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Abstract 

This paper finds near equilibrium prices for electricity markets with non-convexities due to 
binary variables, in order to reduce the market participants’ opportunity costs, such as 
generators’ unrecovered costs. The opportunity cost is defined as the difference between the 
profit when the instructions of the market operator are followed and when the market 
participants can freely make their own decisions based on the market prices. We use the 
minimum complementarity approximation to the minimum total opportunity cost (MTOC) 
model, from previous research, with tests on a much more realistic unit commitment (UC) 
model than in previous research, including features such as reserve requirements, ramping 
constraints, and minimum-up and -down times. The developed model incorporates flexible 
price-responsive demand, as in previous research, but since not all demand is price 
responsive, we consider the more realistic case that total demand is a mixture of fixed and 
flexible. Another improvement over previous MTOC research is computational: whereas the 
previous research had nonconvex terms among the objective function’s continuous 
variables, we convert the objective to an equivalent form that contains only linear and 
convex quadratic terms in the continuous variables, thus allowing for efficient optimization 
by CPLEX.  
We compare the unit commitment model with the standard social welfare optimization 
version of UC, in a series of sensitivity analyses, varying flexible demand to represent 
varying degrees of future penetration of electric vehicles and smart appliances, different 
ratios of generation availability, and different values of transmission line capacities to 
consider possible congestions.  The minimum total opportunity cost and social welfare 
solutions are mostly very close in different scenarios, except in some extreme cases; the 
obtained solution has smaller opportunity costs than social welfare, at very little cost in 
reduction of social welfare; and solution times of the minimum total opportunity cost model 
are longer, due to a larger model size, but the times are still very quick for practical use.   
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1. Introduction 

In many electricity systems that are run as markets, the Independent System Operator 
(ISO) uses the solution of a mixed integer problem (MIP), such as the Unit Commitment 
(UC) problem, to determine the “dispatch” instructions to generators, as well as the 
electricity market prices Steeger and Rebennack (2015). Typically, the MIP minimizes the 
total cost of generation over the next 24 hours, in order to meet the forecast demand, which 
is assumed to be fixed and unresponsive to prices. If demand is responsive to price, then the 
minimum cost objective is replaced by an objective which maximizes social welfare (SW), 
defined as the value to consumers of the purchased electricity (measured as area under the 
demand curve), minus total costs of generation; sometimes the minimum cost, fixed demand 
model is also called the SW model.  However, due in part to the presence of non-convexities 
in the UC model (usually in the form of binary variables that are used to represent, e.g., 
startup/shutdown decisions, minimum supply requirements, and indivisibilities) the linear 
prices obtained from such mixed integer problems cannot guarantee satisfactory profit to 
generators to recover their cost of generation (Scarf, 1994). The most glaringly 
unsatisfactory profit is an accounting loss (revenue is less than costs incurred by following 
the ISO’s instructions), but sometimes even a positive profit is unsatisfactory to the 
generator if, at the prices announced by the ISO, the generator could theoretically earn a 
larger profit by generating and selling a quantity of electricity that is different from the 
ISO’s instructions.  Whether the unsatisfactory profit is negative or positive, we can say 
that the generator incurs an opportunity cost.  To avoid such situations, other pricing 
schemes are proposed in the literature and some are used in practice to complement or 
modify the prices obtained directly from mixed integer programs.  

One of the main corrective instruments, practiced in some jurisdictions (e.g., PJM) is the 
make-whole payment, where market participants are paid a fixed lump sum to make up for 
their negative profit (Bresler, 2014). These make-whole payments are funded by special 
lump sum, fixed charges on consumers’ bills, or through additions to the energy price that 
consumers see; in this paper, we consider a method which includes both the lump sum form 
of consumer charges (which fund the fixed payments to producers) and adjustments to 
prices which are seen by consumers and by producers.  Consumers are also charged for 
other services provided by generators (e.g., reactive power support) and the total of all lump 
sum payments is called “uplift.”  Although uplift payments provide financial satisfaction to 
generators, they distort the price signals needed for market efficiency, and therefore 
market operators try to reduce total uplift payments and to favor price-based consumer 
charges and compensation of producers. 

In O’Neill et al. (2005) the linear prices in a MIP model of a market are obtained from the 
dual variables of market clearing constraints of an LP which is reformulated from the MIP 
by fixing the integer variables at their optimal values, and fixed payments are obtained 
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from the dual variables of the constraints fixing the integer variables. Bjørndal and 
Jörnsten (2008) enhance the approach suggested in O’Neill et al. (2005) by adding extra 
constraints to the LP problem, that fix some of the binary and continuous variables. Hogan 
and Ring (2003) and Gribik, Hogan, and Pope (2007) retain the optimal primal solution of 
the MIP but they obtain prices which minimize the total “uplift” which is defined as the 
total of all generators’ opportunity costs, relative to their profits from following the 
generation quantities from the MIP. Hua and Baldick (2016) devise a computationally 
efficient way to calculate these minimum uplift prices, called “convex hull pricing”; they 
note that the Midcontinent ISO in the USA has used an approximation of convex hull 
pricing.  Galiana, Motto and Bouffard (2003) also retain the optimal primal solution to the 
MIP, and they suggest an approach to reduce the uplift payments to zero by adjusting 
prices and by taking lump sum payments from some producers and giving them to others, 
to remove opportunity costs. In Araoz and Jornsten (2011), the price is determined by 
formulating a semi-lagrangian relaxation of the MIP problem, and using its dual prices.  

In a recent study, Liberopoulos and Andrianesis (2016) provide a critical review on current 
pricing schemes and propose a new pricing approach called minimum zero-sum uplift. 
Zoltowska (2016a) discusses a method to eliminate uplift, while keeping the MIP primal 
solution, by adjusting consumer prices (but not producer prices) upward, to cover the lump 
sum payments to producers.  Zoltowska (2016b) extends this method to permit the shifting 
of demand to different hours of the day. 

The methods suggested in the above literature assume a non-price-responsive demand 
function, and all of them retain the primal MIP solution from the SW model. However, 
considering the advances in smart grid technologies, more and more demand will be able to 
respond to market price signals; recent research that incorporates price responsive demand 
in UC models includes, e.g., Tumuluru et al. (2017), Jonghe et al. (2017), Wu (2013) and 
Zoltowska (2016b). Therefore, fixing the supply and demand quantities obtained from the 
SW model and then adjusting prices is not an appropriate approach to find market prices.  

In Gabriel et al. (2013b,c), a method is suggested to find prices, but with quantities that are 
not obtained from the SW problem. In Gabriel et al. (2013b,c), first a mixed 
complementarity problem (MCP) is constructed (Gabriel et al. 2013a) by relaxing the binary 
variables, and deriving Karush-Kuhn-Tacker (KKT) conditions, while considering market 
clearing constraints and price-responsive demand functions. The discrete conditions are 
finally imposed into the MCP, and the discretely constrained MCP is solved by minimizing 
the sum of the complementarities, while the non-complementarity constraints are 
respected. Although the proposed method provides near equilibrium market prices, and can 
be applied when price responsive demand exists, the notion of the minimum 
complementarity (MC) does not have a practical meaning for electricity markets. Gabriel 
(2017) proposes a different method to solve the discretely constrained MCP, but the relation 
to economic thinking is not explored. 
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Abbaspourtorbati et al. (2017) propose a pricing procedure that is somewhat similar to that 
of Gabriel et al. (2013b,c), but for a fixed demand setting:  they relax the binary variables of 
the UC MIP, giving a linear program (LP), they formulate the dual LP, and finally they create 
a new MIP with all primal and dual constraints (including binary primal variables), and an 
objective which minimizes the primal objective minus the dual objective. 

Recently, Huppmann and Siddiqui (2018) proposed a general method to solve for Nash 
equilibrium in games with continuous and binary variables, by including compensation 
payments for opportunity costs directly in an optimization model. They illustrate the 
method with a simplified power market uplift problem with variable demands (bounded 
above) and fixed marginal values of the demands (i.e., horizontal demand curves). 

Fuller and Çelebi (2017) extend the minimum uplift approach that began with Hogan and 
Ring (2003), to allow for price responsive demand.  The initially defined Minimum Total 
Opportunity Cost (MTOC) minimizes the total opportunity costs of all generators, but the 
solution to the MTOC model is extremely difficult to compute.  However, Fuller and Çelebi 
(2017) show that the minimum complementarity approach of Gabriel et al. (2013b,c) to 
solving the discretely constrained MCP provides an approximation of the solution of the 
MTOC model, thus providing a practical meaning of the minimization of complementarity, 
as well as a computational method to approximate the solution of the MTOC model.  We 
refer to the MTOC model, solved by the minimum complementarity approach as the MTOC-
MC model.  Fuller and Çelebi (2017) illustrate the MTOC-MC model with a tiny, one-period 
UC model without a transmission network, and with a two period UC model with a small, 
six-bus transmission network.    

In this paper, we want to investigate the practicality of the theories suggested in MTOC-
MC model, by extending it to an applied UC model with realistic constraints on a larger test 
system. In the course of developing and solving the model, we made the following specific 
contributions: 

• in addition to the features in the largest UC model tested in Fuller & Çelebi (2017), 
we have also included realistic physical constraints of unit commitment models, 
such as: reserve requirements expressed as a fraction of demand, ramping 
constraints and costs, minimum-up and -down times, and demand as a mixture of 
price-responsive and fixed demand (we also vary the mixture to simulate different 
degrees of penetration of automatic equipment that allows consumers to respond to 
prices) 

• the MINLP form of MTOC-MC, with nonconvex objective terms such as price times 
generation amount, is converted to MIQCP form, with only linear and convex terms 
in the objective, allowing for the use of CPLEX, for efficient optimization 
calculations 
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• we conduct tests on realistic data, with a much larger system than in Fuller and 
Çelebi (2017) -- 24 buses versus 6 buses, and 24 hours versus just two hours in 
Fuller and Çelebi (2017) 

• we conduct comprehensive sensitivity analysis to investigate the practicality of this 
model in real applications comparing to more traditional models, and evaluate the 
financial performance of players in the market by varying flexible demand, 
generation and transmission line capacities. 

Some of the interesting observations from the tests are as follows: 

• MTOC-MC is of course larger than SW, and therefore takes longer to solve, but is 
still quick enough to be useful 

• MTOC-MC reduces opportunity costs compared to SW, as expected, but it is 
somewhat surprising that this reduction comes at very little cost in reduction of 
social welfare 

• SW and MTOC-MC solutions are close but compared to SW, MTOC-MC has larger 
generators’ profit and smaller total opportunity cost, and these differences are 
especially large when demand is mostly fixed (i.e., very little price-responsiveness), 
or the network is highly congested.  

