

Commoditizing Creativity:

Using Screenplays to Predict Film Production Budget

Amir Malek (am6370)

Brian Pennisi (bp2221)

Johnny Ma (jlm10003)

Ted Xie (tx607)

All code and data can be found at: ​https://github.com/JohnnyMa314/CommoditizingCreativity

https://github.com/JohnnyMa314/CommoditizingCreativity

I. Business Understanding

Film and television production companies have always followed a fixed sequence for content creation and

business development. Broadly explained, this content creation lifecycle consists of a creative pitch and

business negotiations, followed by pre-production, production, and post-production. Once these stages are

complete, a film or show is ready for launch. Due to industry-wide interest in accelerating this content

creation lifecycle, we decided to take a closer look at the business negotiations (more specifically, film

financing), where a screenplay submitted for review is approved and financed for production. Studios

receive thousands of solicited and unsolicited screenplays each day, and must hire and train professional

script readers to perform “script coverage,” where scripts receive feedback as to their quality and

expected cost of production. As the volume of received scripts is simply too high for the script readers to

cover, most are filtered from consideration without even being read. If we can develop a data science

based pipeline to instantly estimate a script’s expected production cost, we can prevent script readers from

wasting time reading scripts the studios cannot or will not financially support.

We can draw a comparison to the issue of resume scanning for hiring managers and recruiters. Faced with

a large number of incoming resumes for only a few available slots, data scientists leverage available data

to create applicant tracking systems (ATS), which helps organize job applications and even filter them,

forwarding only the most qualified candidates to hiring managers and recruiters. Both of these examples

implement machine learning techniques to encode aspects of the text corpus as features, and determine

the weight of those features based on the human inputs of the target variable. For example, the resume

dataset for the ATS must have had a large training set of resumes where the target variable (i.e. the

resume grade or rating) was determined by resume readers. The model could then use those feature

weights to evaluate a test set to determine how well it can generalize on new data.

1

We can apply a similar approach to the issue of film financing by creating a model which takes movie

scripts as an input and provides an estimated budget category, either low or high budget as an output.

From a business perspective, this would alleviate the creative bottleneck created by limited script readers,

and allow for faster filtering of scripts from a large volume to meet budget requirements. For a small

production lab such as NYU’s, where we estimate each reader spends around 6 hours per week reading

scripts, the ability to automatically screen high budget scripts could allow them to identify lower budget

scripts that the production company can actually produce.

II. Data Understanding

Based on the business problem, our data requirements are movie scripts as well as their associated

budgets. Using a web crawler on IMSDB.com, an internet movie script database commonly used by

industry and academics alike, we acquired raw .txt files and associated metadata for 1084 screenplays.

The scripts contain scene descriptions, stage direction, and character dialogue, with an average of 5,000

lines of text and 24,000 tokens after preprocessing per screenplay. See ​Appendix A-1​ for an example

script. The observed budget for each film was collected from boxofficemojo.com and the-numbers.com,

the industry standard box office data websites for tracking movie financials. These budget values were

obtained using the associated IMDB-ID (a unique identifier for each movie), as well as a name + year

search using fuzzy string matching, with low probability matches manually fixed for accuracy. When

movie financial sources disagree about a movie’s budget, we record the lower amount, as Hollywood

accounting firms have an incentive to inflate the budget ex-post to reduce taxation on profits.

One issue that we foresaw with the dataset was the inconsistencies in the budget due to inflation, as our

dataset spans about 90 years of movie production. As part of our data preparation we standardized the

budget values using inflation calculations with a consumer price index (CPI) from the U.S. Bureau of

Labor Statistics. A few of the movies in our dataset were produced by international companies with

2

budgets reported in foreign currency. We changed these budgets into USD using Oanda.com’s currency

converter. We end up with 1,084 budgets standardized to current day USD.

Given we are working with text data, understanding the problem we are trying to solve is important in

order to decide which language models to apply. Each record is a movie script that is 20-200 pages long.

In order to predict budget effectively, we need our models to do a good job of working with a large and

complex corpus. As such, performance guides many of our decisions while semantic context is captured

by leveraging language models like those from spaCy and Word2Vec.

