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Abstract

We present CROSSBRIDGE, an algorithm for finding analogies in large, sparse se-
mantic networks. We treat analogies as comparisons between domains of knowledge.
A domain is a small semantic network, i.e., a set of concepts and binary relations
between concepts. We treat our knowledge base (the large semantic network) as
if it contained many domains of knowledge, then apply dimensionality reduction to
find the most salient relation structures among the domains. Relation structures are
systems of relations similar to the structures mapped between domains in structure
mapping[6]. These structures are effectively n-ary relations formed by combining
multiple pairwise relations. The most salient relation structures form the basis of
domain space, a space containing all domains of knowledge from the large seman-
tic network. The construction of domain space places analogous domains near each
other in domain space. CROSSBRIDGE finds analogies using similarity information
from domain space and a heuristic search process.

We evaluate our method on ConceptNet[10], a large semantic network of common
sense knowledge. We compare our approach with an implementation of structure
mapping and show that our algorithm is more efficient and has superior analogy
recall.
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Chapter 1

Introduction

Analogies are comparisons like "an atom is like the solar system" that highlight

the commonalities between two seemingly dissimilar ideas. People frequently use

analogies to teach others, to solve problems, and to understand unfamiliar situations.

For example, the analogy "an atom is like the solar system" enables us to reason

about protons and electrons using knowledge about the Sun and the Earth. The

prevalence of analogies in human thought makes them an interesting topic for Al

research, and many AI researchers believe that analogies are an important part of

human cognition[20].

Metaphors we Live By[16] examines analogies in everyday human speech and

concludes that our understanding of abstract concepts is largely based on analogies

to concrete concepts. The book calls these pervasive analogies "metaphors," and the

book provides several examples of common metaphors. An example of a metaphor is

"an argument is like a war." This metaphor is supported by the expressions we use to

describe arguments: we "defend our position", we "attack" the opponent's argument,

we "search for weaknesses" in the opponent's reasoning and we "marshal" our points.

These pervasive metaphors suggest that analogies are a significant component of

human thought.

Since analogies are such a central part of human cognition, it is interesting to ask

whether computers can find analogies and whether analogies can make computers

behave more intelligently. There is a vast body of work in this area. Structure



mapping theory[6] provides a precise definition for analogy, and the definition has

been affirmed by several cognitive studies[7, 8]. Several systems that explore analogies

based on structure mapping have been built[4, 25]. Other analogy programs have

used connectionist models[14] and randomized searches[13, 5]. Applications have

used analogies to solve problems[15] and to explain technical concepts[17].

Analogies are typically described as a mapping from a base domain (sometimes

referred to as the source domain) to a target domain. Each domain consists of a set

of concepts, properties, and relations. A concept is a noun phrase, like "electron" or

"nucleus." Properties describe attributes of concepts, for example, IsSmall(electron)

says that electrons are small. Relations describe relationships between concepts, for

example, the Orbits(electron, nucleus) says that electrons orbit around the nucleus.

The difference between properties and relations is that properties are functions of

exactly one concept, whereas relations are functions of multiple concepts. Rela-

tions and properties are closely related: we could easily express IsSmall(electron)

as Is(electron, small). This rearrangement is only possible if "small" is one of the

concepts in the domain, however.

An analogy is a correspondence between the concepts of two domains. Depending

on the model, various constraints are placed on the mapping. These constraints fall

into two broad categories: similarity constraints and structural constraints. Similar-

ity constraints attempt to map objects with similar properties to each other, while

structural constraints attempt to preserve relations between concepts. For example, a

similarity constraint would encourage a mapping between "atom" and another small

object because this mapping preserves the IsSmall property. On the other hand,

a structural constraint would encourage a mapping from "electron" to "planet" and

from "nucleus" to "sun" because this mapping preserves the Orbits relation: Or-

bits(electron, nucleus) maps to Orbits(planet, sun).

In the past, the term "analogy" has been used to refer to many different types

of comparisons with different combinations of constraints. The appropriate choice of

constraints depends on the application: simple applications may find that similarity

constraints are sufficient, while complex applications, like case-based reasoning sys-



tems, may have much more stringent requirements. In this thesis, we use the term

"analogy" to refer to comparisons with structural constraints. However, we believe

our approach can be extended to more complex constraints. We further discuss this

issue in section 6.

Prior work in this area has typically separated the problem of finding an anal-

ogy for a given concept into four subproblems: retrieval, mapping, elaboration and

evaluation. The retrieval process searches a corpus for promising candidate analo-

gies. These candidates are given to the mapping process, which takes two potentially

analogous concept sets and computes a correspondence between the concepts. Elab-

oration uses the correspondence to infer new knowledge, and evaluation determines

the overall quality of the retrieved analogy.

The body of prior work has focused on the mapping subproblem, which has made

it somewhat impractical for real-world applications. In many practical applications,

retrieval is a large component of the analogy process. For example, when solving a

problem by analogy, we are given only the target domain for the analogy. Finding

an analogy requires searching through a large knowledge base of source domains.

Although the search could be performed by applying the mapping algorithm to every

candidate analogy, this procedure is typically too inefficient to be practical.

Previous analogy algorithms have also operated in completely specified domains.

Real world data sets are typically sparse and noisy, and analogy algorithms should

be designed to handle these issues.

