the step is in the descent direction and of
appropriate length. These are normally computed using the eigen-
values and eigenvectors of the Hessian [an O(N3) computational
task]. For larger systems, where this becomes a bottleneck, we
have developed an O(N2) iterative method that avoids the costly
diagonalization.32 To handle situations where the potential energy
surface is anharmonic, it is desirable to include a line search. A
simple interpolation using a cubic or quartic polynomial will often
suffice (and does not require additional energy calcula-
tions).85,86,110

Another optimization method that is very efficient, especially in
the vicinity of the minima, is the GDIIS approach.33,111,112 The
technique is based on a linear interpolation/extrapolation of the
available structures so as to minimize the length of an error vector.

q* � � ciqi, � ci � 1 (8)

A simple Newton step or the gradient can be used as the error
vector.

ei � �H�1gi or ei � gi, r � � ciei (9)

The minimization of the �r�2 leads to a least-squares problem
that can be solved for the coefficients, ci. The next point in the
optimization is given by:

qnew � � ci�qi � H�1gi� (10)

Farther from the minimum, the GDIIS method may misbehave,
converging to a nearby critical point of higher order, or oscillating
about an inflection point. A number of improvements have been
implemented to overcome these difficulties.33,112 The problem of
converging to a higher order critical point can be controlled by
comparing the GDIIS step with a reference step, for example, a
quasi-Newton step using the RFO or trust radius method. If the
angle between the GDIIS step and the reference step is greater than
a threshold, the reference step is taken instead. Limits are also
placed on the length of the GDIIS step compared to the reference,
and on the magnitude of the coefficients. With suitable updating of
the Hessian [i.e., eq (3) or (5)], the performance of the controlled
GDIIS method is equal to or better than the quasi-Newton RFO
method. If a diagonal Hessian is used and a limited number of error
vectors is retained, the computational effort and memory require-
ments of the GDIIS method scale linearly with the size of the
system.

For large systems, hybrid energy methods such as QM/MM8–18

and ONIOM,10,113–115 that combine different levels of theory into
one calculation, can be very useful. A higher level of theory is used
to model the smaller, chemically important region and a lower
level of theory is used for the larger environment, as illustrated in
Figure 2. Covalent bonds that cross the boundary between the two
regions can be treated by using link atom or hybrid orbitals.
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Geometry optimization methods can take advantage of the fact that
a large region is treated by inexpensive molecular mechanics while
only a small part requires expensive quantum mechanical calcu-
lations. It is common to employ a series of microiterations to fully
optimize the MM region for each optimization step in the QM
region.40–43 However, some problems can arise when separated
optimizers are used for the QM and the MM regions. In particular,
geometrical constraints applied to the MM region, can make the
uncoupled optimizations of the MM and QM regions very slow to
converge. In our approach,43 we choose the internal coordinates of
the QM region so that they remain constant during the microitera-
tions of the MM region. The Cartesian coordinates used for the
MM region are augmented to permit rigid body translation and
rotation of the QM region. This is essential if any atoms in the MM
region are constrained, but also improves the efficiency of uncon-
strained optimizations. Because of the microiterations, special care
is also needed for the optimization step in the QM region so that
the system remains in the same local valley during the course of
the optimization.43

Many electronic structure calculations can be phrased in terms
of minimizations of the variational energy with respect to variables
in the wavefunction. Algorithms such as DIIS, conjugate gradient,
and Newton-Raphson methods have been used to converge Har-
tree–Fock and density functional calculations.44–46,116–122 Be-
cause this problem is similar to optimization of geometry, one can
contemplate optimizing the geometry and the wave function si-
multaneously.44–46 This would avoid the tedious convergence of
the wave function for each step in the optimization. Even the
simple trick of reducing the SCF convergence criteria when the
structure is far from the minimum can save as much as 30% of the
cpu time.123 In the second-order approach to simultaneous opti-
mization of the geometry and the wave function, the gradients and
Hessians are calculated with respect to the nuclear positions and
the molecular orbital coefficients.45 The RFO method is used to
control the Newton step toward the minimum. In the first-order
approach, the nuclear and wave function gradients are used in a
quasi-Newton minimization algorithm.44,46 Both of these ap-
proaches are competitive with conventional geometry optimization
using converged wavefunctions. However, neither has seen wide-
spread use. Recently, we have implemented a first-order simulta-
neous optimization using the DIIS method for minimizing the
energy with respect to both the electronic structure and the geom-
etry.47 Preliminary indications are that this conceptually simple
approach is efficient and robust.