III. Data Preparation and Exploratory Analysis

Target Variable

Figure 1: Histogram of Film Budgets

Figure 1 shows the distribution of the (inflation adjusted) film budgets in our dataset. As expected, there

are exponentially fewer movies as the budget linearly increases. Though the budget prediction problem

would be best formulated as a regression problem, as our data is limited to 1,084 scripts we opt for the

3

more simplified and interpretable approach of budget classification. We created two equal sized

categories for film budget, each containing 542 films. A ​low budget​ film was defined as costing equal to

or less than $25,000,000, and a ​high budget​ as above $25,000,000. While a $250,000,000 movie is

certainly different from a $25,000,000 movie, and $20,000,000 different from $100,000, these categories

match up roughly to the categorization standards of production companies.

Feature Engineering

Working with text presents a unique step compared to structured data since one needs to convert the

words in a document to structured data before priming. Featurizing large corpuses (ie. 20-200 pages) of

text that make up a movie script is an additional challenge compared to phrases or shorter passages such

as Tweets or movie reviews due to performance concerns from long range dependencies (ie. the first

scene relates to a later scene, which is 10,000 words later) and high variation. As such, we need our

vectorizers, which turn the scripts into structured data to be trained by our classifiers, to be efficient in

time and memory as well as have an effective way to aggregate all of the words in the document such that

it accurately represents the entire passage.

We start by looking at different models of script representation. Ultimately, we chose normalized word

counts via TF-IDF, Named Entity Recognition (NER) summaries built on Spacy’s off-the-shelf English

language model, and an averaged word embeddings model using Word2Vec.

Term Frequency-Inverse Document Frequency, or TF-IDF is a normalized word count model that

represents a corpus as a collection of word counts, normalized by inter-document frequency. TF-IDF is

often the best place to start because it can produce low cost and relatively intuitive statistics on the word

counts. These are then combined into a k dimensional vector based on the number of words that fit certain

criteria, which we discuss further in Section IV.

4

Spacy is a powerful yet lightweight option for language models. Spacy’s off-the-shelf English language

models use pre-trained word embeddings which provide relatively reliable accuracy which border SOA

(as of 2017.) Paying attention to performance, we used the lightweight English model ‘en_core_web_sm’.

It uses a deep neural network architecture which takes into account a window of preceding words, word

shape, and other features in order to understand the context in which the word is used. Context is

important because it allows us to know that Nike is a company when appearing the sentence “I work at

Nike” and a greek goddess in “The goddess of victory is Nike.” Armed with this language model, we

leveraged the Named Entity Recognition attribute which recognizes and counts instances of 18 different

types of entities across our corpus including names, companies, locations, and currency. The preview of

the language model output and summary of the entity types can be found in ​Appendix A-2​.

Similar to spaCy, Word2Vec uses word windows in order to form numerical representations of words.

The words get assigned values based on the context in which they occur. As such, words that appear in a

similar context to one another are close in a vector space where cosine similarity is the default to measure

closeness. Further, they have a useful property where we can add these vectors to produce similar words.

For instance, “king” - “male” + “female” = “queen”. This is important because it allows us to represent

our corpus using a normalized sum of each of the word embeddings in the document. We then apply our

Word2Vec language model to each word and average it in order to represent the script.

IV. Modeling and Evaluation

Language Models

As mentioned in Section III, the hyperparameter tuning of our language models is an important

consideration since they determine how we create our structure training data. In our case, we trained

5

models for both TF-IDF and Word2Vec. It should be noted that we chose not to look for the best model

empirically due to memory limitations.

Important hyperparameters to consider in TF-IDF include the minimum number of times a word should

appear in total or across all documents. Given the size of our movie scripts, it is important to find the right

trade off between performance and number of words. One can also reduce the bias by adding more

detailed features using ngram_range, which allows one to specify the maximum and minimum number of

words that make up a key in your language model. “ngram_range” by default only takes into

consideration a single word. However at the risk of adding significantly more features that occur less

often than single words, you can count phrases to pick up features like “not good.” The optimal

parameters were “ngram_range = (1,2)”, which allows for unigram and bigrams as well as “min_df = 0.2”

which removed all fields that occured in less than 1 in every 5 documents. Overall, our language model

serves as a nice trade off on the bias-variance spectrum where the ngram_range including bigrams

optimizes for bias while the min_df addresses the variance.