We present an analogy mechanism loosely based on structure mapping that ad-

dresses these limitations of previous approaches. Our method simultaneously ad-

dresses both retrieval and mapping, and is capable of finding analogies in sparse

semantic networks with thousands of vertices. Our approach first uses dimensionality

reduction to find salient systems of relationships (called relation structures) within

the possible source domains. Intuitively, each salient relation structure is a common

way that concepts are related. These salient relation structures form the basis of

domain space. In domain space, every source domain is represented by a point and

the points for analogous domains are located near each other. Our algorithm takes



advantage of this property to find analogies.



Chapter 2

Prior Work

Analogy has been studied extensively by AI researchers. The first work on analogy is

Evans' ANALOGY program[3]. ANALOGY solves geometric analogy questions. In

these questions, the program is given three figures a, b, c and a set of candidates figures

D. The goal is to select a figure d E D such that a is to b as c is to d. ANALOGY first

analyzes the geometric figures and computes some relationships between the figures.

The program then generates transformation rules that transform a into b and applies

these rules to c to determine the best match amongst the candidate figures.

Structure mapping[6] is a well-known theory of analogy that defines an analogy

as a comparison between two domains that preserves the relationships between the

objects in each domain. For example, the analogy "an atom is like the solar system"

preserves many relationships: electrons orbit around the nucleus like planets orbit

around the sun, and electricity attracts electrons to the nucleus like gravity attracts

the planets to the sun. Several studies have confirmed that structure mapping cor-

responds to our intuitive notion of analogy[7, 9]. In these cognitive studies, adults

were shown to prefer analogies that preserved relational structure over analogies that

preserved concept properties.

The structure mapping paper uses propositional logic to represent the objects and

relationships in the domains being mapped, but the general principle in the paper

extends to other representations. If the relation types are limited to relations between

two objects, each domain becomes a semantic network, and an analogy becomes an



isomorphism between two semantic networks. Two semantic networks are isomorphic

if it is possible to transform one of the graphs into the other graph simply by relabeling

its vertices. Our definition of analogy is closely related to structure mapping in this

simpler domain.

Structure mapping also proposes the criterion of systematicity to evaluate the

quality of an analogy. Systematicity means that higher-order relations are more

important than relations between concepts. In our previous example, this means

the fact that gravity causes the the planets to orbit is more important than the fact

that the planets orbit around the sun. Intuitively, higher-order relations reflect the

fundamental structure of the domain, and this structure is preserved by analogies.

The Structure Mapping Engine[4] implements structure mapping theory in LISP.

The structure mapping engine focuses on the mapping portion of analogy; given two

possibly analogous domains of knowledge, the structure mapping engine finds possible

mappings between the objects of each domain. Domains are represented as logical

propositions. The structure mapping engine algorithm effectively searches for possible

consistent mappings between the two domains (albeit in a smart way), then assigns

each mapping a score using a heuristic. The Structure Mapping Engine has been used

to find analogies between various physical concepts[4] and to find analogies between

shapes[25]. Our work extends the Structure Mapping Engine in several ways. Most

importantly, our algorithm includes the retrieval step of finding an analogy. Many

applications require a program to find a source domain and a mapping for a given

target domain, not just to compute an analogical mapping between two situations.

We believe that retrieval is an important aspect of the problem since naively searching

over all possible base domains and is very expensive.

There are several other programs that implement structure mapping in various

forms. The VivoMind Analogy Engine[23] implements structure mapping as subgraph

isomorphism in conceptual graphs. The VivoMind Analogy Engine also generalizes

structure mapping by searching for graph transformations that aid the mapping pro-

cess. The actual implementation details of this analogy algorithm are proprietary,

which prevents us from making an accurate comparison with our algorithm.



Another important class of analogy programs are based on high-level perception[1].

In this paper, the authors criticize the Structure Mapping Engine because the hand-

coded knowledge representation effectively gives away the answer. That is, the anal-

ogy between atoms and solar systems is somewhat obvious because the knowledge

representation encodes the relationships between their parts in the same way. The

paper goes on to criticize any Al technique that separates perception (constructing

representations of data) from cognition (performing inference). Although our algo-

rithm does not construct its own knowledge representation, we believe that our work

avoids the major criticism of the Structure Mapping Engine since our data was not

specifically created for analogy-finding.

High-level perception inspired the construction of several analogy programs. These

programs have a common basic structure that combines a randomized search over

possible representations with a mapping mechanism that identifies common elements

between the representations. The search and mapping processes run in parallel and

influence each other. A notable example is COPYCAT[13], which finds analogies

between strings of letters. Other programs can play simple analogy games[5] and

design fonts[18].

Another class of analogy programs are based on connectionist models. ACME[14]

finds analogies by constructing a network of competing hypotheses, then using an

activation algorithm to settle the state of the network and find the best mapping.

The competing hypotheses are connected by excitatory and inhibitory links. These

links are formed by various guidelines for valid analogies. For example, one of these

guidelines creates an inhibitory link between hypotheses that map the same source

concept to different target concepts. ACME includes both structural and similarity

constraints on the mapped concepts.

