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I. Business Understanding 

Film and television production companies have always followed a fixed sequence for content creation and 

business development. Broadly explained, this content creation lifecycle consists of a creative pitch and 

business negotiations, followed by pre-production, production, and post-production. Once these stages are 

complete, a film or show is ready for launch. Due to industry-wide interest in accelerating this content 

creation lifecycle, we decided to take a closer look at the business negotiations (more specifically, film 

financing), where a screenplay submitted for review is approved and financed for production. Studios 

receive thousands of solicited and unsolicited screenplays each day, and must hire and train professional 

script readers to perform “script coverage,” where scripts receive feedback as to their quality and 

expected cost of production. As the volume of received scripts is simply too high for the script readers to 

cover, most are filtered from consideration without even being read. If we can develop a data science 

based pipeline to instantly estimate a script’s expected production cost, we can prevent script readers from 

wasting time reading scripts the studios cannot or will not financially support.  

 

We can draw a comparison to the issue of resume scanning for hiring managers and recruiters. Faced with 

a large number of incoming resumes for only a few available slots, data scientists leverage available data 

to create applicant tracking systems (ATS), which helps organize job applications and even filter them, 

forwarding only the most qualified candidates to hiring managers and recruiters. Both of these examples 

implement machine learning techniques to encode aspects of the text corpus as features, and determine 

the weight of those features based on the human inputs of the target variable. For example, the resume 

dataset for the ATS must have had a large training set of resumes where the target variable (i.e. the 

resume grade or rating) was determined by resume readers. The model could then use those feature 

weights to evaluate a test set to determine how well it can generalize on new data.  
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We can apply a similar approach to the issue of film financing by creating a model which takes movie 

scripts as an input and provides an estimated budget category, either low or high budget as an output. 

From a business perspective, this would alleviate the creative bottleneck created by limited script readers, 

and allow for faster filtering of scripts from a large volume to meet budget requirements. For a small 

production lab such as NYU’s, where we estimate each reader spends around 6 hours per week reading 

scripts, the ability to automatically screen high budget scripts could allow them to identify lower budget 

scripts that the production company can actually produce. 

II. Data Understanding 

Based on the business problem, our data requirements are movie scripts as well as their associated 

budgets. Using a web crawler on IMSDB.com, an internet movie script database commonly used by 

industry and academics alike, we acquired raw .txt files and associated metadata for 1084 screenplays. 

The scripts contain scene descriptions, stage direction, and character dialogue, with an average of 5,000 

lines of text and 24,000 tokens after preprocessing per screenplay. See Appendix A-1 for an example 

script. The observed budget for each film was collected from boxofficemojo.com and the-numbers.com, 

the industry standard box office data websites for tracking movie financials. These budget values were 

obtained using the associated IMDB-ID (a unique identifier for each movie), as well as a name + year 

search using fuzzy string matching, with low probability matches manually fixed for accuracy. When 

movie financial sources disagree about a movie’s budget, we record the lower amount, as Hollywood 

accounting firms have an incentive to inflate the budget ex-post to reduce taxation on profits.  

 

One issue that we foresaw with the dataset was the inconsistencies in the budget due to inflation, as our 

dataset spans about 90 years of movie production. As part of our data preparation we standardized the 

budget values using inflation calculations with a consumer price index (CPI) from the U.S. Bureau of 

Labor Statistics. A few of the movies in our dataset were produced by international companies with 
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budgets reported in foreign currency. We changed these budgets into USD using Oanda.com’s currency 

converter. We end up with 1,084 budgets standardized to current day USD.  

 

Given we are working with text data, understanding the problem we are trying to solve is important in 

order to decide which language models to apply. Each record is a movie script that is 20-200 pages long. 

In order to predict budget effectively, we need our models to do a good job of working with a large and 

complex corpus. As such, performance guides many of our decisions while semantic context is captured 

by leveraging language models like those from spaCy and Word2Vec.  

III. Data Preparation and Exploratory Analysis 

Target Variable 

 
Figure 1: Histogram of Film Budgets 

 
Figure 1 shows the distribution of the (inflation adjusted) film budgets in our dataset. As expected, there 

are exponentially fewer movies as the budget linearly increases. Though the budget prediction problem 

would be best formulated as a regression problem, as our data is limited to 1,084 scripts we opt for the 
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more simplified and interpretable approach of budget classification. We created two equal sized 

categories for film budget, each containing 542 films. A low budget film was defined as costing equal to 

or less than $25,000,000, and a high budget as above $25,000,000. While a $250,000,000 movie is 

certainly different from a $25,000,000 movie, and $20,000,000 different from $100,000, these categories 

match up roughly to the categorization standards of production companies. 