Similar to TF-IDF, one can establish a bound on the number of times a word appears in a document or

across the corpus. This is especially important when one is trying to optimize for both time and space

complexity. Our final model was 233 MB. Since our storage cost is linear, it is important to find the right

number of words. Across 1,084 movie scripts, using “min_count = 2” gets 60.6% of all of the total words

in the text.

6

Figure 2: EDA of unique words across our corpus of scripts

The number of dimensions “size” represent the number of features that the model can use to uniquely

draw your word in a vector hyperplane, the higher this is, the lower the bias but higher the variance. Also

larger dimensions linearly take up more space in memory.

One of the most important hyperparameters in Word2vec is which algorithm to use to train the word

embeddings: CBOW and Skip-Gram. CBOW uses the traditional approach of trying to predict a word

given the trailing and leading words. Skip-Gram does quite the opposite in that it tries to predict the

leading and trailing words (or context) based on a single word or phrase. The latter works well with a

small amount of the training data and represents well even rare words or phrases. This is useful for movie

scripts which may include rare words to effect. Unfortunately, given that we are constrained by both time

and space complexity, we went with CBOW. The optimal hyperparameters for our Word2Vec language

model​ ​were “min_count = 2”, “sg = 0” (for CBOW), “size = 300”, and “window = 5.”

Classifiers

The baseline model for binary classification would be an uniform 50/50 guess on low vs. high budget, as

the two categories have an equal number of films. To improve on this baseline, we will leverage the

7

aforementioned textual features of the scripts and feed them into a suite of classification algorithms. We

use Logistic Regression with L2 regularization, Gradient Boosting Machine, and Support Vector Machine

for budget classification. We chose these algorithms as they can theoretically approximate the conditional

probability distribution used in binary classification, at varying degrees of complexity given finite data.

For our TF-IDF model, we also use two Naive Bayes algorithms: Multinomial and Bernoulli Bayes.

We split our data into 80-20 training and test sets, as is the standard in machine learning. We run 5-fold

cross validation and grid search to select hyperparameters, evaluated on the held-out test set using

F1-Score as our metric of choice. We chose F1 over both classes as there is no significant difference

between the recall and precision of the classes for the best performing algorithms. If production

companies are looking to focus on identifying low or high budget movies, we can easily optimize for

precision on either budget category. If the producers are worried about losing out on good scripts in a

specified budget category, we can optimize for recall instead.

The results of each of the models are shown below in Table 1.

Table 1: F-1 Score by Classifier

The TF-IDF features perform best with an F1-Score of 0.712 using a Logistic Regression classifier. The

strongest n-grams predictive of a high budget include “night,” “fade exterior,” “wipe,” “car drives,” and

8

Classification Algorithms TF-IDF Named Entity Recognition Word2Vec

Logistic Regression (C = 0.01) 0.712 0.546 0.627

Gradient Boosting Machine (L = 0​.05) 0.647

0.571 0.611

Support Vector Machine (C = 10) 0.703

0.559 0.610

Multinomial Bayes (alpha = 1) 0.637 N/A N/A

Bernoulli Bayes (alpha = 5) 0.643 N/A N/A

“snow,” which are all indicative of expensive filming conditions or a large number of scenes. The

Logistic Regression classifier performs best in two out of the three feature sets, with the CBOW

Word2Vec embeddings performing better than NER using every model. Overall, TF-IDF is the best

performing feature set across the board. This is likely due to the ability of the TF-IDF to capture

distinctive and important features of long form text documents, compared to NER which captures a

coarser set of features and the flattened effect of averaging word embeddings over long passages. While it

is surprising to see the lower performance of Gradient Boost Machine, it’s important to note that this

algorithm is heavily dependent on “n_estimators”. Unfortunately due to processing constraints, we would

need access to more computing power in order to produce a better fitting model.

As we are interested in improving the performance of our pipeline, we use the best prediction algorithm,

Logistic Regression, on different feature combinations. We report the results of each combination below

in Table 2. As precision and recall for both budget classes are within ​±​0.02 of the averaged precision and

recall, class specific measurements are omitted from the results.