Another task that can be cast in terms of a minimization is the
search for conical intersections and avoided crossing.124–127 Two
potential energy surfaces representing different electronic states
can cross if they are of different symmetry (spatial or spin). If they
are the same symmetry, the crossing is avoided, except where the
coupling matrix element (in a diabatic picture) is zero. The seam
of intersection has a dimension of 3 Natoms � 8 or 3 Natoms � 7,
depending on whether or not the surfaces are the same symmetry.
We wish to find the lowest point of intersection, which can be a
minimization task with many degrees of freedom. This can be done
with the aid of Lagrangian multipliers to constrain the energies for
the two surfaces to be equal.127–129 Alternatively, projection meth-
ods can be used to treat these constraints. Using this approach, we
minimize the square of the energy difference in the one or two

dimensional space of the intersection and minimizes the energy of
the upper surface in the remaining 3 Natoms � 8, or 3 Natoms � 7
dimensions.130

g̃ � d�E2 � E1�
2/dx � �1 � v1v1

T/�v1�2��1 � v2v2
T/�v2�2�dE2/dx (11)

where v1 � d(E2�E1)/dx and v2 � dH12/dx. Because the square of
the energy difference is better behaved than the absolute value of
the difference, the corresponding gradient can be used without
further modification or constraint in a conventional quasi-Newton
optimization algorithm.

Finding Transition States

A transition state is a stationary point on a potential energy surface
that corresponds to a mountain pass (see Fig. 1). It is a maximum
in one and only one direction (along the transition vector, going
from one valley to another) and a minimum in all other perpen-
dicular directions (three Natoms � 7 degrees of freedom). Transi-
tion states are often more difficult to find, and many algorithms
have been developed to search for them (see refs. 26, 27, 29, and
30 for some reviews). In principle, a transition state could be found
by minimizing the norm of the gradient,131–134 but this is usually
not a good idea. Provided that the initial structure is close enough
to the quadratic region of the transition state, the quasi-New-
ton85–88 and GDIIS33,111,112 methods for minimization can be
adapted to find transition states. The initial Hessian must have the
correct number of negative eigenvalues (one and only one), and the
corresponding eigenvector must be a suitable approximation to the
transition vector (i.e., pointing from one valley to the other).
During the course of the optimization, the Hessian must be up-
dated. The BFGS formula is not acceptable, because the update is
positive definite. Powell-symmetric-Broyden (PSB) and symmet-
ric rank 1 (Murtagh–Sargent, MS) do not force a positive definite
update,85–88 and are more appropriate for transition states. Bo-
fill95,103,135–138 developed a hybrid update that is superior to both
of these

�HBofill � ��HPSB � �1 � ���HMS,

� � ��xT��g � Hold�x��2/��x�2��g � Hold�x�2 (12)

�HBSP � ���g � Hold�x�T�x � �xT��g � Hold�x��/�xT�x

� ���g � Hold�x�T�x��x�xT/��xT�x�2 (13)

Bofill also observed that for larger systems, the energy needs to
be minimized with respect to most of the coordinates whereas only
a few coordinates are involved in the transition vec-
tor.103,104,138,139 Because these coordinates can be readily identi-
fied by comparing the reactants and products, the Bofill update can
be used for the small Hessian update pertaining to them. The
remaining coordinates form a much larger space and can be treated
with the BFGS update.