The rest of the paper is organized as follows: section two begins with formulating the model 
of consumers and follows by formulating the optimization problems of consumers, market 
participants and the SW model. The third section presents the formulation of the MTOC-
MC model. In section four, the proposed model is tested and validated on the IEEE RTS 24-
Bus test system. Finally, in section five, directions for future research are suggested. 

2. The optimization problems of consumers, market participants and the SW model  

This section presents the SW UC model. In section 2.1, the model of consumers is 
formulated using a linear marginal value function of demand, and a minimum demand 
quantity. Secondly, market entities, including generation units and transmission network 
operator are individually modeled in sections 2.2 and 2.3, in which they maximize their 
profit. Finally, in section 2.4, all the individual models are used in order to derive the SW 
model. The individual models are also used to build the MTOC model in section 3. Appendix 
A defines all the notations used to formulate the above problems. 

2.1. Model of Consumers 
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In most day-ahead UC models, hourly demand forecasts are considered as fixed and 
unresponsive to the real-time prices, because consumers do not have the instantaneous 
information on prices or the capability to respond to the prices by changing their demands. 

However, economic theory suggests that there would be great benefits to flexible, price-
responsive demand.  Time of use pricing (see, e.g., Wang et al., 2015) is in widespread use, 
as a step in this direction, but full real-time pricing, the ideal, may become a reality if 
technologies are developed to deliver real-time price information to consumers and to 
respond automatically, e.g., by delaying the use of high demand devices when the price is 
high.  We represent the partial introduction of such smart grid communication and control 
devices for consumers in a simple aggregate way. First, we assume that consumers at bus n 
in hour t have a linear marginal value function for electric energy, as shown in Figure 1. 
Second, we  

additionally assume that consumers are unable to respond to different real-time prices for 
some minimum amount of demand, 𝑄𝑄𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛, while for consumption above this minimum, 
consumers do respond to real-time prices by choosing to purchase an amount 𝑞𝑞𝑛𝑛,𝑡𝑡 
corresponding to the price on the marginal value curve.  In our numerical illustrations, we 
vary 𝑄𝑄𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛 while keeping the marginal value curve constant, in order to represent varying 
degrees of penetration of smart grid communication and control in consumption. The 
linear relationship between marginal value and demand is formulated as shown in 
(1a): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑣𝑣𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑛𝑛,𝑡𝑡 − 𝑏𝑏𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡 (1a) 

Therefore, the total value, or benefit function is the area underneath the marginal value 
curve: 

𝐵𝐵�𝑞𝑞𝑛𝑛,𝑡𝑡� = � (𝑀𝑀𝑛𝑛,𝑡𝑡 − 𝑏𝑏𝑛𝑛,𝑡𝑡𝑞𝑞′𝑛𝑛,𝑡𝑡) 𝑑𝑑𝑞𝑞′𝑛𝑛,𝑡𝑡

𝑞𝑞𝑛𝑛,𝑡𝑡

0
= 𝑀𝑀𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡 − 0.5𝑏𝑏𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡

2  (1b) 

We make the standard assumption that consumers choose an amount of consumption so as 
to maximize their net benefit, i.e., consumers’ surplus. We further assume that consumers 

Demand 𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 

Marginal 
value 

Figure 1. The linear marginal value function and minimum demand 
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pay for both electric energy and for reserve capacities, in a combined pricing mechanism 
that is charged for every unit of consumed electric energy.  The reason for this combined 
pricing mechanism is our assumption that the system-wide reserve requirement for hour t 
is expressed as a fraction 𝜑𝜑 of total demand ∑ 𝑞𝑞𝑛𝑛,𝑡𝑡𝑛𝑛  and those consumers at bus n pay for 
reserves in proportion to their contribution to the total reserve requirement. Thus, the 
combined energy and reserve payment by consumers is (𝑝𝑝𝑛𝑛,𝑡𝑡+𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅)𝑞𝑞𝑛𝑛,𝑡𝑡, where 𝑝𝑝𝑛𝑛,𝑡𝑡 is the 
electricity market price and 𝑝𝑝𝑡𝑡𝑅𝑅 is the market price for reserves. The surplus-maximizing 
behavior of consumers at bus n is given by the following optimization problem (dual 
variables for minimum demand constraints are in square brackets). 

 min∑ (𝑝𝑝𝑛𝑛,𝑡𝑡+𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅)𝑞𝑞𝑛𝑛,𝑡𝑡 − �𝑀𝑀𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡 − 0.5𝑏𝑏𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡
2 �𝑡𝑡   (1c) 

   s.t. 

  𝑞𝑞𝑛𝑛,𝑡𝑡 ≥  𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 , ∀𝑡𝑡 �𝛽𝛽𝑛𝑛,𝑡𝑡� (1d) 

   

2.2. The Optimization Model of Generation Units 

In this section, a profit maximization model, based on Bergh et al. (2016) is described, to 
represent generators’ behavior, in which all the operational constraints, such as ramping, 
generation capacity, minimum up and down time, and initial status of generators are 
considered. The given model considers two types of generators: 

1. generators which can supply both energy and reserve capacity in any combination 
within their capacity limits; and 

2. generators which can supply energy only, but not reserve capacity. 

This classification of generators’ reserve capabilities is very simple – the generator model in 
this section allows the system to respond to sudden needs for more power, due to 
unexpected increases in demand or the full or partial loss of a generation unit. A more 
complex classification and model would deal with sudden drops in demand or increases in 
supply from variable sources such as wind, with generators’ reserve capabilities 
distinguished in part by how quickly they can respond (e.g., 10 minute or 30 minute 
spinning reserves, and non-spinning reserves). 

We assume that each generator takes the price of electricity at each bus and time period, 
and the price of reserves at each period as given. The profit of generator 𝑀𝑀 is the revenue 
from selling energy and reserve capacity, minus the associated costs, which are startup, 
shutdown, ramping, and variable generation and reserve costs. The following expression 
shows the objective function for generator 𝑀𝑀 which is the negative of the generator’s profit: 
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min��𝜆𝜆𝑚𝑚,𝑡𝑡𝑀𝑀𝑚𝑚,𝑡𝑡 + 𝜆𝜆𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚,𝑡𝑡𝑅𝑅 + 𝐶𝐶𝑚𝑚,𝑡𝑡𝑅𝑅𝑆𝑆𝑣𝑣𝑚𝑚,𝑡𝑡 + 𝐶𝐶𝑚𝑚,𝑡𝑡𝑅𝑅𝑆𝑆𝑤𝑤𝑚𝑚,𝑡𝑡 + 𝐶𝐶𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚,𝑡𝑡 −� (𝐴𝐴𝑚𝑚,𝑛𝑛
𝑔𝑔𝑔𝑔𝑛𝑛𝑝𝑝𝑛𝑛,𝑡𝑡

𝑛𝑛
𝑀𝑀𝑚𝑚,𝑡𝑡)

𝑡𝑡

− 𝑝𝑝𝑡𝑡𝑅𝑅𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚,𝑡𝑡𝑅𝑅 � 
(2a) 

The following inequalities (2b)-(2c) show ramping constraints, in which the rate of change 
of generation will be limited by the generators’ ramping rate. The dual variables (in square 
brackets) are used later to derive the KKT conditions of the LP in which binary variables 
are relaxed: 

𝑀𝑀𝑚𝑚,𝑡𝑡 − 𝑀𝑀𝑚𝑚,𝑡𝑡−1 − 𝑀𝑀𝑚𝑚,𝑡𝑡 ≤ 0  , ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅1� (2b) 
𝑀𝑀𝑚𝑚,𝑡𝑡−1 − 𝑀𝑀𝑚𝑚,𝑡𝑡 − 𝑀𝑀𝑚𝑚,𝑡𝑡 ≤ 0  , ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅2� (2c) 

The following inequality constraints (2d)-(2g) consider the ramping limits, and the minimum 
and maximum generation limits: 

𝑀𝑀𝑚𝑚,𝑡𝑡 − 𝑀𝑀𝑚𝑚,𝑡𝑡−1 − 𝑅𝑅𝑅𝑅𝑚𝑚𝑧𝑧𝑚𝑚,𝑡𝑡 − (𝑆𝑆𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑚𝑚)𝑣𝑣𝑚𝑚,𝑡𝑡  ≤ 0  , ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅3� (2d) 
𝑀𝑀𝑚𝑚,𝑡𝑡−1 − 𝑀𝑀𝑚𝑚,𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑚𝑚𝑧𝑧𝑚𝑚,𝑡𝑡−1 − (𝑆𝑆𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑚𝑚)𝑤𝑤𝑚𝑚,𝑡𝑡  ≤ 0  , ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅4� (2e) 
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑧𝑧𝑚𝑚,𝑡𝑡 − 𝑀𝑀𝑚𝑚,𝑡𝑡 ≤ 0  , ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛� (2f) 
𝑀𝑀𝑚𝑚,𝑡𝑡 + 𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚,𝑡𝑡𝑅𝑅 − 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑚𝑚,𝑡𝑡 ≤ 0  , ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚� (2g) 

Also, minimum up and down time constraints are modeled as shown in (2h)-(2i): 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑤𝑤𝑚𝑚,𝑡𝑡 −� �1 − 𝑧𝑧𝑚𝑚,𝑘𝑘�
𝑡𝑡+𝑆𝑆𝑖𝑖

𝑚𝑚𝑖𝑖𝑛𝑛−1

𝑘𝑘=𝑡𝑡
 ≤ 0 ,      ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑆𝑆𝐷𝐷� (2h) 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑣𝑣𝑚𝑚,𝑡𝑡 −� 𝑧𝑧𝑚𝑚,𝑘𝑘
𝑡𝑡+𝑆𝑆𝑖𝑖

𝑚𝑚𝑖𝑖𝑛𝑛−1

𝑘𝑘=𝑡𝑡
 ≤ 0 ,         ∀𝑀𝑀, ∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑆𝑆𝐷𝐷� (2i) 

In addition to the above constraints, the following constraint controls the logical status of 
generation units, in order to ensure that the generators’ dispatch decision is aligned with 
the startup and shutdown decisions: 

𝑧𝑧𝑚𝑚,𝑡𝑡−1 − 𝑧𝑧𝑚𝑚,𝑡𝑡 + 𝑣𝑣𝑚𝑚,𝑡𝑡 − 𝑤𝑤𝑚𝑚,𝑡𝑡 = 0  , ∀𝑀𝑀,∀𝑡𝑡 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑂𝑂𝑅𝑅� (2j) 

Moreover, to enforce the minimum up and down times for startups and shutdowns in the 
previous day, the following constraints are added:  

𝑧𝑧𝑚𝑚,𝑡𝑡 = 1 ,   𝑀𝑀 ∈ 𝐼𝐼𝑂𝑂𝑂𝑂 , 1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑚𝑚𝑂𝑂𝑂𝑂   �𝛼𝛼𝑚𝑚,𝑡𝑡𝑂𝑂𝑂𝑂� (2k) 
𝑧𝑧𝑚𝑚,𝑡𝑡 = 0 ,   𝑀𝑀 ∈ 𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 , 1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑚𝑚𝑂𝑂𝑂𝑂𝑂𝑂 �𝛼𝛼𝑚𝑚,𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂� (2l) 