Table 2: Performance Breakdown of Logistic Regression (C = 0.01) by Feature Set

The best performing combination of features TF-IDF and NER, with a slightly higher F1-Score of 0.724.

The ROC curve of this best model is shown in Figure 3. The NER features likely add some context to the

9

Features Precision Recall Accuracy F1-Score

TF-IDF 0.71 0.71 0.711

0.712

TF-IDF + NER 0.72 0.72 0.723 0.724

TF-IDF + W2V 0.68 0.69 0.684

0.684

NER + W2V 0.64 0.64 0.636

0.636

TF-IDF + NER + W2V 0.69 0.69 0.690

0.690

TF-IDF model, though the ability of the TF-IDF to capture salient features leads to only a slight

improvement. Adding the Word2Vec model decreases performance, likely due to collinearity with the

word counts from the TF-IDF model.

Figure 3: ROC Curve for Logistic Regression Model

V. Deployment

The combined feature model improves on the baseline significantly, with a 22% improvement versus

random guessing. As the Logistic Regression model can return probabilities of class membership, a

production company who is interested in finding high budget films can quickly eliminate scripts that have

a small probability of being high budget. This model pipeline can also be useful for indie production

companies who want to identify small budget scripts to finance. After running a model on a stack of

digital scripts, a studio executive can then pass relevant scripts to the script readers, who would

subsequently not waste their labor time reading scripts the studio would not have the funds to produce.

In practice, the model should be deployed for budget estimation. There are two main uses of predicted

budgets. The budget classification pipeline can be utilized as a filter to find movie scripts that fit a budget

constraint and desired genre to move forward into the production process. However, filtering can lead to

opportunity costs when a script with high potential of success is discarded, so we will have to focus more

10

on recall for filters in order to not incur a cost for missing a script An accurate budget prediction can also

provide a guideline to keep production costs on track. Films typically have a pre-budget in the planning

phase which investors can expect to match the true production budget. In the case where a script is

already selected for production and a reliable budget estimate is needed, the model should be tuned to

focus on precision. Ultimately, it would be useful to offer the probability estimates, ROC curve, and

confusion matrix so the user can decide the tradeoff based on the expected values they assign to each

outcome.

An API can be developed to help production or distribution companies access the current top performing

model. This may be updated as new models are trained offline to incorporate new features, or where new

learning methods are built. For more advanced users, it may be useful to allow the user to configure the

featurization pipeline, such as by providing their own language model. The best model should be

re-evaluated periodically to avoid concept drift. New scripts can be collected through web scrapers and

there should be microservices that facilitate the updating of these models based on the new data. The

influencers of movie budgets will shift as new technology, such as CGI, or popular genres change. The

budgets throughout time will also be affected by inflation and should also be adjusted for. The model can

be augmented to include more metadata features such as the screenplay author, author social network, or

self reported genre. Being able to encode and condition on more information available at time of script

coverage can lead to higher class prediction accuracy. The prediction model sets up a framework that

allows analysis of other features and target variables.

The simplest way to gauge the market performance of the model is to compare predicted budgets with

true budgets of scripts produced through the algorithm. The challenge is that the final budget is not known

until the movie has presumably been released, so there could be a material lag of a year or more before we

get this data.

11

VI. Considerations

The budget predictions are based on previously designated budgets, meaning the model is learning

previous human made assignments. The model will lack data on unobserved scripts and their features. For

instance if a training set contained only horror and comedy films, the model will not be able to accurately

assign the budget when seeing a science fiction script feature such as “outer space.” In addition, the

dataset is affected by selection bias; only screenplays that are produced have their budgets recorded. As

only 0.3% of received screenplays are greenlit​, the vast majority of the scripts that come across a

production studio’s desk are not observed. While there is a 50-50 uniform split between our budget

classes for produced scripts, there may be many more high budget scripts submitted than low budget,

which would affect our prior on the distribution of budget classes for a given pile of scripts. As even

scripts that are not produced are assigned budget categories during script coverage, partnerships with

studios or script reading services could give us access to more representative screenplays and budgets.