The major problem in optimizing transition states is to get near
enough to the quadratic region. Quite a number of methods have
been developed to get close to transition states. Because these have
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been reviewed elsewhere,26,27,29,30 only some generalities and a
few specifics will be considered here. One approach is to approx-
imate the potential energy surface for a reaction as the intersection
surfaces for the reactants and products, modeled by molecular
mechanics or valence bond methods.140–143 The lowest point on
the seam of intersection can yield good estimates of the transition
state geometry and Hessian (but molecular mechanics force fields
may have to be modified to handle the larger distortions from
equilibrium). A more general alternative is the coordinate driving
or distinguished coordinate method (i.e., stepping a chosen vari-
able and optimizing the remaining ones). In favorable circum-
stances, this approach can be used to climb from reactants or
products to the transition state, but it can run into difficulties such
as discontinuities if the reaction path is strongly curved.144–146

The reduced gradient following method is an improvement on this
approach, and is better able to handle curved reaction paths.147–152

Walking up valleys105,153–157 or following the shallowest ascent
path158 is a better strategy, as shown in Figure 3. In this method,
a step is taken uphill along the eigenvector with the lowest eigen-
value, and downhill along all the other directions. Similar to the
RFO and trust radius methods, the step is controlled by adding an
offset to the Hessian, as in eq. (7). The parameter � is chosen so
that H � � I has only one negative eigenvalue and so that the
Newton step with the offset Hessian has the appropriate length.
Sometimes different �s are used for the ascent and descent por-
tions of the step.106,107,157 These approaches greatly expand the
radius of convergence of transition state optimizations, provided
that the initial Hessian is chosen so that it possesses an eigenvector
in a suitable ascent direction.143 A serious problem with “walking
up valleys” is that only transition states at the end of the valley can
be found by this approach. However, many interesting transition
states are to the side of the valley floor and cannot be found by this
method.

An alternative to “walking up valleys” is following gradient
extremals.158–160 Along a gradient extremal curve, the derivative
of the gradient norm is zero subject to the constraint that the

energy is constant. Equivalently, the gradient is an eigenvector of
the Hessian on a gradient extremal curve. A number of algorithms
for following gradient extremals have been developed.161–163 Be-
cause gradient extremals are locally defined and pass through all
stationary points, they can be followed from minima to transition
states (whereas steepest descent paths cannot be followed uphill to
transition states). However, considerable care is needed, because
gradient extremals do not necessarily connect stationary points as
directly as steepest descent reaction paths, as illustrated in Figure
4. In fact, Bondensgard and Jensen164 have demonstrated that the
behavior of gradient extremals is much too complicated to be
practical even for molecules as simple as formaldehyde.

Synchronous transit methods start from the reactant and prod-
uct, and find the maximum along a linear or quadratic path across

Figure 5. Linear synchronous transit (LST) paths (yellow) and qua-
dratic synchronous transit (QST) paths (red) on a model potential
energy surface (from ref. 26 with permission from World Scientific
Publishing).

Figure 3. The walking up valleys approach to optimizing transition
states (from ref. 267 with permission).

Figure 4. Gradient extremals (red) and steepest descent reaction paths
(green) on the Müller–Brown surface.
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the surface (see Fig. 5).165 Often this provides a structure close
enough to the transition state for quasi-Newton or shallowest
ascent methods to succeed. This idea can be generalized such that
two structures instead of one are used to start a transition state
search. We have used two structures—one in the reactant valley,
and the other in the product valley—to specify an approximate
reaction path and bracket the transition state.166 Updating the
Hessian while searching uphill along the path ensures that the
Hessian has a negative eigenvalue. The approximate path is then
used to control the quasi-Newton/shallowest ascent search for the
transition state.

The saddle method167–169 also starts with two points—one on
the reactant side of the transition state, and the other on the product
side. The lowest energy point is stepped toward the other and
optimized with the constraint that the distance between them is
fixed. As the two points converge toward each other, they provided
better bounds on the transition state. Ridge following extends the
idea of bracketing the transition state.170,171 Two structures, one
on either side of the ridge separating the reactant and product
valleys, are stepped toward each other to more tightly bracket the
ridge, and are moved parallel to the ridge to find its lowest point
ridge, i.e., the transition state.

This idea can be generalized to optimize not only two points,
but the entire path between reactants and products.57–64 Points are
equally spaced along an approximate reaction path. The points are
then moved so that they minimize the barrier and approximate the
reaction path. This can be accomplished by minimizing the integral
of the energy along the path.