Constraints (2m)-(2n) are also added to take into consideration the initial status of 
generators: 
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𝑧𝑧𝑚𝑚,0 − 𝑍𝑍𝑚𝑚,0𝑅𝑅𝐷𝐷 = 0  ,∀𝑀𝑀  (2m) 
𝑀𝑀𝑚𝑚,0 − 𝐺𝐺𝑚𝑚,0𝑅𝑅𝐷𝐷 = 0 , ∀𝑀𝑀  (2n) 

Finally, the following constraints enforce the binary and non-negativity conditions on the 
variables: 

𝑀𝑀𝑚𝑚,𝑡𝑡 ≥ 0 ,𝑀𝑀𝑚𝑚,𝑡𝑡 ≥ 0 , 𝑧𝑧𝑚𝑚,𝑡𝑡 ,𝑣𝑣𝑚𝑚,𝑡𝑡 ,𝑤𝑤𝑚𝑚,𝑡𝑡 ∈ {0,1},      ∀𝑀𝑀,∀𝑡𝑡  (2o) 
 

The MTOC-MC and SW models, which are defined below, include all of the variables and 
constraints of the market participants’ models, such as the binary variables 𝑧𝑧𝑚𝑚,𝑡𝑡, 𝑣𝑣𝑚𝑚,𝑡𝑡 and 𝑤𝑤𝑚𝑚,𝑡𝑡. 
In order to solve the MTOC-MC and SW models efficiently, we reduce the number of binary 
variables by two thirds by replacing 𝑣𝑣𝑚𝑚,𝑡𝑡 and 𝑤𝑤𝑚𝑚,𝑡𝑡with real nonnegative variables, at the 
slight expense of some additional constraints, as proposed  in Hedman et al. (2010). 
Although this modification justifies the elimination of these binary variables only for the 
cost minimization model of the generators (2a)-(2o), the same arguments can be made to 
eliminate these binary variables from the MTOC-MC and SW models.  

We define an altered generation model with objective function (2a), constraints (2b) to (2n), 
but replacement of (2o) and inclusion of new constraints as follows: 

𝑀𝑀𝑚𝑚,𝑡𝑡 ≥ 0 ,𝑀𝑀𝑚𝑚,𝑡𝑡 ≥ 0 , 𝑣𝑣𝑚𝑚,𝑡𝑡 ≥ 0 ,𝑤𝑤𝑚𝑚,𝑡𝑡 ≥ 0 , 𝑧𝑧𝑚𝑚,𝑡𝑡 ,∈ {0,1},      ∀𝑀𝑀,∀𝑡𝑡   (2p) 
𝑧𝑧𝑚𝑚,𝑡𝑡−1 + 𝑣𝑣𝑚𝑚,𝑡𝑡 ≤ 1,      ∀𝑀𝑀,∀𝑡𝑡 [𝜎𝜎𝑚𝑚,𝑡𝑡] (2q) 

 

2.3. Transmission network operator optimization model 

In this section, a standard optimization model for transmission network operator is given, 
in which the operator maximizes its profit through arbitrage by purchasing electricity at 
some buses, moving it through the network, and selling it at other buses where the price is 
higher. Although in many jurisdictions the transmission network is publicly owned and 
does not participate in the market, in this research, we have considered it as a market 
participant (see Gabriel et al., 2013a).  

The objective function of the transmission network operator is as follows (electricity prices 
are taken as given parameters): 

min� � � 𝑝𝑝𝑛𝑛,𝑡𝑡𝐴𝐴𝑙𝑙,𝑛𝑛
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔𝑓𝑓𝑙𝑙,𝑡𝑡

𝑂𝑂

𝑛𝑛=1

𝐿𝐿

𝑙𝑙=1

𝐷𝐷

𝑡𝑡=1
   (3a) 

where the matrix 𝐴𝐴𝑙𝑙,𝑛𝑛
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔 indicates the connections between buses 𝑀𝑀 and lines 𝑀𝑀 using 

elements with value 1 if 𝑀𝑀 is the origin bus of line 𝑀𝑀, -1 if n is the destination bus of line 𝑀𝑀, 
and 0 if line 𝑀𝑀  is not connected to bus 𝑀𝑀. Note that power can flow in either direction on a 



10 
 

line; the terms “origin” and “destination” are set arbitrarily for each line in order to specify 
that 𝑓𝑓𝑙𝑙,𝑡𝑡 > 0 means flow from origin to destination, while 𝑓𝑓𝑙𝑙,𝑡𝑡 < 0 means flow in the opposite 
direction. Since the profit is made by subtracting origin price from the destination price for 
each unit of electricity, minimizing the objective function (3a) will maximize the profit of 
the transmission line operator. 

The following constraints state the limits of transmission line flows (3b)-(3c) and the physical 
constraints of the DC power flow approximation (3d). 

𝑓𝑓𝑙𝑙,𝑡𝑡−𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0   ,            ∀𝑀𝑀,∀𝑡𝑡  �𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚� (3b) 

−𝑓𝑓𝑙𝑙,𝑡𝑡−𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0   , ∀𝑀𝑀,∀𝑡𝑡 �𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛� (3c) 

𝐵𝐵𝑙𝑙� 𝐴𝐴𝑙𝑙,𝑛𝑛
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔𝜃𝜃𝑛𝑛,𝑡𝑡

𝑂𝑂

𝑛𝑛=1
−𝑓𝑓𝑙𝑙,𝑡𝑡 = 0   , ∀𝑀𝑀,∀𝑡𝑡 �𝛾𝛾𝑙𝑙,𝑡𝑡

𝑝𝑝ℎ𝑦𝑦𝑦𝑦� (3d) 

−�̅�𝜃 ≤ 𝜃𝜃𝑛𝑛,𝑡𝑡 ≤ �̅�𝜃    , ∀𝑀𝑀,∀𝑡𝑡 �𝛾𝛾𝑛𝑛,𝑡𝑡
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 ,𝛾𝛾𝑛𝑛,𝑡𝑡

𝜃𝜃𝑚𝑚𝑚𝑚𝑛𝑛� (3e) 

𝜃𝜃𝑛𝑛,𝑡𝑡 = 0   , ∀𝑡𝑡,𝑀𝑀 = 1 [𝛾𝛾𝑡𝑡1] (3f) 
Constraints (3e) set the allowable limits for the voltage angles in order provide system 
stability, and (3f) arbitrarily sets the voltage angle to zero for bus number 1 (because the 
expression (3d) depends only on the difference in voltage angles between the two ends of 
each line). 

Moreover, constraint (3g) is added to ensure that the power purchased by the transmission 
operator is balanced by its sales quantity, at each time period. 

� � 𝐴𝐴𝑙𝑙,𝑛𝑛
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔

𝐿𝐿

𝑙𝑙=1

𝑂𝑂

𝑛𝑛=1
𝑓𝑓𝑙𝑙,𝑡𝑡 = 0    , ∀𝑡𝑡  �𝛾𝛾𝑡𝑡

𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔� (3g) 

𝑓𝑓𝑙𝑙,𝑡𝑡,𝜃𝜃𝑛𝑛,𝑡𝑡 ∶ 𝐹𝐹𝑀𝑀𝑣𝑣𝑣𝑣,   ∀𝑀𝑀,∀𝑡𝑡,∀𝑀𝑀  (3h) 
 

2.4. The SW model 

In this section, the SW model is presented to maximize the social welfare, while setting 
electric energy and reserve prices, demand quantities, and generation dispatch at each time 
period. This model would be executed by the market operator, in order to send dispatch 
orders to market participants. This optimization model respects all the constraints of 
consumers and market participants. In addition, two more constraints (4b), and (4c) are 
added to enforce reserve capacity requirements and market clearing constraints for each 
bus.  

The objective function of the SW model (4) is the summation of the objective functions of each 
of the models (1)-(3). However, due to reserve constraints (4b) and energy market clearing 
constraints (4c), the total payment by consumers will be equal to the total revenue of 
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generators and transmission network operator and therefore their associated terms are 
canceled in the objective function of the SW problem. The complete SW model (4) is as follows: 

min ���𝜆𝜆𝑚𝑚𝑡𝑡𝑀𝑀𝑚𝑚𝑡𝑡 + 𝜆𝜆𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚,𝑡𝑡𝑅𝑅 + 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆𝑣𝑣𝑚𝑚𝑡𝑡 + 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆𝑤𝑤𝑚𝑚𝑡𝑡 + 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚𝑡𝑡�
𝐷𝐷

𝑡𝑡=1

𝐼𝐼

𝑚𝑚=1

−���𝑀𝑀𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡 − 0.5𝑏𝑏𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡
2 �

𝐷𝐷

𝑡𝑡=1

𝑂𝑂

𝑛𝑛=1

 

 (4a) 

s.t.  

(1𝑑𝑑), (2b) − (2n), (2p), (2q), (3𝑏𝑏)− (3ℎ), 

� 𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅
𝐼𝐼

𝑚𝑚=1
𝑀𝑀𝑚𝑚𝑡𝑡𝑅𝑅 = 𝜑𝜑� 𝑞𝑞𝑛𝑛,𝑡𝑡

𝑛𝑛
    ,∀𝑡𝑡 

 
[𝑝𝑝𝑡𝑡𝑅𝑅] (4b) 

� 𝐴𝐴𝑚𝑚,𝑛𝑛
𝑔𝑔𝑔𝑔𝑛𝑛

𝐼𝐼

𝑚𝑚=1
𝑀𝑀𝑚𝑚,𝑡𝑡 = 𝑞𝑞𝑛𝑛,𝑡𝑡 +� 𝐴𝐴𝑙𝑙,𝑛𝑛

𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔
𝐿𝐿

𝑙𝑙=1
𝑓𝑓𝑙𝑙,𝑡𝑡       , ∀𝑀𝑀,∀𝑡𝑡 �𝑝𝑝𝑛𝑛,𝑡𝑡� (4c) 

In practice, the dual variable prices 𝑝𝑝𝑡𝑡𝑅𝑅 and 𝑝𝑝𝑛𝑛,𝑡𝑡 are calculated in two steps: first calculate 
the optimal solution to the MIP (4); then solve the LP which is (4) but with all binary 
variables fixed at the optimal values from the MIP, giving dual variables for all constraints, 
including for (4b) and (4c). In the next section, a near equilibrium unit commitment model 
is developed, where the approach suggested in Fuller and Çelebi (2017) is utilized to 
accommodate all realistic constraints of an electric system.   