Privacy and copyright concerns prevent certain studios and writers from releasing their scripts to the

public, and script readers may be reluctant to send in scripts they know will be fed into the system.

Encrypting script text upon submission, removing scripts from memory after prediction, and public model

transparency releases could help relieve these concerns. Returning a list of top features indicative of

budget could incentivize writers who want to aim for a specific budget category to use the service.

However, if the budget classification model or top features are known to the public, writers could target a

specific budget classification. The budget classification process can then be influenced by “white words”

where key high value vocabulary, perhaps exploiting spurious correlations, are included in the corpus.

12

https://www.theatlantic.com/entertainment/archive/2011/09/how-hollywood-chooses-scripts-the-insider-list-that-led-to-abduction/245541/

VII. Conclusion

Budget is one of the most important screening criteria for film scripts, and is often directly estimated

during script coverage. The ability to automatically and near instantly parse stacks of screenplays and

classify their budget categories can save an enormous amount of time for the script readers who currently

spend hours sifting through potentially unfinanceable scripts.

Our service allows the conversion of text to features and classification in a matter of moments. The

presented models tackle budget predictions through different classification algorithms such as Logistic

Regression, Gradient Boosting Classifier, Support Vector Classification, and Naive Bayes. All our models

performed better than random guessing. With F1 score as the optimized metric, the TF-IDF model with a

Logistic Regression classification algorithm performed best. We were able to slightly improve model

performance with a combination approach of features from TF-IDF and NER, giving us a final F1 score

of 0.724.

The purpose of the algorithm is to increase the efficiency of the script coverage process by ensuring more

relevant scripts are read and unfeasible scripts are filtered out. The pipeline is not meant to pass absolute

judgement on the potential of any given script. We developed this pipeline to provide insight into the

process of estimating a film’s budget, and leave automatic script coverage or assessment of script quality

for future work.

13

A. Appendix

A-1: The first page of the raw .txt files for The Avengers (2012) screenplay.

14

A-2: Demonstration of spaCy’s language model on our first movie script (Out[10]), NER summary features (Out[11]: top array)), and 18 entity

types extracted from the corpus (Out[11]: bottom array)

15

B. Bibliography

Agarwal, Apoorv, et al. “Parsing Screenplays for Extracting Social Networks from Movies.” ​The
Association for Computational Linguistics​, Dept. of Computer ScienceColumbia University, 2014,
www.aclweb.org/anthology/W14-0907.pdf.

Chiu, Ming-Chang, et al. “Screenplay Quality Assessment: Can We Predict Who Gets Nominated?”
ArXiv​, Dept. of Computer ScienceUniversity of Southern California, 2020, arxiv.org/pdf/2005.06123.pdf.

Explosion.ai. ​SPACY'S ENTITY RECOGNITION MODEL: Incremental Parsing with Bloom Embeddings
& Residual CNNs​. ​Youtube​, 12 Nov. 2017, www.youtube.com/watch?v=sqDHBH9IjRU.

Follows, Stephen, et al. “Judging Screenplays by Their Coverage.” ​Stephen Follows​, Stephen Follows,
Erroneous Wit, Somerset House, 2019,
stephenfollows.com/wp-content/uploads/2019/01/JudgingScreenplaysByTheirCoverage_StephenFollows
_c.pdf.

Kulshrestha, Ria. “NLP 101: Word2Vec - Skip-Gram and CBOW.” ​Medium​, Towards Data Science, 26
Oct. 2020, towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314.

Kumar, Ritwik, et al. “Data Science and the Art of Producing Entertainment at Netflix.” ​The Netflix Tech
Blog​, Netflix TechBlog, 27 Mar. 2018,
netflixtechblog.com/studio-production-data-science-646ee2cc21a1.

Lash, M. T., & Zhao, K. (2016, January 29). Early Predictions of Movie Success: The Who, What, and
When of Profitability. Retrieved 2020, from https://arxiv.org/pdf/1506.05382v2.pdf

C. Contributions

Amir Malek: Literature Review, Data Preparation, Write-up

Brian Pennisi: Feature Engineering, Language Models, Write-up

Johnny Ma: Data Preparation, Language Models, Classification Models, Write-up

Ted Xie: Literature Review, Data Preparation, Write-up

16