AnalogySpace[24] uses the singular value decomposition (SVD) to find similar

concepts in ConceptNet[10]. The similarity of two concepts is based on their shared

properties. Structure mapping calls this type of comparison "superficial similarity"

and distinguishes it from true analogy. For example, a dog is superficially similar to a

cat since they have many attributes in common. AnalogySpace can make these types



of similarity comparisons, but cannot perform structure mapping. Our method is

similar to AnalogySpace's method, but finds analogies according to structure mapping

theory.

The Latent Relational Mapping Engine (LRME) [26] solves SAT analogy questions

using a corpus of websites. The program determines the relationship between two

words by searching the corpus for phrases where the two words occur near each other.

The surrounding words are extracted as the context for the co-ocurrence. Because

the corpus is very large, multiple pairs of words occur in many of the same contexts.

LRME also uses a SVD to find relationships by correlating word contexts and word

pairs. To solve an analogy, LR.ME finds the pair of target words that is most similar

to the source words. LRME is only capable of finding analogies between two concepts

whereas our method is capable of finding analogies between arbitrarily-sized sets of

concepts.

There is also an extensive body of work not mentioned here. For a more thorough

discussion of analogy in AI, see [19].



Chapter 3

System Design and

Implementation

This section presents CROSSBRIDGE, an algorithm for efficiently finding analogies in

large, sparse semantic networks. CROSSBRIDGE is designed to find analogies similar

to those found by structure inapping[6]. CROSSBRIDGE simultaneously performs

both analogical retrieval and analogical mapping, and is designed to robustly handle

sparse data.

Structure mapping describes an analogy as a mapping between the concepts of

two domains that preserves the relationships between the concepts. In a semantic

network, vertices represent concepts and edges represent relationships. Therefore, if

each domain is represented by a semantic network, structure mapping suggests that

two domains are analogous if their semantic networks are isomorphic.

Unfortunately, graph isomorphism is an NP-complete problem, meaning that an

efficient structure mapping algorithm is unlikely to exist. Searching for isomorphic

graphs is also brittle, since a single missing edge will cause the search to skip a

potential analogy. Structure mapping will therefore miss many promising analogies

in sparse data sets. These two problems reduce the effectiveness of structure mapping

on real-world data sets.

CROSSBRIDGE addresses both of these issues by searching for similar graphs

instead of isomorphic graphs. The design of the similarity measure ensures that



CROSSBRIDGE finds analogies that are similar to those found by structure mapping.

The similarity measure compares graphs based on the set of relation structures' con-

tained in each graph. A relation structure is a system of relations, similar to the

"structures" mapped by structure mapping. The set of relation structures in a graph

is described by the graph's structure vector. Isomorphic graphs contain identical re-

lation structures, and therefore have identical structure vectors. The relationship

between graph similarity and graph isomorphism is what relates CROSSBRIDGE to

structure mapping. The motivation behind our choice of graph similarity metric is

discussed in section 3.1.

The graph similarity measure operates on graphs with a fixed number of vertices.

Our relation structures describe a system of relations between I concepts; testing

an i-vertex graph for a relation structure essentially amounts to testing the graph

for the presence of certain edges. Section 3.1.1 describes relation structures and the

construction of a graph's structure vector.

We use principal component analysis (PCA) to improve the robustness and ef-

ficiency of the structure vector comparison. PCA creates domain space, a space in

which all i-concept source domains are represented by vectors. The axes of domain

space are defined by significant relation structures, which correspond to fundamental

relations of I concepts. The similarity of two domains is defined as the cosine sim-

ilarity of their vectors in domain space. PCA also reduces the size of each graph's

structure vectors, which improves the efficiency of graph similarity computations.

Section 3.1.2 explains PCA and how to construct domain space using the singular

value decomposition.

The similarity measure only operates on graphs with a fixed number of vertices.

We use the similarity measure to define a subroutine, L-ANALOGIES, that finds analo-

gies between i-vertex semantic networks. L-ANALOGIES has both an offline and an on-

line component. The offline portion of the algorithm effectively indexes the i-concept

source domains of a semantic network. It computes structure vectors for "dense" 1-

vertex subgraphs, then constructs domain space by performing principal component

analysis on the structure vectors. The online procedure searches for analogies using



domain space. Section 3.2 describes L-ANALOGIES in detail.

CROSSBRIDGE uses L-ANALOGIES and a heuristic search to find arbitrarily-sized

analogies in a semantic network. The search process combines many I-vertex analogies

into larger analogies. Section 3.3 describes this heuristic search process.

Finally, section 3.4 analyzes the running time of CROSSBRIDGE and shows that

CROSSBRIDGE runs in polynomial time.

3.1 Analogies and Graph Similarity

A graph similarity measure must meet several criteria before we can use it in

CROSSBRIDGE. The primary requirement is that similar graphs should represent

analogous concept sets, and vice versa. That is, graph similarity should indicate

analogy quality. Additionally, the metric should be robust and make reasonable in-

ferences when presented with sparse data. Finally, our similarity metric should be

efficiently computable. These are the three primary factors that influence our choice

of similarity measure.

Before a graph similarity measure can meet the first criterion, we must define what

makes two semantic networks analogous. According to structure mapping theory [6],

an analogy is a mapping from a source domain S to a target domain T that preserves

the relationships between the concepts in S. If T and S are both semantic networks,

an analogy is a mapping from the vertices of S to the vertices of T that preserves

the edges between the concepts in S. That is, if edge (vo, vl, r) is part of S and the

analogy maps vo to to and vl to tl, then T should contain the edge (to, tl, r). This

definition means that T and S share a common relationship structure.