3. Developing the MTOC-MC Model 

This section presents an extension to the MCP method which approximates opportunity-
cost-minimizing prices, allowing for price-responsive demand, with quantities that are not 
obtained from the SW model of the previous section. The exact MTOC problem minimizes 
the total opportunity cost: the extra profit that market participants (generators and the 
transmission operator) could have had if they could just respond to prices. However, the 
exact MTOC problem cannot be solved directly; the approximation minimizes 
complementarities and is therefore called the MTOC-MC model. Here the opportunity cost 
is the difference between the profit when the instructions of the market operator are 
followed and when the market participants can freely make their own decision based on the 
market prices. We assume that consumers do respond optimally to prices, i.e., they have 
zero opportunity cost. 

The following steps summarize the formulation of the MTOC-MC model: 

1. For the profit maximization model of generation units, relax the binary variables 
to positive continuous variables and add constraints, 0 ≤ 𝑧𝑧𝑚𝑚𝑡𝑡 ≤ 1 to the model. 
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2. Develop the KKT conditions for consumers and all market participants, and 
combine them together with constraints that link participants together, i.e., the 
energy market clearing constraints and the reserve requirement constraints. 
3. Replace the constraints 0 ≤ 𝑧𝑧𝑚𝑚𝑡𝑡 ≤ 1 with the binary constraints on 𝑧𝑧𝑚𝑚𝑡𝑡. 
4. Replace the KKT conditions of consumers with linear expressions and new binary 
variables in the manner of Fortuny-Amat and McCarl (1981), to ensure that 
consumers respond optimally to prices. 
5.  Remove the complementarity conditions of market participants and set the 
objective function of MTOC-MC as minimizing the sum of their complementarity 
expressions. The remaining constraints are included as constraints in the MTOC-MC 
model. 

In the following sections, the KKT conditions of market participants are developed to obtain 
the MTOC-MC model.  

3.1. General form of MTOC-MC 

In this section, a general form of MTOC-MC when firms’ models are MILP is presented. For 
this purpose, some new notations utilizing Fuller and Çelebi (2017) are defined by Table 1 
to explain the extension of the their model and the contribution of ours. We present this 
general form of MTOC-MC because the details of the original model worked out in this form 
in Fuller and Çelebi (2017), and also the inclusion of reserve capacities in our extended 
version of the model requires slight modification of the formulation presented in the 
original one. 

Table 1. Notation for general form of MTOC-MC 
𝑓𝑓 Index of firms, i.e., generators and transmission operators 
𝐴𝐴𝑓𝑓, 𝐵𝐵𝑓𝑓, 𝑅𝑅𝑓𝑓 and 𝐸𝐸𝑓𝑓 Matrix of coefficients 

𝑥𝑥𝑓𝑓 Vector of continuous activities controlled by f 
𝑧𝑧𝑓𝑓 Vector of binary activities controlled by f 
𝑅𝑅 Matrix to relate reserve requirements to demands 
𝑝𝑝 and 𝑝𝑝𝑅𝑅 Vector of energy and reserve prices 
𝑞𝑞(∙) Vector of demands as a function of energy and reserve prices 
𝑐𝑐𝑓𝑓, 𝑑𝑑𝑓𝑓, and 𝑏𝑏𝑓𝑓 Vectors of coefficients 
𝛼𝛼𝑓𝑓 Vector of dual variables 
𝛼𝛼𝑓𝑓𝑧𝑧 Vector of dual variables for binary relaxation constraint 

 

Energy market clearing and system reserve constraints can be written as 

� 𝐴𝐴𝑓𝑓𝑥𝑥𝑓𝑓
𝑓𝑓

= 𝑞𝑞(𝑝𝑝 + 𝑅𝑅𝐷𝐷𝑝𝑝𝑅𝑅)                     [𝑝𝑝] (5a) 
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� 𝐵𝐵𝑓𝑓𝑥𝑥𝑓𝑓
𝑓𝑓

= 𝑅𝑅𝑞𝑞(𝑝𝑝 + 𝑅𝑅𝐷𝐷𝑝𝑝𝑅𝑅)                  [𝑝𝑝𝑅𝑅] (5b) 

Constraints (5a) and (5b) link together the actions of the firms and the consumers.  Fuller 
and Çelebi (2017) discussed only the linking constraints (5a), i.e., with the demand vector 
appearing without any matrix of coefficients. Our inclusion of (5b) is therefore a slight 
generalization; a quick review of the theory in Fuller and Çelebi (2017) confirms that the 
proofs of Theorems go through, provided the linking constraints are equality constraints. A 
general form of optimization problem for participating firms can be written as follows: 

min
𝑚𝑚𝑓𝑓,𝑧𝑧𝑓𝑓

�𝑐𝑐𝑓𝑓𝐷𝐷 − 𝑝𝑝𝐷𝐷𝐴𝐴𝑓𝑓 − 𝑝𝑝𝑅𝑅𝑇𝑇𝐵𝐵𝑓𝑓�𝑥𝑥𝑓𝑓 + 𝑑𝑑𝑓𝑓𝐷𝐷𝑧𝑧𝑓𝑓                                                                                       (5c) 

s.t.  

𝐸𝐸𝑓𝑓𝑥𝑥𝑓𝑓 + 𝑅𝑅𝑓𝑓𝑦𝑦𝑓𝑓 ≤ 𝑏𝑏𝑓𝑓       ∀𝑓𝑓,       �𝛼𝛼𝑓𝑓�                                                                                              (5d) 

𝑥𝑥𝑓𝑓 ≥ 0 , 𝑧𝑧𝑓𝑓 ∈ {0,1}dim�𝑧𝑧𝑓𝑓� ,∀𝑓𝑓 

For a transmission network operator, vectors 𝑐𝑐𝑓𝑓 and 𝑑𝑑𝑓𝑓 are zero (𝑐𝑐𝑓𝑓 = 𝑑𝑑𝑓𝑓 = 0) and 𝑧𝑧𝑓𝑓 is a null 
vector, i.e., dim�𝑧𝑧𝑓𝑓� = 0. In the general form, any equality constraint desired by the modeler 
can be represented by two inequalities and any free variable can be replaced by a difference 
between two non-negative variables.  

By following the four-step procedure above, the MTOC-MC includes all primal constraints of 
the firms’ optimization models, together with all of the dual constraints of the binary-relaxed 
firms’ models, and also the energy market clearing and system reserve requirement 
constraints. In the formulation of the sum of complementarities objective function, there are 
many cancellations. Defining 𝛼𝛼𝑓𝑓𝑧𝑧, as the dual variable vector of the relaxation constraint, 𝑧𝑧𝑓𝑓 ≤
1 (dim�𝛼𝛼𝑓𝑓𝑧𝑧� = dim(𝑧𝑧𝑓𝑓)), a general form of the MTOC-MC model can be represented as follows: 

min
𝑚𝑚𝑓𝑓,𝑧𝑧𝑓𝑓,𝑝𝑝,𝑝𝑝𝑅𝑅,𝛼𝛼𝑓𝑓,𝛼𝛼𝑓𝑓

𝑧𝑧
∑ �𝑏𝑏𝑓𝑓𝐷𝐷𝛼𝛼𝑓𝑓 + 1𝐷𝐷𝛼𝛼𝑓𝑓𝑧𝑧 + �𝑐𝑐𝑓𝑓𝐷𝐷 − 𝑝𝑝𝐷𝐷𝐴𝐴𝑓𝑓 − 𝑝𝑝𝑅𝑅𝑇𝑇𝐵𝐵𝑓𝑓�𝑥𝑥𝑓𝑓 + 𝑑𝑑𝑓𝑓𝐷𝐷𝑧𝑧𝑓𝑓�𝑓𝑓                                        (5e) 

s.t. 

𝑏𝑏𝑓𝑓 − 𝐸𝐸𝑓𝑓𝑥𝑥𝑓𝑓 − 𝑅𝑅𝑓𝑓𝑧𝑧𝑓𝑓 ≥ 0 ,    ∀𝑓𝑓                                                                                                         (5f) 

𝑐𝑐𝑓𝑓 − 𝐴𝐴𝑓𝑓𝐷𝐷𝑝𝑝 − 𝐵𝐵𝑓𝑓𝐷𝐷𝑝𝑝𝑅𝑅 + 𝐸𝐸𝑓𝑓𝐷𝐷𝛼𝛼𝑓𝑓 ≥ 0 ,    ∀𝑓𝑓                                                                                            (5g) 

𝑑𝑑𝑓𝑓 + 𝑅𝑅𝑓𝑓𝐷𝐷𝛼𝛼𝑓𝑓 + 𝛼𝛼𝑓𝑓𝑧𝑧 ≥ 0 ,    ∀𝑓𝑓                                                                                                          (5h) 

𝑞𝑞(𝑝𝑝 + 𝑅𝑅𝐷𝐷𝑝𝑝𝑅𝑅) − ∑ 𝐴𝐴𝑓𝑓𝑥𝑥𝑓𝑓𝑓𝑓 = 0                                                                                                        (5i) 
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𝑅𝑅𝑞𝑞(𝑝𝑝 + 𝑅𝑅𝐷𝐷𝑝𝑝𝑅𝑅)− ∑ 𝐵𝐵𝑓𝑓𝑥𝑥𝑓𝑓𝑓𝑓 = 0                                                                                                      (5j) 

𝛼𝛼𝑓𝑓 ≥ 0,𝛼𝛼𝑓𝑓𝑧𝑧 ≥ 0, 𝑥𝑥𝑓𝑓 ≥ 0, 𝑧𝑧𝑓𝑓 ∈ {0,1}dim�𝑧𝑧𝑓𝑓� ,   ∀𝑓𝑓                                                                                                (5𝑘𝑘) 

The MTOC-MC model is a mixed integer nonlinear program because of nonlinear terms, 
�−𝑝𝑝𝐷𝐷𝐴𝐴𝑓𝑓 − 𝑝𝑝𝑅𝑅𝑇𝑇𝐵𝐵𝑓𝑓�𝑥𝑥𝑓𝑓 and 𝑞𝑞(𝑝𝑝 + 𝑅𝑅𝐷𝐷𝑝𝑝𝑅𝑅) if this function is nonlinear. We show in section 3.2 that 
if we specify the function 𝑞𝑞(𝑝𝑝 + 𝑅𝑅𝐷𝐷𝑝𝑝𝑅𝑅) as the optimal response of consumers to the 
electricity and reserve prices, using the consumers’ model of section 2.1, then we can 
formulate the MTOC-MC model as a mixed integer quadratic convex program (MIQCP) 
having linear constraints. In particular, the nonlinear objective terms �−𝑝𝑝𝐷𝐷𝐴𝐴𝑓𝑓 − 𝑝𝑝𝑅𝑅𝑇𝑇𝐵𝐵𝑓𝑓�𝑥𝑥𝑓𝑓 
are replaced by convex linear quadratic expressions. This formulation allows us to use the 
reliable and efficient MIQCP solver in CPLEX. 