 

Feature Engineering 

 

Working with text presents a unique step compared to structured data since one needs to convert the 

words in a document to structured data before priming. Featurizing large corpuses (ie. 20-200 pages) of 

text that make up a movie script is an additional challenge compared to phrases or shorter passages such 

as Tweets or movie reviews due to performance concerns from long range dependencies (ie. the first 

scene relates to a later scene, which is 10,000 words later) and high variation. As such, we need our 

vectorizers, which turn the scripts into structured data to be trained by our classifiers, to be efficient in 

time and memory as well as have an effective way to aggregate all of the words in the document such that 

it accurately represents the entire passage.  

 

We start by looking at different models of script representation. Ultimately, we chose normalized word 

counts via TF-IDF, Named Entity Recognition (NER) summaries built on Spacy’s off-the-shelf English 

language model, and an averaged word embeddings model using Word2Vec.  

 

Term Frequency-Inverse Document Frequency, or TF-IDF is a normalized word count model that 

represents a corpus as a collection of word counts, normalized by inter-document frequency. TF-IDF is 

often the best place to start because it can produce low cost and relatively intuitive statistics on the word 

counts. These are then combined into a k dimensional vector based on the number of words that fit certain 

criteria, which we discuss further in Section IV.  

4 



 

 

Spacy is a powerful yet lightweight option for language models. Spacy’s off-the-shelf English language 

models use pre-trained word embeddings which provide relatively reliable accuracy which border SOA 

(as of 2017.) Paying attention to performance, we used the lightweight English model ‘en_core_web_sm’. 

It uses a deep neural network architecture which takes into account a window of preceding words, word 

shape, and other features in order to understand the context in which the word is used. Context is 

important because it allows us to know that Nike is a company when appearing the sentence “I work at 

Nike” and a greek goddess in “The goddess of victory is Nike.” Armed with this language model, we 

leveraged the Named Entity Recognition attribute which recognizes and counts instances of 18 different 

types of entities across our corpus including names, companies, locations, and currency. The preview of 

the language model output and summary of the entity types can be found in Appendix A-2. 

 

Similar to spaCy, Word2Vec uses word windows in order to form numerical representations of words. 

The words get assigned values based on the context in which they occur. As such, words that appear in a 

similar context to one another are close in a vector space where cosine similarity is the default to measure 

closeness. Further, they have a useful property where we can add these vectors to produce similar words. 

For instance, “king” - “male” + “female” = “queen”. This is important because it allows us to represent 

our corpus using a normalized sum of each of the word embeddings in the document. We then apply our 

Word2Vec language model to each word and average it in order to represent the script. 

IV. Modeling and Evaluation 

Language Models 

As mentioned in Section III, the hyperparameter tuning of our language models is an important 

consideration since they determine how we create our structure training data. In our case, we trained 

5 



 

models for both TF-IDF and Word2Vec. It should be noted that we chose not to look for the best model 

empirically due to memory limitations.  

 

Important hyperparameters to consider in TF-IDF include the minimum number of times a word should 

appear in total or across all documents. Given the size of our movie scripts, it is important to find the right 

trade off between performance and number of words. One can also reduce the bias by adding more 

detailed features using ngram_range, which allows one to specify the maximum and minimum number of 

words that make up a key in your language model. “ngram_range” by default only takes into 

consideration a single word. However at the risk of adding significantly more features that occur less 

often than single words, you can count phrases to pick up features like “not good.” The optimal 

parameters were “ngram_range = (1,2)”, which allows for unigram and bigrams as well as “min_df = 0.2” 

which removed all fields that occured in less than 1 in every 5 documents. Overall, our language model 

serves as a nice trade off on the bias-variance spectrum where the ngram_range including bigrams 

optimizes for bias while the min_df addresses the variance. 

 

Similar to TF-IDF, one can establish a bound on the number of times a word appears in a document or 

across the corpus. This is especially important when one is trying to optimize for both time and space 

complexity. Our final model was 233 MB. Since our storage cost is linear, it is important to find the right 

number of words. Across 1,084 movie scripts, using “min_count = 2” gets 60.6% of all of the total words 

in the text. 
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Figure 2: EDA of unique words across our corpus of scripts 

 

The number of dimensions “size” represent the number of features that the model can use to uniquely 

draw your word in a vector hyperplane, the higher this is, the lower the bias but higher the variance. Also 

larger dimensions linearly take up more space in memory. 

 

One of the most important hyperparameters in Word2vec is which algorithm to use to train the word 

embeddings: CBOW and Skip-Gram. CBOW uses the traditional approach of trying to predict a word 

given the trailing and leading words. Skip-Gram does quite the opposite in that it tries to predict the 

leading and trailing words (or context) based on a single word or phrase. The latter works well with a 

small amount of the training data and represents well even rare words or phrases. This is useful for movie 

scripts which may include rare words to effect. Unfortunately, given that we are constrained by both time 

and space complexity, we went with CBOW. The optimal hyperparameters for our Word2Vec language 

model were “min_count = 2”, “sg = 0” (for CBOW), “size = 300”, and “window = 5.” 