We formally define a structure mapping analogy for semantic networks. A se-

mantic network N = (V, R, E) is a directed graph with typed edges. The network

has a set of vertices V, a set of relationships (edge types) R, and a set of edges

E C V x V x R. It is occasionally convenient to treat the set of edges as a func-

tion of the form E : V x V --- P(R), where P(R) is the power set of R; this usage

should be clear from context. Given two semantic networks S = (Vs, R, Es) and



T = (VT, R, ET), an analogy A is a mapping of the form A : Vs - VT such that for

all x E Vs and all y E VT, Es(x,y) C ET(A(x), A(y)). That is, the analogy A maps

each source concept x to a target concept y in a way that preserves the relationships

(edges) of the source domain.

Although we present analogies as functions, it is sometimes convenient to think

about an analogy A as a set of mappings between the vertices of two graphs. Each

mapping is simply a pair where the first vertex belongs to G1 and the second belongs

to G2. We define the procedures SOURCE(A) and TARGET(A), which return the

mapped vertices from the source and target graph, respectively. The set of mappings

notation makes it easier to manipulate and combine analogies.

Cognitive studies have shown that structure mapping corresponds well with peo-

ple's intuitive notion of analogousness [7], so we would like our analogies to agree with

structure mapping. However, we cannot use the same formal definition as structure

mapping because the definition is incompatible with our goal of efficiency. To find

an analogy between S and T in structure mapping, we must find a subgraph of T

that is isomorphic to S. Therefore, finding an analogy requires solving the subgraph

isomorphism problem. Since subgraph isomorphism is NP-complete, we are unlikely

to discover an efficient algorithm for structure mapping.

Our solution to this problem is to relax the constraints on analogies. Instead of

only finding analogies that map all edges from the source domain to the target domain,

we will simply prefer analogies that map more edges to analogies that map fewer edges.

This statement can be translated into a guideline for our similarity metric: the more

edges two graphs share, the more similar they should be. Comparing graphs based

on their shared relation structures produces this property.

The similarity computation uses dimensionality reduction to meet the goals of ro-

bustness and efficiency. We use a truncated singular value decomposition to perform

principal component analysis on the graph structure vectors. This process exploits

correlations between structure vectors to make inferences about the values of miss-

ing data, which improves the robustness of the similarity comparison. Additionally,

the singular value decomposition creates a reduced-dimension representation of the



structure vectors, which improves the efficiency of the similarity comparison.

3.1.1 Relation Structures

Comparing graphs using relation structures guarantees that nearly-isomorphic graphs

have similar structure vectors. A relation structure is a relation among 1 concepts

formed by combining many binary relations. We can represent a relation structure

as a semantic network with numbered vertices, where each number corresponds to

an argument to the relation structure. To check if an I-concept domain (that is, an

1-vertex semantic network) contains a relation structure, we first choose a "config-

uration," which dictates which concept from the domain fills each argument of the

relation structure. A configuration is simply an ordering of the concepts in a domain;

configurations also make it easier to retrieve analogies later in the process.

To match a relation structure to a graph, we use the configuration to number the

vertices of the graph, then pair up the numbered vertices with the relation structure's

vertices. The relation structure matches if the edges of the relation structure are also

present in the graph. This process amounts to fixing a mapping between the graph

and the relation structure, then checking if the relation structure's edges are a subset

of the graph's edges. Figure 3-1 shows the process of matching a relation structure

to a configured graph.

More formally, a relation structure is an i-vertex semantic network

G' = ({1, 2, ..., l}, R, E') with numbered vertices. A relation structure can be com-

pared to a graph G = (V, R, E) in configuration P. The relation structure is found

in the graph if the edges E' are a subset of the edges of P(G), the graph created

by replacing each vertex in G with its value in P. The configuration P specifies a

mapping between the vertices of G and the vertices of G', and the relation structure

matches if P is an isomorphisn between G' and a subgraph of G.

The graph configuration P is used to construct a mapping between the vertices

of similar graphs. We want to be able to easily compute analogies between similar

graphs, that is a mapping between the vertices of two semantic networks. Without

the graph configurations, even if two graphs are similar, we have no way of knowing



which vertices of the first graph should map to which vertices of the second. With

the graph configurations, however, we can map the vertices of both graphs to the set

{1, 2, ..., l}, and therefore we can map the vertices to each other. Specifically, if two

graphs G1 and G2 are similar in configurations P1 and P2, then P 2- 1 o P1 is an analogy

from G1 to G2. This mapping first applies P1 to map the vertices of G1 to the set

{1, 2, ..., l}, then applies P2- 1 to map {1, 2, ..., l} to the vertices of G2.

Three parameters, 1, fmin and fmax, control the size of relation structures. The

graph G' for each relation structure has exactly 1 vertices and between fmin and

fmax edges (i.e., fmin < |E'l < fmax). Intuitively, relation structures with too

many edges will match very few graphs, and relation structures with too few edges

will match too many graphs. Neither rare nor common structures are likely to help

during the matching process. The size limits also improve efficiency since the number

of possible structures grows exponentially in both the number of vertices 1 and in the

maximum structure size frnax. We found that 1 = 3, finin = 2, and fmax = 3 are

reasonable parameter choices for ConceptNet.