3.2. Optimal response of consumers and MIQCP form of MTOC-MC 

The KKT conditions for the convex optimization model of consumers, (1c)-(1d) are: 

0 ≤ 𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 − 𝑄𝑄𝑔𝑔𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛  ⊥  𝛽𝛽𝑔𝑔𝑛𝑛,𝑡𝑡 ≥ 0 ,   ∀𝑑𝑑𝑀𝑀, 𝑡𝑡                                                                                      (6a) 

𝑝𝑝𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅 − 𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 − 𝛽𝛽𝑔𝑔𝑛𝑛,𝑡𝑡 = 0,    ∀𝑑𝑑𝑀𝑀, 𝑡𝑡                                                                 (6b)   

Where, 𝑑𝑑𝑀𝑀 is the index for demand buses. Using the technique of Fortuny-Amat & McCarl 
(1981), the consumers’ KKT conditions (6a) can be represented equivalently by the 
following linear constraints (𝑣𝑣𝑔𝑔𝑛𝑛,𝑡𝑡 is a new binary variable, 𝑀𝑀 is a big number, and the dual 
variable 𝛽𝛽𝑔𝑔𝑛𝑛,𝑡𝑡 can be eliminated by using the equality of (6b). 

𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 ≥ 𝑄𝑄𝑔𝑔𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 ,     ∀𝑑𝑑𝑀𝑀, 𝑡𝑡                                  (6c) 

𝑝𝑝𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅 − 𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 ≥ 0,    ∀𝑑𝑑𝑀𝑀, 𝑡𝑡 (6d) 
𝑝𝑝𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅 − 𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 ≤ 𝑀𝑀𝑣𝑣𝑔𝑔𝑛𝑛,𝑡𝑡   ,     ∀𝑑𝑑𝑀𝑀, 𝑡𝑡 (6e) 
𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 − 𝑄𝑄𝑔𝑔𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛 ≤ 𝑀𝑀�1 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑡𝑡� ,        ∀𝑑𝑑𝑀𝑀, 𝑡𝑡 (6f) 

The nonlinear terms of the MTOC-MC objective function (5e) can be converted to 
expressions in the variables of the consumers’ model using the reserve and electricity 
market clearing constraints (4b)-(4c), multiplied by their prices 𝑝𝑝𝑡𝑡𝑅𝑅 and 𝑝𝑝𝑛𝑛,𝑡𝑡 respectively.  

�−𝑝𝑝𝐷𝐷𝐴𝐴𝑓𝑓 − 𝑝𝑝𝑅𝑅𝑇𝑇𝐵𝐵𝑓𝑓�𝑥𝑥𝑓𝑓 = −� 𝐴𝐴𝑚𝑚
𝑔𝑔𝑔𝑔𝑛𝑛𝑀𝑀𝑚𝑚,𝑡𝑡𝑝𝑝𝑛𝑛,𝑡𝑡

𝑚𝑚,𝑡𝑡,𝑛𝑛
−� 𝐴𝐴𝑚𝑚𝑅𝑅𝑔𝑔𝑦𝑦𝑀𝑀𝑚𝑚,𝑡𝑡𝑅𝑅 𝑝𝑝𝑡𝑡𝑅𝑅

𝑚𝑚,𝑡𝑡
+� 𝐴𝐴𝑙𝑙,𝑛𝑛

𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔𝑓𝑓𝑙𝑙,𝑡𝑡𝑝𝑝𝑛𝑛,𝑡𝑡
𝑙𝑙,𝑡𝑡,𝑛𝑛

 

= −∑ (𝑝𝑝𝑛𝑛,𝑡𝑡 + 𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅)𝑞𝑞𝑛𝑛,𝑡𝑡𝑔𝑔𝑛𝑛,𝑡𝑡 , using (4b), (4c) 

= ∑ �−𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑔𝑔,𝑡𝑡𝑞𝑞𝑛𝑛𝑔𝑔,𝑡𝑡
2 − 𝛽𝛽𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡�𝑔𝑔𝑛𝑛,𝑡𝑡 , using (6b) 

= ∑ �−𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑔𝑔,𝑡𝑡𝑞𝑞𝑛𝑛𝑔𝑔,𝑡𝑡
2 − 𝛽𝛽𝑔𝑔𝑛𝑛,𝑡𝑡𝑄𝑄𝑔𝑔𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛�𝑔𝑔𝑛𝑛,𝑡𝑡 , using (6a)       
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 = ∑ �−𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑔𝑔,𝑡𝑡𝑞𝑞𝑛𝑛𝑔𝑔,𝑡𝑡
2 − (𝑝𝑝𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅 − 𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑔𝑔𝑛𝑛,𝑡𝑡𝑞𝑞𝑔𝑔𝑛𝑛,𝑡𝑡)𝑄𝑄𝑔𝑔𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛�𝑔𝑔𝑛𝑛,𝑡𝑡 , using (6a).  

The term 𝑀𝑀𝑔𝑔𝑛𝑛,𝑡𝑡𝑄𝑄𝑔𝑔𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 is constant and can be dropped from the objective function. The only 

nonlinear term is, 𝑏𝑏𝑛𝑛𝑔𝑔,𝑡𝑡𝑞𝑞𝑛𝑛𝑔𝑔,𝑡𝑡
2 , which is convex and so the MTOC-MC converts to a mixed 

integer quadratic convex problem (MIQCP) and can be solved efficiently by CPLEX.  

3.3. The KKT constraints of generation units and transmission network operator 

The firms’ primal constraints (5f) in the general MTOC-MC model correspond to generators’ 
and transmission operator’s constraints (2b) to (2n), (2p), (2q) and (3b) to (3h). The firms’ 
dual constraints (5g), (5h) and the non-negativity conditions on dual variables in (5k) 
correspond to the following constraints which are the derivative and non-negativity 
conditions of the KKT conditions for the generators and the transmission operator. (The 
corresponding primal variables are shown in brackets to the right of the constraints.) 

−𝜆𝜆𝑚𝑚𝑡𝑡 + � 𝐴𝐴𝑚𝑚,𝑛𝑛
𝑔𝑔𝑔𝑔𝑛𝑛

𝑛𝑛
𝑝𝑝𝑡𝑡 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅1 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑅𝑅𝑅𝑅1 − 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑅𝑅𝑅𝑅2 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅2 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅3 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑅𝑅𝑅𝑅3 − 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑅𝑅𝑅𝑅4 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅4

+ 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0  ,∀𝑀𝑀, 𝑡𝑡 
[𝑀𝑀𝑚𝑚𝑡𝑡] (7a) 

−𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅3(𝑆𝑆𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑚𝑚) − 𝛼𝛼𝑚𝑚𝑡𝑡𝑆𝑆𝐷𝐷𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑅𝑅 − 𝜎𝜎𝑚𝑚,𝑡𝑡 ≤ 0  ,∀𝑀𝑀, 𝑡𝑡 [𝑣𝑣𝑚𝑚𝑡𝑡] (7b) 
−𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅4(𝑆𝑆𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑚𝑚)− 𝛼𝛼𝑚𝑚𝑡𝑡𝑆𝑆𝐷𝐷𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑅𝑅 ≤ 0  ,∀𝑀𝑀, 𝑡𝑡 [𝑤𝑤𝑚𝑚𝑡𝑡] (7c) 

𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅3𝑅𝑅𝑅𝑅𝑚𝑚 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑅𝑅𝑅𝑅4 𝑅𝑅𝑅𝑅𝑚𝑚 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −� 𝛼𝛼𝑚𝑚𝑘𝑘𝑆𝑆𝐷𝐷
𝑡𝑡

𝑘𝑘=max�𝑡𝑡−𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛+1,   1�

+ � 𝛼𝛼𝑚𝑚𝑘𝑘𝑆𝑆𝐷𝐷
𝑡𝑡

𝑘𝑘=max�𝑡𝑡−𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛+1,   1�

− 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑅𝑅 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑂𝑂𝑅𝑅 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑧𝑧 − 𝜎𝜎𝑚𝑚,𝑡𝑡+1 ≤ 0   ,∀𝑀𝑀

∉ {𝐼𝐼𝑂𝑂𝑂𝑂⋃𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂},∀𝑡𝑡 

[𝑧𝑧𝑚𝑚𝑡𝑡] (7d) 

𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅3𝑅𝑅𝑅𝑅𝑚𝑚 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑅𝑅𝑅𝑅4 𝑅𝑅𝑅𝑅𝑚𝑚 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −� 𝛼𝛼𝑚𝑚𝑘𝑘𝑆𝑆𝐷𝐷
𝑡𝑡

𝑘𝑘=max�𝑡𝑡−𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛+1,   1�

+ � 𝛼𝛼𝑚𝑚𝑘𝑘𝑆𝑆𝐷𝐷
𝑡𝑡

𝑘𝑘=max�𝑡𝑡−𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛+1,   1�

− 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑅𝑅 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑂𝑂𝑅𝑅 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑧𝑧 − 𝜎𝜎𝑚𝑚,𝑡𝑡+1 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑂𝑂

≤ 0   ,∀𝑀𝑀 ∈ 𝐼𝐼𝑂𝑂𝑂𝑂,∀𝑡𝑡 

[𝑧𝑧𝑚𝑚𝑡𝑡] (7e) 

𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅3𝑅𝑅𝑅𝑅𝑚𝑚 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑅𝑅𝑅𝑅4𝑅𝑅𝑅𝑅𝑚𝑚 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −� 𝛼𝛼𝑚𝑚𝑘𝑘𝑆𝑆𝐷𝐷
𝑡𝑡

𝑘𝑘=max�𝑡𝑡−𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛+1,   1�

+ � 𝛼𝛼𝑚𝑚𝑘𝑘𝑆𝑆𝐷𝐷
𝑡𝑡

𝑘𝑘=max�𝑡𝑡−𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛+1,   1�

− 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑅𝑅 + 𝛼𝛼𝑚𝑚𝑡𝑡+1𝑂𝑂𝑅𝑅 − 𝛼𝛼𝑚𝑚𝑡𝑡𝑧𝑧 − 𝜎𝜎𝑀𝑀,𝑡𝑡+1 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 0   ,∀𝑀𝑀

∈ 𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 ,∀𝑡𝑡 

[𝑧𝑧𝑚𝑚𝑡𝑡] (7f) 

𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅1 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅2 − 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅 ≤ 0  , ∀𝑀𝑀, 𝑡𝑡 [𝑀𝑀𝑚𝑚𝑡𝑡] (7g) 

𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑡𝑡𝑅𝑅 − 𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝛼𝛼𝑚𝑚,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 ≤ 0 ,     ∀𝑀𝑀, 𝑡𝑡 �𝑀𝑀𝑚𝑚𝑡𝑡𝑅𝑅� (7h) 

� 𝐴𝐴𝑙𝑙,𝑛𝑛
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔

𝑂𝑂

𝑛𝑛=1
𝑝𝑝𝑛𝑛,𝑡𝑡 −� 𝐴𝐴𝑙𝑙,𝑛𝑛

𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔
𝑂𝑂

𝑛𝑛=1
𝛾𝛾𝑡𝑡
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔 + 𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 + 𝛾𝛾𝑙𝑙,𝑡𝑡