 

Classifiers 

The baseline model for binary classification would be an uniform 50/50 guess on low vs. high budget, as 

the two categories have an equal number of films. To improve on this baseline, we will leverage the 
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aforementioned textual features of the scripts and feed them into a suite of classification algorithms. We 

use Logistic Regression with L2 regularization, Gradient Boosting Machine, and Support Vector Machine 

for budget classification. We chose these algorithms as they can theoretically approximate the conditional 

probability distribution used in binary classification, at varying degrees of complexity given finite data. 

For our TF-IDF model, we also use two Naive Bayes algorithms: Multinomial and Bernoulli Bayes.  

 

We split our data into 80-20 training and test sets, as is the standard in machine learning. We run 5-fold 

cross validation and grid search to select hyperparameters, evaluated on the held-out test set using 

F1-Score as our metric of choice. We chose F1 over both classes as there is no significant difference 

between the recall and precision of the classes for the best performing algorithms. If production 

companies are looking to focus on identifying low or high budget movies, we can easily optimize for 

precision on either budget category. If the producers are worried about losing out on good scripts in a 

specified budget category, we can optimize for recall instead.  

 

The results of each of the models are shown below in Table 1.  

 
Table 1: F-1 Score by Classifier 

 
The TF-IDF features perform best with an F1-Score of 0.712 using a Logistic Regression classifier. The 

strongest n-grams predictive of a high budget include “night,” “fade exterior,” “wipe,” “car drives,” and 
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Classification Algorithms TF-IDF Named Entity Recognition Word2Vec 

Logistic Regression (C = 0.01) 0.712 0.546 0.627 
 

Gradient Boosting Machine (L = 0.05) 0.647 
 

0.571 0.611 
 

Support Vector Machine (C = 10) 0.703 
 

0.559 0.610 

Multinomial Bayes (alpha = 1) 0.637 N/A N/A 

Bernoulli Bayes (alpha = 5) 0.643 N/A N/A 



 

“snow,” which are all indicative of expensive filming conditions or a large number of scenes. The 

Logistic Regression classifier performs best in two out of the three feature sets, with the CBOW 

Word2Vec embeddings performing better than NER using every model. Overall, TF-IDF is the best 

performing feature set across the board. This is likely due to the ability of the TF-IDF to capture 

distinctive and important features of long form text documents, compared to NER which captures a 

coarser set of features and the flattened effect of averaging word embeddings over long passages. While it 

is surprising to see the lower performance of Gradient Boost Machine, it’s important to note that this 

algorithm is heavily dependent on “n_estimators”. Unfortunately due to processing constraints, we would 

need access to more computing power in order to produce a better fitting model.  

 

As we are interested in improving the performance of our pipeline, we use the best prediction algorithm, 

Logistic Regression, on different feature combinations. We report the results of each combination below 

in Table 2. As precision and recall for both budget classes are within ±0.02 of the averaged precision and 

recall, class specific measurements are omitted from the results.  

 

 
Table 2: Performance Breakdown of Logistic Regression (C = 0.01) by Feature Set 

The best performing combination of features TF-IDF and NER, with a slightly higher F1-Score of 0.724. 

The ROC curve of this best model is shown in Figure 3. The NER features likely add some context to the 
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Features Precision Recall Accuracy F1-Score 

TF-IDF 0.71 0.71 0.711 
 

0.712 
 

TF-IDF + NER 0.72 0.72 0.723 0.724 

TF-IDF + W2V 0.68 0.69 0.684 
 

0.684 

NER + W2V 0.64 0.64 0.636 
 

0.636 
 

TF-IDF + NER + W2V 0.69 0.69 0.690 
 

0.690 
 



 

TF-IDF model, though the ability of the TF-IDF to capture salient features leads to only a slight 

improvement. Adding the Word2Vec model decreases performance, likely due to collinearity with the 

word counts from the TF-IDF model.  

  
Figure 3: ROC Curve for Logistic Regression Model 

V. Deployment 

The combined feature model improves on the baseline significantly, with a 22% improvement versus 

random guessing. As the Logistic Regression model can return probabilities of class membership, a 

production company who is interested in finding high budget films can quickly eliminate scripts that have 

a small probability of being high budget. This model pipeline can also be useful for indie production 

companies who want to identify small budget scripts to finance. After running a model on a stack of 

digital scripts, a studio executive can then pass relevant scripts to the script readers, who would 

subsequently not waste their labor time reading scripts the studio would not have the funds to produce.  