Given a set of relation structures F, we can define a structure vector for an 1-

vertex graph in configuration P. A structure vector contains F binary values and

represents the result of matching every structure f C F against the graph in the

specified configuration. If structure f is found in the graph, then the structure vector

contains a 1 in the location corresponding to f. Otherwise, the location corresponding

to f contains a 0. Two graphs that share many edges will share many of the same

relation structures, and therefore have similar structure vectors. Isomorphic graphs

will have identical structure vectors. Structure vectors are the basis for the graph

similarity computation.

3.1.2 Computing Graph Similarity with Principal Compo-

nent Analysis

We use the singular value decomposition (SVD) to perform principal component

analysis (PCA) on the graph structure vectors. PCA uses global correlations between



Figure 3-1: Matching a configured graph with a relation structure. The relation
structure is on the left, and its vertices are labeled with numbers. The vertices
of the graph on the right are mapped to numbers by a graph configuration. The
relation structure only matches when its vertex labels correspond directly to the
graph's mapped vertex labels. Therefore there is a match in the top example but not
in the bottom example.

27



relation structures to smooth over sparsity in the observed relation structures. PCA

also projects each structure vector into a lower-dimensional space, which improves

computational efficiency. We define a similarity metric using PCA that forms the

basis for the L-ANALOGIES procedure. The overall approach is closely related to

Latent Semantic Analysis [2].

Performing Principal Component Analysis

An example helps illustrate the purpose of principal component analysis. Consider

a data set of the height and weight for several people. As in figure 3-2, we can plot

these points in a 2-dimensional space using a height axis and a weight axis.

- 195

0 180 0

. 165

150

48 51 54 57 60 63 66 69
Height (inches)

Figure 3-2: A plot of the height and weight of 5 people.

Notice that taller people tend to weigh more. We can imagine defining a new axis

to capture this trend. First, we draw the line of best fit through the data points. We

then project each point on to the new axis by drawing a perpendicular line from each

point to the new axis. Figure 3-3 shows the line of best fit and the projection line for

each point.

We can now describe the original 2-dimensional data set using a single "size" axis.

We can use a person's size to predict both their height and weight. Notice that we have

lost some information about each point; specifically, we have lost the distance between
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Figure 3-3: Projecting height and weight on to the line of best fit. The line of best

fit is the "size" axis, and the projection lines are along the "overweight/underweight"

axis. The blue points are the locations of each original point on the "size" axis.

the point and the line of best fit, or the length of the perpendicular projection line.

We could add a second axis to our description - an "overweight/underweight" axis -

to recapture this lost information, but then we have not reduced the dimensionality

of the data. Loss of information is a cost of dimensionality reduction.

However, the reduced-dimension representation also has some advantages. We can

make predictions using the size axis: given a person's height, we can predict their

weight, and vice versa. Given a person's height, we simply calculate the size that

most accurately describes their height, then extrapolate their weight from their size.

Figure 3-4 shows how to predict a person's weight from their height.

This example illustrates the use of PCA on a very small data set. PCA is typically

applied to data sets with many thousands of dimensions. The objective, much like in

the example, is to find a much smaller set of dimensions that describes the data as

accurately as possible. As in the example, these dimensions correspond to trends in

the data, and these trends can be used to predict missing data values.

A truncated SVD is commonly used to perform principal component analysis. The

SVD is a matrix decomposition that factors am x n matrix M into three matrices,

M = UEVT. U is an orthonormal m x k matrix, E is a diagonal k x k matrix, and V
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Figure 3-4: Using the size axis to predict a person's weight given only their height. We
first choose the size that most accurately describes the person's height, then predict
their weight from their size. In this case, the person's height is 57 inches, resulting
in the size indicated by the green point. From this size, we predict that the person
weighs 171 pounds.

is an orthonormal n x k matrix. The diagonal elements of E are the singular values

of M and are conventionally arranged in order of magnitude, i.e., 1a1,11 > oU2 ,2 1 > ....

The singular values measure how important each factor is; factors with more influence
on the observed data have larger singular values. The SVD effectively creates a new
k-dimensional orthogonal basis (k factors) and represents each row and column of M
in this basis. Every row of lM corresponds to a row vector in U, and every column of
M corresponds to a row vector in V.

We continue our example to explain the operation performed by the SVD. Say that
M contains height/weight data. Each row of M represents a single person. M has
two columns; one contains each person's height and the other contains each person's
weight. The SVD of M creates two dimensions, "size" and "overweight/underweight,"

to describe the height/weight data. It also creates a matrix U, which contains each
person's description in terms of the new dirnensions, and a matrix V, which describes
how each new dimension is related to the old "height" and "weight" dimensions. E
contains scaling factors that measure the importance of the new dimensions.

Notice that the SVD itself has not reduced the dimensionality of the height/weight



data. The SVD has changed the axes used to describe the data, but there are still two

axes. To perform dimensionality reduction, we ignore some of the less important axes

created by the SVD. In our example, we would ignore the "overweight/underweight"

axis, leaving us with the "size" axis. This process is called truncation because it

involves chopping off the portions of the U, E and V that correspond to the ignored

axes.