𝑝𝑝ℎ𝑦𝑦𝑦𝑦 = 0, ∀𝑀𝑀,∀𝑡𝑡 [𝑓𝑓𝑙𝑙𝑡𝑡] (7i) 
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� 𝐵𝐵𝑙𝑙𝐴𝐴𝑙𝑙,𝑛𝑛
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔𝛾𝛾𝑙𝑙,𝑡𝑡

𝑝𝑝ℎ𝑦𝑦𝑦𝑦 − 𝛾𝛾𝑛𝑛,𝑡𝑡
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛾𝛾𝑛𝑛,𝑡𝑡

𝜃𝜃𝑚𝑚𝑚𝑚𝑛𝑛 = 0
𝑙𝑙

 [𝜃𝜃𝑛𝑛𝑡𝑡] (7j) 

𝑀𝑀𝑚𝑚𝑡𝑡  ,𝑀𝑀𝑚𝑚𝑡𝑡 ,𝑣𝑣𝑚𝑚𝑡𝑡 ,𝑤𝑤𝑚𝑚𝑡𝑡 ,𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅1,𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅2,𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅3,𝛼𝛼𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅4,𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛,𝛼𝛼𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚,𝛼𝛼𝑚𝑚𝑡𝑡𝑆𝑆𝐷𝐷 ,𝛼𝛼𝑚𝑚𝑡𝑡𝑆𝑆𝐷𝐷 ,𝛼𝛼𝑚𝑚𝑡𝑡𝑧𝑧 ,𝜎𝜎𝑚𝑚,𝑡𝑡 ≥ 0 ,∀𝑀𝑀, 𝑡𝑡    (7k) 

𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑅𝑅 , 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑂𝑂 , 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂: Free  (7l) 

𝑧𝑧𝑚𝑚𝑡𝑡  = {0, 1}  ,∀𝑀𝑀, 𝑡𝑡  (7m) 

𝑓𝑓𝑙𝑙,𝑡𝑡,𝜃𝜃𝑛𝑛,𝑡𝑡 ,𝛾𝛾𝑡𝑡
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔 , 𝛾𝛾𝑙𝑙,𝑡𝑡

𝑝𝑝ℎ𝑦𝑦𝑦𝑦:𝐹𝐹𝑀𝑀𝑣𝑣𝑣𝑣, 𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ,𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛,𝛾𝛾𝑛𝑛,𝑡𝑡
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 ,𝛾𝛾𝑛𝑛,𝑡𝑡

𝜃𝜃𝑚𝑚𝑚𝑚𝑛𝑛 ≥ 0   ,∀𝑀𝑀,∀𝑡𝑡,∀𝑀𝑀    (7n) 
 

3.4. The MTOC-MC model 

The objective function of the MTOC-MC is formed below as (8a), considering the general 
form (5e) applied to the generators’ and transmission operators’ models, together with the 
results of subsection 3.2 which replace nonlinear terms by convex linear-quadratic 
expressions. 

min� � �𝜆𝜆𝑚𝑚𝑡𝑡𝑀𝑀𝑚𝑚𝑡𝑡 + 𝜆𝜆𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚,𝑡𝑡𝑅𝑅 + 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆𝑣𝑣𝑚𝑚𝑡𝑡 + 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆𝑤𝑤𝑚𝑚𝑡𝑡 + 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅𝑀𝑀𝑚𝑚𝑡𝑡 + 𝛼𝛼𝑚𝑚𝑡𝑡𝑧𝑧 + 𝜎𝜎𝑚𝑚,𝑡𝑡�
𝑡𝑡𝑚𝑚

−� � 𝛼𝛼𝑚𝑚𝑡𝑡𝑂𝑂𝑂𝑂
𝑡𝑡𝑖𝑖
𝑂𝑂𝑂𝑂

𝑡𝑡=1𝑚𝑚∈𝐼𝐼𝑂𝑂𝑂𝑂
 

+ � �𝛼𝛼𝑚𝑚1𝑅𝑅𝑅𝑅1𝑀𝑀𝑚𝑚0 − 𝛼𝛼𝑚𝑚1𝑅𝑅𝑅𝑅2𝑀𝑀𝑚𝑚0 + 𝛼𝛼𝑚𝑚1𝑅𝑅𝑅𝑅3𝑀𝑀𝑚𝑚0 − 𝛼𝛼𝑚𝑚1𝑅𝑅𝑅𝑅4𝑀𝑀𝑚𝑚0 + 𝛼𝛼𝑚𝑚1𝑅𝑅𝑅𝑅4𝑅𝑅𝑅𝑅𝑚𝑚𝑧𝑧𝑚𝑚0 + 𝛼𝛼𝑀𝑀1𝑂𝑂𝑂𝑂𝑧𝑧𝑀𝑀0
𝑚𝑚

+ �𝑅𝑅𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝛼𝛼𝑀𝑀𝑡𝑡𝑅𝑅𝐷𝐷
𝑡𝑡

�

+ � � �−𝑀𝑀𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡 + 𝑏𝑏𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡
2 − �𝑝𝑝𝑛𝑛,𝑡𝑡 + 𝜑𝜑𝑝𝑝𝑡𝑡𝑅𝑅�𝑄𝑄𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛 − 𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛𝑏𝑏𝑛𝑛,𝑡𝑡𝑞𝑞𝑛𝑛,𝑡𝑡�

𝑡𝑡𝑛𝑛

+ � � �𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚�𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛� + 𝜋𝜋(𝛾𝛾𝑛𝑛,𝑡𝑡
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛾𝛾𝑛𝑛,𝑡𝑡

𝜃𝜃𝑚𝑚𝑚𝑚𝑛𝑛)�
𝐿𝐿

𝑙𝑙=1

𝐷𝐷

𝑡𝑡=1
 

(8a) 

 

Furthermore, the MTOC-MC model’s constraints are determined by combining the 
constraints obtained from the KKT conditions of optimization problems of consumers and 
market participants, as well as energy and reserve market clearing constraints, as follows: 

(2b) − (2n), (2p), (2q), (3b) − (3h), (4b), (4c), (6c)− (6f), (7a) − (7n) 

Fuller and Çelebi (2017) proposed another calculation after solving the MTOC-MC model 
that considers the prices and demands obtained by MTOC-MC as given parameters and 
then solves the minimum cost UC problem. This approach produced instructions for 
generators that reduced the total system cost and also reduced the total opportunity cost, 
compared to the MTOC-MC solution. However, for the example data set of this paper, this 
extra optimization calculation makes no improvement and so is not presented in this paper. 
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 4. Computational results 

In this section, we examine the performance of SW and MTOC-MC models by applying 
them on the modified IEEE RTS 24-bus test system (Ordoudis et al., 2016). To conduct this 
study, reserve requirement 𝜑𝜑 is assumed to be 5% of demand, and reserve capacity cost, 
𝜆𝜆𝑚𝑚𝑡𝑡𝑅𝑅𝑔𝑔𝑦𝑦 is 40% of the operational cost, 𝜆𝜆𝑚𝑚𝑡𝑡. Additionally, the startup and shutdown rates 
(𝑆𝑆𝑅𝑅𝑚𝑚 and 𝑆𝑆𝑅𝑅𝑚𝑚) are considered to be equal to the ramp up and ramp down rates (𝑅𝑅𝑅𝑅𝑚𝑚 and 𝑅𝑅𝑅𝑅𝑚𝑚), 
respectively. Also, the shutdown cost, 𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆 is assumed to be equal to 20% of startup cost, 
𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆. The line susceptance, 𝐵𝐵𝑙𝑙 is calculated as the inverse of its reactance (Gabriel et al, 
2013b).  

In Ordoudis et al. (2016) the demand is assumed to be fixed at each node and time 
period. However, in this paper we assume that part of the demand is flexible, meaning that 
consumers can adjust their consumption based on prices at each time period. If the given 
demand in Ordoudis et al. (2016) is shown by 𝑄𝑄�𝑛𝑛,𝑡𝑡, the fixed part of the demand is  𝑄𝑄𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛 and 
the rest of it 𝑄𝑄�𝑛𝑛,𝑡𝑡 − 𝑄𝑄𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛 is flexible. The value of 𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 is approximated by assuming that 

𝑄𝑄�𝑛𝑛,𝑡𝑡−𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑖𝑖𝑛𝑛

𝑄𝑄�𝑛𝑛,𝑡𝑡
≤ 0.15 or at least 85% of the given demand in Ordoudis et al. (2016) is fixed and the 

rest is flexible.  

In order to choose the values of 𝑀𝑀𝑛𝑛,𝑡𝑡 and 𝑏𝑏𝑛𝑛,𝑡𝑡 in (1a) lower and higher electricity price of 𝑂𝑂𝑛𝑛,𝑡𝑡
𝑙𝑙  

and 𝑂𝑂𝑛𝑛,𝑡𝑡
ℎ  are assumed at each node and time period. The two points (𝑄𝑄𝑛𝑛,𝑡𝑡

𝑚𝑚𝑚𝑚𝑛𝑛,𝑂𝑂𝑛𝑛,𝑡𝑡
ℎ ) and (𝑄𝑄�𝑛𝑛,𝑡𝑡,𝑂𝑂𝑛𝑛,𝑡𝑡

𝑙𝑙 ) 
are assumed to be on the line, shown by (1a), thus determining 𝑀𝑀𝑛𝑛,𝑡𝑡 and 𝑏𝑏𝑛𝑛,𝑡𝑡. 

To perform sensitivity analysis on the flexible part of demand, equations (1d) and (6c) are 
changed as follows: 

𝑞𝑞𝑛𝑛,𝑡𝑡 ≥ ℎ𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 , ∀𝑀𝑀, 𝑡𝑡                                                                                                (9a) 

Where, ℎ is a scalar that can take a non-negative value. The symbol 𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 is also replaced by 

ℎ𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛, in (6f) and (8a). The value of ℎ = 0 reflects a market such that 100% of the demand 

is responsive to price. The default model is when ℎ = 1 and when ℎ > 1, a smaller portion of 
demand is price-responsive demand than the default demand model. We assume that 
parameter ℎ can take a value in the following range:   

0 ≤ ℎ < min
∀𝑛𝑛,𝑡𝑡

�
𝑄𝑄�𝑛𝑛,𝑡𝑡

𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛� 

  

The proposed optimization models are formulated in the GAMS 24.7.4 environment, and 
the CPLEX 12.6.3.0 solver is used to solve the proposed LPs and MIPs, on a server, with a 
64-bit operating system, with 39 GB of RAM, and dual core (8 processors), 2.61 GHz CPU. 
The size of MTOC-MC and SW models, with respect to the number of binary and 
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continuous variables, constraints and their execution time is presented in Table 2 for the 
ℎ = 1 case.  As shown, the larger size of the MTOC-MC model due to inclusion of dual 
variables, extra binary variables and extra constraints, has an impact on execution time, 
but the time is still very short for practical use. In order to have accurate comparison 
results, we set the “optcr” equal to zero in the code to have the optimal solution for both 
models. 