I � 1/L � E�s�ds � 1/ 2L � �E�xi�1� � E�xi���xi�1 � xi� (14)

where L � 	 �xi�1 � xi� is the length of the path. Additional forces
are added to keep the points equally spaced and to prevent the path
from becoming kinked.57–61 This has given rise to the name
“nudged elastic band” for this method of optimization. However,
the efficiency of these methods61 is still relatively poor compared
to some of the methods discussed above. As an alternative, we
developed a method for optimization of the path in which one

point optimizes to the transition state and other points optimize to
the steepest descent path, as shown in Figure 6.62 Other variants of
this concept include the chain69 and locally updated plane63 meth-
ods. The conjugate peak refinement method64 is a dynamic version
of the chain method, where points are added or deleted as a result
of optimizations in directions conjugate to the current path.

Optimizing a large number of points along a reaction path can
be expensive. However, the thought of beginning a transition state
optimization from the reactant and product minima is appealing.
We are developing a method in which a point in the reactant valley
and another in the product valley attracted to each other and move
toward a transition state in a pseudotrajectory (see Fig. 7). As they
approach each other, the steps are adjusted so that they stay on
opposite sides of the ridge and follow it down to the transition
state.

In some cases, the product of a reaction may not be known
beforehand. For example, one may be interested in the lowest
energy pathway for a rearrangement or decomposition of a given
reactant. In terms of the landscape of a potential energy surface,
one can imagine gradually filling a valley with water, and finding
when and where it overflows. Irikura172 has developed an algo-
rithm that follows an iso-potential contour on a energy surface
until it finds a transition state. Although rather time consuming,
this has lead to some surprising reaction mechanisms in a number
of cases. In another approach, coordinate driving with in a selected
subset of the coordinate system has been used to automatically
explore a reaction network in a systematic fashion.173 A third
approach uses molecular dynamics on a modified potential to
simulate unimolecular decomposition.174 However, rather long
simulations may be required.

Figure 6. Reaction path optimization for the ene reaction C5H10 3
C3H6 � C2H4 (from ref. 62 with permission).

Figure 7. Bracketing the transition state starting from a point in the
reactant valley and another in the product valley attracted to each other
and move toward a transition state in a pseudotrajectory.
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Following Reaction Paths

After a transition state has been located and a frequency calcula-
tion has verified that it has one and only one imaginary frequency,
it is often necessary to confirm that it connects the desired reac-
tants and products. The reaction path is also needed for calculating
reaction rates by variational transition state theory or reaction path
Hamiltonian methods.70–74 These provide more accurate treat-
ments of reaction rates than simple transition state theory.

The steepest descent reaction path is defined by

dx�s�/ds � �g�s�/�g�s�� (15)

If mass weighted coordinates are used, the steepest descent path
is the intrinsic reaction coordinate.175 Methods for following the
reaction path from the transition state down to the reactants and
down to the products have been reviewed in a number of arti-
cles.53–56 One of the first practical techniques was the Ishida–
Morokuma–Komornicki method,176 a stabilized form of the Euler
method for integrating differential equations. Page and
McIver56,177,178 developed a series of methods for integrating eq.
(15) based on a local quadratic approximation (LQA) to the
potential energy surface, and corrections based on higher order
Taylor expansions. Other numerical methods for integrating ordi-
nary differential equations can also be used to follow the
path.179–181 However, the differential equations for steepest de-
scent paths tend to be stiff; small step sizes, and special methods
may be needed.182 Implicit methods for integrating differential
equations can use larger step sizes to follow the reaction path, but
at the cost of an optimization at each step. The Müller–Brown
approach167 is an implicit Euler method. The second-order GS
technique that we developed a number of years ago corresponds to
an implicit trapezoid method.183,184 We have also extended these
ideas to higher implicit methods.185

Direct classical trajectory methods (see below) can be adapted
to follow reaction paths.65–68 We have developed some improved
techniques to control the accuracy of reaction path following using
a damped velocity Verlet method.68 For larger molecules, this
approach can be significantly more efficient than the conventional
method for following reaction paths. We have also adapted69 our
Hessian-based predicitor-corrector method for integrating classical
trajectories186–188 (see below and Fig. 8) to produce an algorithm
for following reaction paths and calculating projected frequencies
along the path189 that closely resembles our fourth-order implicit
method.185