More formally, the number of factors k in an exact SVD is equal to the number

of singular values of the matrix M. k can therefore be as large as min(m, n), which

is potentially very large. A truncated SVD limits the number of factors by setting

k to a fixed value, k << min(m, n). The truncated SVD retains only the k most

significant singular values of the matrix M. We denote a matrix X truncated to only

the first k SVD dimensions as Xk. For a truncated SVD, M = UkEk(Vk), where M

is an approximation of the original matrix M.

There are two reasons to approximate the original matrix using a truncated SVD.

When M is initially sparse, the approximation M provides predictions for the miss-

ing values of M. These predictions are the higher-dimensional analog of predicting

"weight" from "height" using the "size" axis. Additionally, the truncated matrices

Uk, Ek, Vk are much smaller than the original matrices U, E, V, which improves com-

putational efficiency. Many recommendation systems use truncated SVDs for similar

purposes [21].

Computing Graph Similarity

For the graph similarity computation, the input to the SVD is a matrix M containing

the structure vectors for each graph. Each row of M corresponds to an i-vertex graph

C and a configuration P, and each column of M corresponds to a relation structure

f. The rows of M are therefore the structure vectors of each graph. The truncated

SVD of M creates the matrices Uk, Ek, Vk, which define domain space. Every 1-

concept source domain (i.e., configured i-vertex graph) and every relation structure

is represented by a vector in domain space. The source domain vectors are the rows

of U, and the relation structure vectors are the rows of V.



The truncated SVD of M provides a simple way to compute the similarity of two

i-vertex graphs. Every I-vertex configured graph (G, P) is represented by a row vector

UG,P in Uk. The similarity of two graphs is related to the angle between their vectors,

which we can measure with the cosine similarity:

Cosine-Similarity((G 1, P1 ), (G 2 , P2)) = G,P kkG 2 P2  (3.1)
IUGI,Pi kH X j UG2 ,P2 kj

The cosine similarity of two vectors is their dot product divided by the magnitude of

each vector. This calculation computes the cosine of the angle between the vectors.

L-ANALOGIES uses the cosine similarity to find analogies for i-vertex graphs.

3.2 L-ANALOGIES

L-ANALOGIES is a procedure that searches a large source semantic network S to find

analogies for a semantic network of target concepts T. Due to limitations of the sim-

ilarity measure, L-ANALOGIES can only find analogies involving exactly 1 target con-

cepts. L-ANALOGIES has both an offline and an online component. The offline com-

ponent, L-ANALOGIES-OFFLINE, computes structure vectors for subgraphs of S and

computes the SVD of these vectors. The online component, L-ANALOGIES-ONLINE

uses the SVD to compute the similarity between subgraphs of S and the target graph

T. The results of this similarity computation are turned into analogies and returned.

L-ANALOGIES-OFFLINE is responsible for computing structure vectors and taking

their SVD. The algorithm first constructs a sparse matrix M out of a semantic network

S. The rows of M are the structure vectors for every dense i-vertex subgraph of S.

Each row of M is labeled with an i-vertex subgraph G and a configuration P. Each

column of M is labeled with a relation structure f. M [(G, P), f] = 1 if structure f is

part of subgraph G in configuration P. Figure 3-5 shows what a section of M looks

like.

To construct M, L-ANALOGIES-OFFLINE first finds every dense subgraph of S.

A dense subgraph is an i-vertex graph with at least a threshold number of edges t.
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Figure 3-5: A section of the structure matrix M using concepts and relations from
ConceptNet. The rows are configured subgraphs of S and the columns are relation
structures. Each entry of the matrix stores the result of matching the corresponding
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(For ConceptNet with 1 = 3, we set t = 3.) Dense subgraphs must also be maximal,

that is they must contain as many edges as possible for the given set of vertices. The

purpose of choosing only dense subgraphs is to avoid indexing every single i-vertex

subgraph of S. Intuitively, a dense subgraph corresponds to a possible source domain

for an analogy. Since we expect analogies to map relatively dense graphs, we can

safely ignore sparsely connected regions.

L-ANALOGIES-OFFLINE creates a row in M for each dense subgraph in each

configuration. The algorithm puts every dense subgraph G into every possible con-

figuration P, then matches the pair against every relation structure. The matching

process simply enumerates all subsets of G's edges; each subset corresponds to a rela-

tion structure. Finally, L-ANALOGIES-OFFLINE computes the truncated SVD of AM

using the Lanczos algorithm, and returns the resulting matrices Uk, Ek, Vk.

The SVD similarity computation is the heart of the L-ANALOGIES-ONLINE proce-

dure whose pseudocode is shown in figure 3-6. The input to L-ANALOGIES-ONLINE

is a graph of 1 target concepts T. L-ANALOGIES-ONLINE computes the similarity

between T and all possible source concept sets in S and uses the results to compute

analogies for T. The output is a list of analogies for T. A similarity score is associated

with each returned analogy; better analogies have higher scores.

L-ANALOGIES-ONLINE assumes that the target concepts T are a dense subgraph

of S. This assumption lets the algorithm get T's representation as a vector in the

SVD space. This assumption is valid when searching for analogies within a knowledge

base, but the assumption may be violated in other applications. For these other

applications, there are ways to generate a vector representation for a semantic network

T which is not a subgraph of S. One method is to sum the V vectors for all relation

structures found in T. Since our target concepts are always drawn from S itself, we

do not further consider this case.