Table 2. Comparison of models' size and running time 
Description MTOC-MC SW 

Number of binary variables 696 288 
Number continuous variables 11281 3457 
Number of constraints 11809 7496 
Solution run time (seconds) 6.75 1.44 

 

4.1. Numerical analysis (𝒉𝒉 = 𝟏𝟏) 

In this section, the results of running the MTOC-MC and SW models are compared for the 
case of ℎ = 1 in (9a), (6f) and (8a). The dispatch instructions of the two models are not the 
same, and hence the start-up and shutdown costs, total generation cost, revenue, and profit 
of generators are different in each model.  

As shown in Table 3 the total profit of generation units is larger in the solution of the 
MTOC-MC model compared to the solution of SW. The generation units, in total, gain more 
revenue and incur less cost by the solution of MTOC-MC, and therefore create higher total 
profit. Almost all generators (except GEN10) have a larger profit in MTOC-MC than in SW.  
If the system operator pays a make-whole payment to compensate for negative profit (e.g., 
GEN3 in Table 3), it is observed that MTOC-MC requires smaller value of make-whole 
payment than SW; furthermore, the make-whole payments are a negligible addition to 
consumers’ payments. 

Table 3. Financial impact of MTOC-MC and SW models on generation units (ℎ = 1)  

GEN# 
MTOC-MC SW 

Total 
cost 

Total 
Revenue Total Profit Total 

cost 
Total 

Revenue Total Profit 

GEN1 38,008.5 41,439.8 3,431.2 38,026.0 41,338.3 3,312.3 

GEN2 20,396.8 22,669.8 2,273.0 20,404.7 22,570.6 2,165.8 
GEN3 104,046.4 103,956.9 -89.5 107,616.0 106,919.1 -696.9 
GEN4 0.0 0.0 0.0 0.0 0.0 0.0 
GEN5 0.0 0.0 0.0 0.0 0.0 0.0 
GEN6 32,142.8 59,203.9 27,061.1 32,142.8 58,909.0 26,766.2 



19 
 

GEN7 39,134.4 69,543.5 30,409.1 39,134.4 69,246.4 30,112.0 
GEN8 55,986.0 177,262.3 121,276.3 55,384.2 175,469.8 120,085.6 
GEN9 52,217.9 178,652.7 126,434.8 52,512.0 178,212.4 125,700.4 
GEN10 0.0 134,022.4 134,022.4 0.0 133,449.6 133,449.6 
GEN11 78,268.8 140,037.3 61,768.5 78,268.8 139,434.4 61,165.6 
GEN12 88,867.4 152,138.1 63,270.6 88,867.4 151,457.4 62,590.0 
SUM: 509,069.1 1,078,926.7 569,857.5 512,356.3 1,077,006.9 564,650.6 

Table 4 summarizes the financial performance of consumers and market participants. As 
shown in Table 4, the MTOC-MC solution is better than the SW’s, in terms of total 
generation units’ cost and profit. Generation units gain 0.92% more profit by the solution of 
the MTOC-MC model compared to the SW’s, while consumers only pay 0.18% more in the 
solution of the MTOC-MC model. MTOC-MC or SW results are the same for the profit of 
transmission network operators. Although the consumers’ surplus is slightly less in MTOC-
MC (-0.51%) compared to SW, the total social welfare is almost the same for both models. 
Therefore, using the results of this test system, it can be concluded that the MTOC-MC 
works slightly in favor of generation units by improving their costs and net profit. 

Table 4. The summary of financial performance of MTOC and SW models 

Description MTOC-MC SW Change in MTOC-
MC over SW (%) 

Payment by consumers 1,080,613.9 1,078,694.2 0.18% 
Consumers' surplus 1,036,316.9 1,041,596.9 -0.51% 
Total generation cost 509,069.1 512,356.3 -0.64% 
Total revenue of generation units 1,078,926.7 1,077,006.9 0.18% 
Total profit of generation units 569,857.5 564,650.6 0.92% 
Profit of transmission network operator 1,687.3 1,687.3 0.00% 
Total social welfare 1,607,861.7 1,607,934.7 -0.0045% 

Figures 2, 3, and 4 illustrate the total demand, weighted average nodal energy prices (total 
revenue from consumers divided by total demand), and reserve capacity prices, 
respectively, over each time period. As shown by Figure 2, the total demand determined by 
the two models closely matches each other, with slight differences mostly in peak demand 
periods, when MTOC-MC demand is smaller than in the SW model. 

Figure 3 illustrates the average nodal energy prices for both MTOC-MC and SW models 
over each of the periods. As shown by this figure, the average energy prices determined by 
both models are the same in most base, and medium periods, while during the peak periods 
the prices derived from the MTOC-MC model are slightly higher than the SW prices. 
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Figure 2. Total demand over periods  

 
Figure 3. Average nodal energy prices over periods  

Figure 4 illustrates the reserve prices determined by both models. Again, prices are the 
same for the two models in most base and medium demand periods, but the MTOC-MC 
model has slightly higher reserve prices for peak periods.  Another important criterion to 
compare the performance of the models is total opportunity cost of the system, as presented 
in Table 5. Here the total opportunity cost is defined as the difference between the total 
profit that the market participants could earn following the direction of the market 
operator, and the profit that they could earn if each firm followed its own decision based 
only on the prices announced by the system operator. 
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Figure 4. The reserve capacity price over periods 

Consumers are also included in Table 5, with consumers’ surplus in place of profit to 
determine opportunity costs which, by model design, are necessarily zero. 

Table 5. Total opportunity cost 

Participants 
MTOC-

MC SW 

Generation units 118.4 1,123.1 

Transmission network operator 0.0 0.0 

Consumers 0.0 0.0 

SUM: 118.4 1,123.1 

 

As shown in Table 5, the total opportunity cost of the system decreases 89.4% by the 
solution of MTOC-MC compared to SW. While the generators’ opportunity cost decreases 
significantly, there is no change in the opportunity cost of the transmission network 
operator and consumers, as they are zero in both models. If the system operator were to pay 
generators all of their opportunity costs (not just make-whole payments), then for both 
models there is a very small addition to consumers’ payment with the MTOC-MC payment 
being extremely small compared to total payments by consumers. 

In summary, the MTOC-MC model comes closer to equilibrium than the SW model, as 
indicated by total opportunity cost and by the more restricted make-whole payment 
measures.  This improvement comes at the cost of a very small decrease in social welfare 
MTOC-MC compared to SW. Consumers face slightly higher prices and have lower 
demands in the peak periods, leading to small increase in consumer payments and a small 
decrease in consumers’ surplus.  
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4.2. The impact of demand price responsiveness  

In this subsection, different values of the parameter ℎ (0.00, 0.25, 0.50, 0.75, 1, and 1.2) in 
(9a) are considered to investigate the impact of demand flexibility. Among the tested 
values, ℎ = 0 represents the situation, where there is no fixed demand, and ℎ = 1.2  
represents the situation when a larger part of demand is fixed. The comparison between 
results from the SW and MTOC-MC model with different values of ℎ is shown in Figure 5.  

In both models, as the value of ℎ increases, the total profit of Generation Units (GENs) 
increases, while the profit of Transmission Operator (TO) and Consumers Surplus (CS) 
decreases. In other words, generation units gain more profit in the market, when demand is 
less responsive to price. When the amount of responsive demand increases, the profit of 
GENs declines, and TO gains more profit and the CS value increases. The solution of the 
MTOC-MC model offers higher profit for GENs than the SW one, when the value of ℎ is less 
than or equal to one. On the other hand, the SW solution provides more profit for GENs, 
when the value of ℎ is greater than one.  

As demand becomes less responsive to price (value of ℎ increases), the total demand and 
prices increase in both models. The MTOC-MC model offers slightly higher prices and lower 
demand compared to the SW model, when ℎ values are less than or equal to one. In other 
words, in the cases when ℎ ≤ 1, MTOC-MC gives higher electricity prices and lower demand 
quantities than the SW model. On the other hand, when demand is fixed or a very small 
portion of demand is price responsive (ℎ > 1), SW gives higher prices and lower demand 
quantities than MTOC-MC. 

Figure 6 illustrates the comparison of the total opportunity cost and total social welfare 
resulting from the solutions of the SW and MTOC-MC models with different values of ℎ. As 
expected, the total opportunity cost is less in the MTOC-MC than in the SW solutions. The 
solutions of both models show an almost steady total opportunity cost, for all values of ℎ <
1. However, the difference between the total opportunity cost obtained from both models 
increases significantly, for values of ℎ > 1, when demand is less flexible. For the case ℎ =
1.2, the total opportunity cost obtained by the solution of SW is more than 4 times as much 
as the one obtained by the MTOC-MC model. In other words, MTOC-MC performs better 
than SW with respect to the total opportunity cost measure, especially in markets with 
mostly fixed demand.  

As shown in Figure 6, the total social welfare decreases as ℎ increases for both models. In 
other words, the total social welfare increases as flexibility of demand increases. In general, 
the SW model gives higher social welfare than MTOC-MC. In the markets with high 
flexible demand, the difference between two models becomes very small. However, for ℎ =
1.2 which reflects a market with mostly fixed demand, the difference of total social welfare 
becomes larger. In summary, we conclude that changing the amount of price-responsive 
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demand has little impact on the difference between the solutions of the MTOC-MC and SW 
models, except when demand is mostly fixed. 

 
Figure 5. Comparative results on different values of h  

 
Figure 6. The total opportunity cost and total social welfare for different values of ℎ 
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The Impact of maximum line flow capacity 

In this subsection, the impact of maximum line flow capacity 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 on the solution of both 
models is investigated. In order to perform such sensitivity analysis, we vary 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 for all 
lines simultaneously, from 60% to 100% of their initial given values in the original dataset. 
The lines are more congested when maximum capacity is at 60% of 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚, and are less 
congested when the lines are at 100% of their capacity. Figure 7 summarizes the results 
obtained from the solution of both models over different values of 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚. 

 
Figure 7. Comparative results of models on different percentages of 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 

As shown, the total profit of GENs grows as the maximum capacity of lines 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 increases. 
However, at about 80% of line capacity the profit change is small, as the prices become 
steadier after that threshold, due to less congestion in transmission lines. In contrast, the 
profit of TO and CS decreases in the solutions of both models as the line capacity becomes 
more available. The solution of both models are very close to each other for both total 
generation and transmission network profit. However, the difference becomes more 
significant considering the value of CS. The solution obtained by SW generates higher 
values of CS for cases when line capacity is more available (≥70% 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚), while MTOC-MC 
provides better solution for CS for cases when line capacity is tighter ( <70% 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚).  
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Average prices (total daily demand) increase (decrease) as the max available line flows 
increase, except when 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is at 60% for the solution of the SW model.  MTOC-MC offers 
slightly higher prices (lower total demand) than SW when line capacities are more available 
(>70%𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚). The average reserve price decreases as 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  becomes larger and SW offers 
higher reserve price for 𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 less than 70% of the original value. 