The previous section described methods for finding transition
states by optimizing a set of points on the reaction
path.30,57–60,62–64 By design, these methods also yield a represen-
tation of the reaction path. An extension of this approach, the
replica path method, computes not only the path but also the free

energy along the path.190 A molecular dynamics simulation for
motion perpendicular to the path provides an estimate of the free
energy for each point along the path. Slow growth molecular
dynamics simulations have been employed to estimate the free
energy along a predetermined reaction path.191 Free energy per-
turbation methods have also been used to obtain the free energy
along a coordinate driving path.40 An alternative approach obtains
reaction paths and rates by using Monte Carlo method to sample an
ensemble of transition paths.192–196 Yet another approach obtains
free energy profiles along reaction paths by an adiabatic separation
between the reaction coordinate and the remaining degrees of
freedom.197,198 This is achieved by assigning an artificial large
mass and high temperature to the reaction coordinate.

Ab Initio Molecular Dynamics (AIMD)

Classical trajectory calculations20–24 provide greater insight into
the dynamics of reactions than can be obtained from variational
transition state theory and reaction path Hamiltonian meth-
ods.70–74 Molecular dynamics calculations may involve extensive
sampling of initial conditions and/or long simulation times. Typ-
ically, trajectory calculations have been carried out using global,
analytical potential energy surfaces, so that the energy and its
derivatives can be calculated rapidly whenever needed during the
integration of the equations of motion. Potential energy surfaces
obtained from well parameterized molecular mechanics calcula-
tions can be quite satisfactory for simulations near equilibrium.
However, for reactive systems, specific potential energy surfaces
must be devised for each unique system. Constructing potential
energy surfaces by fitting to experimental data and/or ab initio
molecular orbital energies can be both tedious and full of pit-
falls.199,200 Because of advances in computer speed and molecular
orbital software, it has become possible to use ab initio and
semiempirical molecular orbital calculations directly in classical
trajectory calculations and thus avoid the fitting process.25

There are a number of aspects to molecular dynamics simula-
tions. First is the choice of the initial conditions.201 Enough
trajectories must be calculated, or a single trajectory must be run
for a long enough time to get statistically significant results. Then,
for each trajectory, the initial coordinates and velocities need to be
chosen so that they sample an ensemble that is suitable for the
system being simulated (e.g., microcanonical, thermal, etc.). Sec-
ond, the appropriate equations of motion need to be integrated
(e.g., classical or quantum, with or without Nosé–Hoover thermo-
stat chains to control temperature, with or without Langevin pis-
tons to control pressure, etc.). Finally, the results must be ana-
lyzed202 (e.g., reaction rates, branching ratios, energy partitioning,
etc., for reactive systems; free energies, entropies, potentials of
mean force, autocorrelation functions, etc., for free energy simu-
lations, etc.). These and many other topics are discussed in chap-
ters and monographs on molecular dynamics.19–24,203–212 The
aspect most relevant to the present overview on exploring potential
energy surfaces is the efficient and accurate integration of the
equations of motion using direct methods that evaluate the elec-
tronic structure “on the fly.”

Direct classical trajectory calculations can be grouped into two
major categories: Born–Oppenheimer (BO) methods, and Car–

Figure 8. Hessian-based predictor-corrector algorithm for integrating
classical trajectories (from ref. 187 with permission).
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Parrinello (CP) methods.25 For the former, each time that infor-
mation about the potential energy surface is needed for a given
nuclei configuration, the electronic structure calculation is fully
converged. This yields the energy and its derivatives in the Born–
Oppenheimer approximation, which are then used in the numerical
integration of the equations of motion for the nuclei. In the
Car–Parrinello approach,213 an extended Lagrangian is used to
propagate the wave function as well as the nuclei. With an appro-
priate adjustment of the time scales for the propagation of the
wavefunction, both can be propagated satisfactorily, without the
extra work of converging the wave function at each step. The
resulting dynamics of the nuclei are comparable to that obtained
with the Born–Oppenheimer approximation.