 
In practice, the model should be deployed for budget estimation. There are two main uses of predicted 

budgets. The budget classification pipeline can be utilized as a filter to find movie scripts that fit a budget 

constraint and desired genre to move forward into the production process. However, filtering can lead to 

opportunity costs when a script with high potential of success is discarded, so we will have to focus more 
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on recall for filters in order to not incur a cost for missing a script An accurate budget prediction can also 

provide a guideline to keep production costs on track. Films typically have a pre-budget in the planning 

phase which investors can expect to match the true production budget. In the case where a script is 

already selected for production and a reliable budget estimate is needed, the model should be tuned to 

focus on precision. Ultimately, it would be useful to offer the probability estimates, ROC curve, and 

confusion matrix so the user can decide the tradeoff based on the expected values they assign to each 

outcome. 

 

An API can be developed to help production or distribution companies access the current top performing 

model. This may be updated as new models are trained offline to incorporate new features, or where new 

learning methods are built. For more advanced users, it may be useful to allow the user to configure the 

featurization pipeline, such as by providing their own language model. The best model should be 

re-evaluated periodically to avoid concept drift. New scripts can be collected through web scrapers and 

there should be microservices that facilitate the updating of these models based on the new data. The 

influencers of movie budgets will shift as new technology, such as CGI, or popular genres change. The 

budgets throughout time will also be affected by inflation and should also be adjusted for. The model can 

be augmented to include more metadata features such as the screenplay author, author social network, or 

self reported genre. Being able to encode and condition on more information available at time of script 

coverage can lead to higher class prediction accuracy. The prediction model sets up a framework that 

allows analysis of other features and target variables. 

 

The simplest way to gauge the market performance of the model is to compare predicted budgets with 

true budgets of scripts produced through the algorithm. The challenge is that the final budget is not known 

until the movie has presumably been released, so there could be a material lag of a year or more before we 

get this data.  
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VI. Considerations  

The budget predictions are based on previously designated budgets, meaning the model is learning 

previous human made assignments. The model will lack data on unobserved scripts and their features. For 

instance if a training set contained only horror and comedy films, the model will not be able to accurately 

assign the budget when seeing a science fiction script feature such as “outer space.” In addition, the 

dataset is affected by selection bias; only screenplays that are produced have their budgets recorded. As 

only 0.3% of received screenplays are greenlit, the vast majority of the scripts that come across a 

production studio’s desk are not observed. While there is a 50-50 uniform split between our budget 

classes for produced scripts, there may be many more high budget scripts submitted than low budget, 

which would affect our prior on the distribution of budget classes for a given pile of scripts. As even 

scripts that are not produced are assigned budget categories during script coverage, partnerships with 

studios or script reading services could give us access to more representative screenplays and budgets. 

 

Privacy and copyright concerns prevent certain studios and writers from releasing their scripts to the 

public, and script readers may be reluctant to send in scripts they know will be fed into the system. 

Encrypting script text upon submission, removing scripts from memory after prediction, and public model 

transparency releases could help relieve these concerns. Returning a list of top features indicative of 

budget could incentivize writers who want to aim for a specific budget category to use the service. 

However, if the budget classification model or top features are known to the public, writers could target a 

specific budget classification. The budget classification process can then be influenced by “white words” 

where key high value vocabulary, perhaps exploiting spurious correlations, are included in the corpus. 
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VII. Conclusion 

Budget is one of the most important screening criteria for film scripts, and is often directly estimated 

during script coverage. The ability to automatically and near instantly parse stacks of screenplays and 

classify their budget categories can save an enormous amount of time for the script readers who currently 

spend hours sifting through potentially unfinanceable scripts.  

 

Our service allows the conversion of text to features and classification in a matter of moments. The 

presented models tackle budget predictions through different classification algorithms such as Logistic 

Regression, Gradient Boosting Classifier, Support Vector Classification, and Naive Bayes. All our models 

performed better than random guessing. With F1 score as the optimized metric, the TF-IDF model with a 

Logistic Regression classification algorithm performed best. We were able to slightly improve model 

performance with a combination approach of features from TF-IDF and NER, giving us a final F1 score 

of 0.724. 

 

The purpose of the algorithm is to increase the efficiency of the script coverage process by ensuring more 

relevant scripts are read and unfeasible scripts are filtered out. The pipeline is not meant to pass absolute 

judgement on the potential of any given script. We developed this pipeline to provide insight into the 

process of estimating a film’s budget, and leave automatic script coverage or assessment of script quality 

for future work.  
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A. Appendix 

 
A-1: The first page of the raw .txt files for The Avengers (2012) screenplay. 
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A-2: Demonstration of spaCy’s language model on our first movie script (Out[10]), NER summary features (Out[11]: top array)), and 18 entity 

types extracted from the corpus (Out[11]: bottom array) 
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