In all instances, i.e., more or less congested systems, the total opportunity cost is higher for 
the solution of the SW model, as expected. As illustrated in Figure 8, this difference is more 
significant in more congested systems, when line capacities are less than or equal to 70% of 
the original capacity.  The total social welfare as illustrated in Figure 8, increases when 
increasing  𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚. However, beyond a threshold of 85%, it remains constant. The difference 
between SW and MTOC-MC is not considerable although SW offers a bit higher social 
welfare in all cases. 

 
Figure 8. The total opportunity cost and total social welfare of models on different values of %𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 

 The two interesting observations from this sensitivity analysis are: 

• The difference between MTOC-MC and SW is significant in highly congested 
networks. 

• For most cases, consumers’ surplus is smaller in the MTOC-MC solution than in the 
SW solution, but this is reversed in the very congested cases. 
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by changing the value of 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 from 70% to 130% of the given initial value in the dataset. 
Figure 9 summarizes the comparative results, obtained from the sensitivity analysis. 

 

 
Figure 9. Comparative results on different values of %𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

As shown, the solution of the two models matches each other closely, and there is no 
significant difference between MTOC-MC and SW results. The total profit of GENs 
decreases as the max available capacity increases. In addition, the profit of TO is almost 
zero up the 100% of max allowed capacity, and then starts increasing as the 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 value 
becomes higher than 100%. This shows that the increase of available capacity of GENs is in 
favor of TO, not the GENs. Also, consumers gain more surpluses by increasing 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 due to 
decrease of prices and rise of demand.  

Figure 10 illustrates the total opportunity cost and total social welfare of both models over 
different values of maximum generation capacity. Although the difference between the 
solution of MTOC-MC and SW is not significant, the difference between the total 
opportunity cost obtained by the two models is considerable. The total opportunity cost 
increases at both models, when 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is over 100% of the initial given capacities in the 
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dataset. In both models, the total social welfare increases when 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 increases. There is no 
significant difference between the two models. 

 
Figure 10. The total opportunity cost and total social welfare of models for different values of 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

5. Directions for further research 

Most real electric power systems are much larger than our 24 bus, 12 generator test system 
– real systems can have on the order of thousands of buses and a hundred or more 
generators.  For our small test system, the MTOC-MC model took about five times longer to 
compute a solution than for the SW model.  If the MTOC-MC model is to be considered for 
use in real systems, then further research may be needed into methods to speed up the 
computational time.  A first step might be to aggregate the real transmission system into a 
“zonal” system, with a few fictitious buses representing many buses and lines within zones. 

Our demand model is extremely simple, having a linear marginal value function of 
quantity, with a lower bound on quantity demanded, and each period’s demand is 
independent of conditions in other periods.  A more realistic, flexible demand could 
incorporate the notion that demand could be shifted by consumers, perhaps using ideas 
such as in Zoltowska (2016b).  Such a demand could be partially dispatchable by the ISO 
which could choose the period, within limits, but the consumer would still respond 
optimally to prices in the MTOC_MC model, i.e., consumers would have zero opportunity 
costs. 

 For systems with a large fraction of renewable but intermittent power production such as 
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programming ideas presented by Abbaspourtorbati et al. (2017) and Zhan and Zheng 
(2018).  However, with several wind and solar scenarios making the model larger than our 
deterministic model, if realistic size systems are to be modelled stochastically, then 
computational efficiency may again be an important avenue for further research. 
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Appendix A. Notation 

 

Indices (Sets): 

i Generation units,      I = 1, 2, …, I 
t Index of time periods,   t = 1, 2, …, T 
n Index of nodes,  n = 1, 2, …, N 
l Index of transmission lines,  l = 1, 2, … , L  

 

Sub-sets: 

𝐼𝐼𝑂𝑂𝑂𝑂 (𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 )          Generation units that should be on (off) for a couple of periods following 
previous horizon due to minimum uptime (downtime) constraint 

𝑑𝑑𝑀𝑀 (𝑡𝑡𝑀𝑀) Demand nodes or consumer nodes (transfer nodes or no consumer on these                                 
nodes)   

 

Parameters: 

𝜆𝜆𝑚𝑚𝑡𝑡 Marginal cost of generator i at period t 
𝜆𝜆𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 Marginal cost of reserve capacity of generator i at period t 
𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆 Startup cost of generator i at period t 
𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑆𝑆 Shut down cost of generator i at period t 
𝐶𝐶𝑚𝑚𝑡𝑡𝑅𝑅𝑅𝑅 Ramping cost of generator i at period t 
𝑅𝑅𝑅𝑅𝑚𝑚 Maximum ramping up for generator i 
𝑅𝑅𝑅𝑅𝑚𝑚 Maximum ramping down for generator i 
𝑆𝑆𝑅𝑅𝑚𝑚 Maximum startup rate of generation for generator i 
𝑆𝑆𝑅𝑅𝑚𝑚 Maximum shutdown rate for generator i 
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Maximum power generation of generator i  
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 Minimum power generation of generator i  
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 Minimum down time of generator i 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 Minimum up time of generator i 
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𝑍𝑍𝑚𝑚0𝑅𝑅𝐷𝐷 The initial status of generator i equals to operation status of generator at period 
T of previous horizon 

𝐺𝐺𝑚𝑚0𝑅𝑅𝐷𝐷 The initial status of generator i equals to generation quantity of generator at 
period T of previous horizon 

𝑡𝑡𝑚𝑚𝑂𝑂𝑂𝑂(𝑡𝑡𝑚𝑚𝑂𝑂𝑂𝑂𝑂𝑂) The amount of periods that generation unit i should be on (off) following the 
previous horizon 

𝐴𝐴𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅 A binary value representing the potential spinning reserve generators 
𝜑𝜑 The percentage of demand that is required as spinning reserve at time t 
𝑀𝑀𝑛𝑛,𝑡𝑡 , 𝑏𝑏𝑛𝑛,𝑡𝑡 Parameters of price, demand, and benefit functions 
𝑄𝑄�𝑛𝑛,𝑡𝑡 Maximum demand of node n at period t 
𝑄𝑄𝑛𝑛,𝑡𝑡
𝑚𝑚𝑚𝑚𝑛𝑛 Minimum demand of node n at period t 

𝑂𝑂𝑛𝑛,𝑡𝑡
ℎ  Price related to minimum demand of node n at period t 

𝑂𝑂𝑛𝑛,𝑡𝑡
𝑙𝑙  Price related to maximum demand of node n at period t 

𝐴𝐴𝑚𝑚,𝑛𝑛
𝑔𝑔𝑔𝑔𝑛𝑛  A binary matrix linking generators to nodes 

𝐴𝐴𝑙𝑙,𝑛𝑛
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔  A matrix with values -1, 0, or 1 linking nodes to transmission lines 

𝐹𝐹𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  Maximum capacity of power flow on line 𝑀𝑀 
𝐵𝐵𝑙𝑙  Susceptance of line 𝑀𝑀  
�̅�𝜃  voltage angle limit 

 

Decision variables: 

𝑧𝑧𝑚𝑚𝑡𝑡 Binary variable for operation status of generator i at period t 
𝑣𝑣𝑚𝑚𝑡𝑡 Binary variable for startup status of generator i at period t 
𝑤𝑤𝑚𝑚𝑡𝑡 Binary variable for shutdown status of generator i at period t 
𝑀𝑀𝑚𝑚𝑡𝑡 Power generation level of generator i at period t 
𝑀𝑀𝑚𝑚𝑡𝑡𝑅𝑅  Reserve capacity of generator i at period t 
𝑞𝑞𝑛𝑛,𝑡𝑡 Demand of nodes n at period t 
𝑀𝑀𝑚𝑚𝑡𝑡 Ramping amount of generator i at period t 
𝑓𝑓𝑙𝑙,𝑡𝑡 Power flow on line 𝑀𝑀 at period t that can be negative or positive depending on 

direction 
𝜃𝜃𝑛𝑛,𝑡𝑡 State variable of node n at time period t 
𝑣𝑣𝑛𝑛𝑡𝑡 Binary variable for FAM constraint 

 

Dual variables: 

𝑝𝑝𝑛𝑛,𝑡𝑡 Dual variable of market clearing constraint (price of node n at period t) 
(4c) 

𝑝𝑝𝑡𝑡𝑅𝑅 Dual variable of reserve constraint (reserve price at period t) (4b) 
𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅1, 𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅2, 𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅3, 𝛼𝛼𝑚𝑚,𝑡𝑡𝑅𝑅𝑅𝑅4 Dual variables of constraints for ramping (2b-2e) 
𝛼𝛼𝑚𝑚,𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛, 𝛼𝛼𝑚𝑚,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 Dual variables of constraints for minimum and maximum level of 

generation (2f, 2g) 
𝛼𝛼𝑚𝑚,𝑡𝑡𝑆𝑆𝐷𝐷, 𝛼𝛼𝑚𝑚,𝑡𝑡𝑆𝑆𝐷𝐷 Dual variables of minimum down and up time constraints (2h, 2i) 
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𝛼𝛼𝑚𝑚,𝑡𝑡𝑂𝑂𝑅𝑅 Dual variable of operational constraint (2j) 
𝛼𝛼𝑚𝑚,𝑡𝑡𝑂𝑂𝑂𝑂, 𝛼𝛼𝑚𝑚,𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 Dual variables of must run (off) periods (2k, 2l) 
𝛽𝛽𝑛𝑛,𝑡𝑡 Dual variable of minimum demand constraint (1d) 
𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝛾𝛾𝑙𝑙,𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 Dual variables of maximum and minimum flow of transmission lines 

(3b, 3c) 
𝛾𝛾𝑙𝑙,𝑡𝑡
𝑝𝑝ℎ𝑦𝑦𝑦𝑦 Dual variable of physical constraint using DC power flows (3d) 
𝛾𝛾𝑙𝑙,𝑡𝑡𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚, 𝛾𝛾𝑙𝑙,𝑡𝑡𝜃𝜃𝑚𝑚𝑚𝑚𝑛𝑛, 𝛾𝛾𝑡𝑡1 Dual variables of voltage angles constraints (3e, 3f) 
𝛾𝛾𝑡𝑡
𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔 Dual variable of grid constraint (3g) 
𝛼𝛼𝑚𝑚,𝑡𝑡𝑧𝑧  Dual variable of relaxed binary variables (5a) 
𝜎𝜎𝑚𝑚,𝑡𝑡 Dual variable of extra operational constraint (2q) 

 