Born–Oppenheimer Methods

The most straightforward technique for direct Born–Oppenheimer
dynamics uses only the energy and gradient calculated by elec-
tronic structure methods. This can be achieved by linking an
electronic structure code with a classical trajectory package such
as Venus.214 Code for calculating the classical trajectories has also
been incorporated into a number of widely distributed electronic
structure packages (Dalton, DMol, Gamess, Gaussian, Hy-
perChem, NWChem, etc.). Velocity Verlet, fourth-order Runge–
Kutta, sixth-order Adams–Moulton–Bashforth and related predic-
tor corrector algorithms215 are popular numerical methods for
integrating the equations of motion. However, fairly small time
steps are required so that the integration is sufficiently accurate.
Conservation of the total energy is one measure that is often used
to gauge the quality of a simulation. Even though Verlet meth-
ods216 (standard, leapfrog, and velocity) are only second order,
they are remarkably good at conserving the total energy over long
simulations, a property shared by all symplectic integrators.217 For
accurate integrations, time steps of 0.05 to 0.5 fs are needed for
typical molecules. Thus, each trajectory may require many thou-
sands of electronic structure calculations, even for fairly fast
reactions.

For quite a number of electronic structure methods, second
derivatives of the energy (Hessians) can be calculated analytically,
providing a local quadratic approximation to the potential energy
surface. The equations of motion can be integrated on this local
surface for significantly larger steps before the electronic structure
has to be recalculated. Helgaker, Uggerud, and Jensen used this
approach to compute classical trajectories for H2 � H and for
CH2OH 3 HCO� � H2 using multiconfiguration SCF calcula-
tions.218,219 Since these initial applications, a growing number of
systems have been studied by these authors with this second-order
Hessian-based trajectory integration method.220–226

In recent work, we have developed a more accurate predictor-
corrector integration algorithm that uses Hessians.186–188 As
shown in Figure 8, this scheme employs the second-order Hessian-
based method as a predictor step. The Hessian is recalculated and
a fifth-order polynomial is fitted to the energies, gradients, and
Hessians at the beginning and end points of the predictor step. The
Bulrisch–Stoer algorithm215 is then used to reintegrate the trajec-
tory on the fitted surface to yield a corrector step. The electronic
structure work is the same as for the second-order Hessian-based
method, because the energy, gradient, and Hessian at the end of the
current predictor step are used for the start of the next predictor
step. The error in the conservation of energy for this Hessian-based
predictor corrector method is three orders of magnitude lower than
for the second-order Hessian-based method, allowing for an order
of magnitude increase in step size without loss of accuracy in the
energy conservation (see Fig. 9).

The quasi-Newton geometry optimization algorithms described
above make effective use of updating formulas to improve an
estimated Hessian during the course of an optimization. The same
approach can be applied to the Hessian based predictor-corrector
method for integrating trajectories. Bofill’s update,95 eq. (12), was
found to be the most satisfactory. The Hessian can be updated for
5–10 steps before it needs to be recalculated. Slightly smaller step
sizes are needed to maintain the same energy conservation. For
systems containing four to six heavy atoms this speeds up the
trajectory integration by a factor of 3 or more. The Hessian-based
predictor-corrector method (with and without updating) has been
used in studies H2CO3 H2 � CO, F � C2H43 C2H3F, C2H2O2

Figure 9. Comparison of the error in the conservation of energy vs.
step size for trajectories integrated with the second-order Hessian-
based method (blue) and the Hessian-based predictor-corrector method
with a fifth-order polynomial (red) or a rational function (green) for the
corrector step (slopes of the least squares fits in parenthesis).

Figure 10. Ratios of estimated timings for Born–Oppenheimer vs.
ADMP trajectory calculations on linear hydrocarbons, CnH2n�2, com-
puted at the HF/6-31G(d) level of theory [second-order Hessian
method (blue, diamonds), Hessian-based predictor-corrector (red,
squares), gradient based velocity Verlet (orange, triangles) vs. ADMP
(green, diamonds)].

Potential Energy Surfaces for Chemical Reactions 1521



(glyoxal) 3 H2 � 2 CO, and H2CO � CO, C2N4H2 (s-tetrazine)
3 N2 � 2 HCN and HCXO 3 HX � CO.186,227–236

Collins has developed a novel and efficient approach to direct
Born–Oppenheimer dynamics.237–242 A portion of the potential
energy surface along the reaction path is mapped out with a modest
number of energy, gradient, and Hessian calculations. These local
quadratic patches are linked with a distance weighted interpolant
to yield a global surface.