Input: T, a semantic network with 1 target concepts
Output: a list A of analogous base concepts. A[i] = (M, s). M is a mapping from
source concepts to target concepts and s is a numerical score.
Given: Uk, Ek, Vk, the truncated SVD results from L-ANALOGIES-OFFLINE.

1: procedure L-ANALOGIES-ONLINE(T)
2: Choose an arbitrary configuration P for graph T
3: Let uT,P be the row vector of Uk corresponding to (T, P)
4: A -- [ ]
5: for all row vectors UG,Q in Uk do
6: R +- UG,QEkEkUtp.
7: Similarity +- R/(IIUG,QEkll X IUT,P Eki)
8: Mapping - P-1 o Q
9: Append (Mapping, Similarity) to A

10: end for
11: Sort A by the similarity scores
12: Return A
13: end procedure

Figure 3-6: Pseudocode for the L-ANALOGIES-ONLINE procedure.

3.3 CROSSBRIDGE

In this section, we describe a procedure that uses 1-vertex analogies to find analogies

for more than 1 concepts. The procedure decomposes n-vertex graphs into several

i-vertex subgraphs, finds analogies for the i-vertex graphs using L-ANALOGIES, then

merges the results to form larger analogies. The procedure uses a heuristic to choose

which analogies to merge. The heuristic merges analogies that contain multiple iden-

tical vertex mappings. Intuitively, if two analogies share several vertex mappings,

they are likely to refer to the same region of the source semantic network, which

suggests they can be combined to form a larger analogy. This heuristic seems to work

well in practice.

The input to the CROSSBRIDGE procedure is a semantic network of target con-

cepts T, and the output is a scored list of analogies. The procedure uses the L-ANALOGIES

to find analogies for every i-vertex subgraph of the target concepts. The procedure

iterates over these smaller analogies searching for pairs of analogies that contain two

identical vertex mappings and have no conflicting mappings. These pairs are com-



bined to form a new, larger analogy. The combining process is then repeatedly applied

to the newly-generated analogies until no new analogies are generated. The score for

each newly-generated analogy is the sum of the scores of its component analogies.

Figure 3-7 provides pseudocode for the CROSSBRIDGE procedure.

CROSSBRIDGE uses a beam search to improve its efficiency. Only the top r results

from each call to L-ANALOGIES are used in the merging process. Additionally, after

each round of merging, the new candidate analogies are pruned to the b analogies

with the highest score.

3.4 Running Time of CROSSBRIDGE

In this section we analyze the running time of using CROSSBRIDGE to find analogies

for a target concept set T in a semantic network G = (V, R, E). We first consider

the running time of L-ANALOGIES-OFFLINE: we determine the size of the structure

matrix M, then consider constructing M and computing its SVD. We show that

the running time of L-ANALOGIES-OFFLINE is dominated by the SVD computation,

which takes O(k x V x (R12 )fmax X lfmax log(VRl)) time using the Lanczos algorithm.

We then analyze CROSSBRIDGE and show that its running time is O(T'Vlk) when

the source semantic network G is much larger than T. Note that the running times

for both portions of the algorithm are polynomial in the size of the input G and T,

but exponential in the algorithm parameters I and fmax. Finally, we point out that

these worst-case time complexities are unlikely to occur in practice since real semantic

networks are sparse.

We first consider the size of the structure matrix M. The rows of M can be

represented as ordered 1-tuples of vertices from G since 1 vertices define a dense,

maximal subgraph of G and the ordering defines a graph configuration. Hence M has

at most V1 rows. The columns of M correspond to relation structures. The number

of relation structures is equal to the number of semantic networks with 1 distinct

vertices and between fmin and fmax edges. In an i-vertex network, there are R12

unique edges. Each structure contains at most fmax of these edges, so there are



Input: T, a set of target concepts with ITI > 1
Output: a list A of analogous base concepts. A[i] = (M, s). M is a mapping from
source concepts to target concepts and s is a numerical score.

1: procedure ANALOGY(T)
2: Subgraphs - all maximal i-vertex subgraphs of T
3: Analogy-Results +- 0
4: for all i-vertex concept sets X e Subgraphs do
5: Analogy-Results -- Analogy-Results U L-ANALOGIES-ONLINE(X) [: r]

6: end for
7: All-Analogies <- 0
8: Candidates +- Analogy-Results
9: while LENGTH(Candidates) -# 0 do

10: New-Candidates +- 0
11: for all analogies Ai, Si E Candidates do
12: for all analogies Aj, Sj E Analogy-Results do
13: if IA A n Aj -- 2 and
14: ISOURCE(Ai) n SOURCE(Aj)| - 2 and
15: ITARGET(Ai) n TARGET(Aj)| - 2 then
16: New-Candidates - New-Candidates U (Ai U Ay, Si + Sy)

17: end if
18: end for
19: end for
20: Sort New-Candidates by analogy score in descending order
21: Candidates +- New-Candidates[: b]
22: All-Analogies +- All-Analogies U New-Candidates
23: end while
24: Sort All-Analogies by analogy score
25: Return All-Analogies
26: end procedure

Figure 3-7: Psuedocode to combine i-vertex analogies into larger analogies.
CROSSBRIDGE repeatedly merges smaller analogies with common vertex mappings
to form larger analogies.