E�x� � �wi�x�Ti�x�,

wi�x� � �i�x�/� �j�x�,

�i�x� � ����x � xi��/ri�
q � ���x � xi��/ri�

p��1

Ti�x� � E�xi� � dE/dx�i�x � xi� �
1

2
�x � xi�

Td2E/dx2�i�x � xi�

(16)

where the wi are the weights for the data points and Ti are the local
Taylor expansions of the energy surface at the data points (confi-
dence radii ri and exponents q 
 
 p control the smoothness of the
interpolated surface). A set of test trajectories is run on this
approximate surface. Some of these trajectories explore regions of
the surface with higher uncertainty, i.e., regions farther away from
the existing data points. Additional electronic structure calcula-
tions are performed in these regions to improve the accuracy of the
interpolated surface. A new set of test trajectories is run and the
process is repeated until the desired dynamical properties become
stable with respect to improvements in the surface. This approach
has been used these authors to study a number of small mole-
cules.243–249

Car–Parrinello Methods

In 1985, Car and Parrinello213 outlined a new approach to ab initio
molecular dynamics (for reviews, see refs. 250–252). Rather than
computing converged wavefunctions for every time step in a
trajectory calculation, they decided to propagate the wavefunction.
Instead of using the time-dependent Schrödinger equation (which
would have necessitated very small time steps), they used an
extended Lagrangian to obtain classical-like equations of motion
for the wave function. Specifically, the Car–Parrinello method uses
density functional theory and propagates the coefficients of the
Kohn–Sham orbitals �i expanded in a plane wave basis,253,254

� �
1

2
Tr�VTMV� � 	 �� ���i/�t�2dr � E�R, �i�

� ��ij �� �*i�jdr � 
ij� (17)

where R, V, and M are the nuclear positions, velocities, and
masses; 	 is the fictitious electronic mass; r are the electronic
coordinates; and �ij are Lagrangian multipliers to ensure the
orbitals remain orthonormal. The choice of a plane wave basis
facilitates applications to condensed matter by building in periodic

boundary conditions. This also simplifies many of the integrals; in
particular, only the Hellmann–Feynman terms are needed to cal-
culate the integrals because the basis functions do not depend on
the positions of the nuclei. However, the types of density func-
tionals that can be used easily is limited (e.g., no hybrid functionals
because the Hartree–Fock exchange is difficult to calculate). To
reduce the size of the plane wave basis needed, core electrons are
replaced by pseudopotentials. The extended Lagrangian requires a
fictitious mass, 	, for the electronic degrees of freedom. This is
chosen small enough so that there is little or no exchange of energy
between the nuclear and electronic degrees of freedom (if neces-
sary, this can be controlled with thermostats). However, the ficti-
tious mass must be chosen large enough so that the dynamics
(nuclear and wavefunction) can be integrated with large enough
time steps (otherwise the advantage of propagating rather than
converging is lost). This approach and its variants have seen
extensive usage in the physics community.255 An alternative ap-
proach also employs a plane wave basis and pseudopotentials, but
uses a conjugate gradient method to converge the wave func-
tion.251 This is, in fact, a Born–Oppenheimer method and has some
advantages over the Car–Parrinello approach in cases where the
fictitious wave function dynamics run into difficulties.

Molecular electronic structure calculations in chemistry are
usually carried out with atom centered basis functions (e.g., Gaus-
sians) rather than plane waves.3–6 For a given accuracy for an
isolated molecule, far fewer atom centered functions are needed
than plane waves, because they are automatically positioned where
the density is the greatest. Because the density matrix becomes
sparse for large molecules, Hartree–Fock and density functional
calculations can be made to scale linearly with molecular
size.117,256,257 These features, along with the extensive experience
that the chemistry community has with levels of theory and basis
sets, lead us to develop the atom-centered density matrix propa-
gation (ADMP) method for molecular dynamics.258–260 In the
spirit of the Car–Parrinello method, the electronic structure is
propagated. Specifically, the elements of the one particle density
matrix in a Gaussian basis are propagated using an extended
Lagrangian.

Like density matrix search methods for calculating electronic
energies,118 the equations for propagation of the density matrix are
simplest in an orthonormal basis (e.g., Löwdin or Cholesky or-
thonormalization). In our approach we write an extended Lagrang-
ian for the system as

� �
1

2
Tr�VTMV� �

1

2
Tr��u1/4Wu1/4�2�

� E�R, P� � Tr���PP � P�� (18)

where P, W, and � are the density matrix, the density matrix
velocity, and the fictitious mass matrix for the electronic degrees of
freedom. Constraints on the total number of electrons and the
idempotency are imposed using the Lagrangian multiplier matrix
�. The energy is calculated using the McWeeny purification of the
density,261 P̃ � 3 P2 � 2 P.3 The Euler–Lagrange equations of
motion are:
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Md2R/dt2 � ��E/�R�P;

d2P/dt2 � �	�1/ 2�E/�P�R � �P � P� � �	�1/ 2 (19)

These can be integrated using the velocity Verlet algo-
rithm,216,253 along with a simple iterative scheme to determine the
Lagrangian multipliers so that Pi�1 and Wi�1 satisfy the idempo-
tency constraints.258 In calculating �E/�R�P we need to take into
account that P is not converged and that the transformation be-
tween the nonorthogonal atomic orbital basis and the orthonormal
basis depends on R. This leads to a somewhat more complicated
expression than used for gradients of converged SCF energies. An
important factor in the viability of this approach is that we have
been able to obtain the derivative of the transformation matrix in
closed form for both Löwdin and Cholesky orthonormalization.258

Unlike earlier approaches to propagating Hartree–Fock and gen-
eralized valence bond wavefunctions.262–265 the ADMP method
shows excellent energy conservation without thermostats and does
not require periodic reconvergence of the electronic structure.

To obtain a feel for the relative timing of the BO and ADMP
methods for molecular dynamics, we considered a series of linear
hydrocarbons (see Fig. 10). ADMP requires one Fock matrix and
one gradient evaluation per time step, and is used as the reference.
BO with velocity Verlet uses approximately the same time step but
needs an average of 10 Fock matrix evaluations to converge the
wave function. The Hessian-based trajectory integration methods
can employ much larger time steps and still maintain the same
level of energy conservation or better. When updating is used, the
cost of calculating the Hessian is spread out over a number of
steps. As seen in Figure 10, this approach is most efficient for
small molecules and for cases that require more accurate dynam-
ics. The ADMP approach wins for larger systems and shows its
advantage even earlier for hybrid DFT methods.260

Some of the specific advantages of the ADMP method include
the ability to treat all electrons and to employ any density func-
tional (including hybrid functionals), the use of smaller fictitious
masses and good adiabaticity without thermostats.258–260 For ionic
systems, vibrational frequencies calculated by the plane-wave
Car–Parrinello method show a disturbing dependence on the fic-
titious electronic mass;266 however, the ADMP method is free
from this problem.260 The ADMP trajectories compare very well
with those computed by Born–Oppenheimer methods.258 For
CH2O 3 H2 � CO and C2H2O2 3 H2 � 2 CO, the ADMP
trajectories give product translational, rotational, and vibrational
that are very close to the Born–Oppenheimer results.260

Summary

The capabilities of computational chemistry have expanded rap-
idly over the last 3–4 decades, as hardware has become orders of
magnitude more powerful and software has become more efficient
and sophisticated. Early calculations assumed standard geometries.
As gradient methods were developed, geometry optimization be-
came the norm. Analytic Hessians permitted easy calculation of
vibrational frequencies. Algorithms for reaction path following
became more sophisticated. Within the last several years, as cheap

and powerful PCs have entered the market, ab initio molecular
dynamics has become practical. The available levels of theory for
these calculations have also improved during this period, from
small basis set Hartree–Fock, to large correlated wave funtions and
density functional methods, from one and two heavy atom mole-
cules to systems containing thousands of atoms. The tools for
exploring potential energy surfaces and the levels of theory that
can be employed continue to be improved, expanding the aspects
of chemistry that can be studied by electronic structure methods.
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