O((Iaxj) = O((R12)fmax) possible relation structures. Therefore, M has O(V1 )

rows and O((Ri 2)fmax) columns.

L-ANALOGIES-OFFLINE builds the structure matrix M and computes its SVD.

Building M requires enumerating all i-vertex subgraphs of G, and matching each

relation structure against each subgraph. Determining if a relation structure matches

a graph requires a constant number of operations per vertex and edge of the graph,

so each check runs in 0(12) time. Therefore, building M takes 0(12 x V 1 x (R 2)fmax)

time.

We use the Lanczos algorithm to compute the SVD of M. To find the k most signif-

icant singular values of an m x n matrix, Lanczos requires roughly O(kmnlog(mn))

time [27]. Therefore, computing the SVD of M requires O(k x VI x (Rl2)fmax x

/fmax log(VRl)) time.

L-ANALOGIES-ONLINE is a simple procedure whose major computation is the

matrix multiplication UkEkUT . Assuming we use a naive matrix multiplication al-

gorithm, the time complexity of this multiplication is O(Vlk) since Uk is a V1 x k

matrix.

CROSSBRIDGE's running time depends on the size of the target concept set T,

the number of candidates r and the beam width b. The procedure first makes up to

O(TI) queries to L-ANALOGIES-ONLINE to retrieve the initial set of O(rT') candidate

analogies. In total, all of these queries incur O(TVlk) operations. In any round of

the merging process, there are at most max(b, rTI) candidate analogies. During each

round, each of these candidates is compared against every one of the initial candi-

dates, so each round runs in O(rT max(b, rT')). There are at most ITI rounds because

the size of the candidate analogies increases during every round. Therefore, the time

complexity for the merging portion of CROSSBRIDGE is O(rT +1 max(b, rT')). In to-

tal, the time complexity of CROSSBRIDGE is O(TIV'k+ rTl+1 max(b, rT')). However,

the first term of the time complexity is by far the most significant because we ex-

pect IVI >> ITI. Therefore, the time complexity of CROSSBRIDGE is approximately

O(TIV'k).

The above analysis assumes that CROSSBRIDGE is running on a dense semantic



network. In sparse semantic networks, we expect the actual time complexity to be

significantly lower than the predicted worst-case time complexity. In sparse semantic

networks, most subgraphs of G are not dense enough to be included in M, significantly

reducing the size of M. Additionally, all matrix operations are implemented using

sparse matrices. We expect M to be very sparse, since only a few relation structures

will match each subgraph of G. Therefore, we expect the actual time complexity of

these algorithms to be significantly better than the worst-case time complexity.

3.5 Implementation

All algorithms described in this section have been implemented and tested using

Python. We use Divisi I for sparse matrix operations and SVD computations.

IDivisi is available from http://divisi. media. mit. edu/.
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Chapter 4

Evaluation

This chapter evaluates the performance of CROSSBRIDGE on a real data set. Our eval-

uation uses ConceptNet [10], a large semantic network of common sense knowledge.

We compare CROSSBRIDGE to an implementation of structure mapping and show

that CROSSBRIDGE is more efficient. We also show that both structure mapping and

CROSSBRIDGE produce similar analogies, and that CROSSBRIDGE has better analogy

recall than structure mapping. Finally, we measure the sensitivity of CROSSBRIDGE

to various parameter choices and show that its results remain relatively similar for

reasonable parameter settings.

All tests in this chapter were run on a 2.8 GHz computer with 20 GB of RAM.

The processor is the limiting factor for all of the reported running times; none of the

tests use more than 2GB of RAM.

4.1 ConceptNet

ConceptNet [10] is a semantic network of common sense knowledge. ConceptNet is

constructed from over 800,000 simple sentences such as "a dog is a pet" and "a pen

is used for writing." Each sentence was contributed by a volunteer to the Open Mind

Commons website [22]. These sentences are parsed into assertions like "dog / IsA /

pet." Each assertion is composed of two concepts ("dog" and "pet") connected by

a relation ("IsA"). ConceptNet has 21 different types of relations including "IsA",
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Figure 4-1: A portion of the ConceptNet semantic network.

"PartOf" and "UsedFor." In all, ConceptNet contains over 150,000 concepts (ver-

tices) and over 800,000 assertions (edges). However, many of these concepts are only

involved in a handful of assertions. Users of ConceptNet typically restrict Concept-

Net to concepts in at least 5 assertions. This subset of ConceptNet contains around

8,000 vertices and 17,000 edges.

Users can also vote on the quality of assertions; these votes are compiled into a

numerical quality score for each assertion. The higher an assertion's score, the more

likely it is to be true. We created a smaller semantic network, conceptnet-small,

from ConceptNet by removing all assertions with a score lower than 2. This smaller

data set contains less noise than the original data set, which makes it easier to judge

the quality of retrieved analogies. The reduced size also makes the data set easier to

work with. conceptnet-small has around 4,500 vertices and 9,000 edges.

We ran L-ANALOGIES-OFFLINE on ConceptNet with the parameters 1 = 3, t = 3,

fmin = 2, fmax = 3 and k = 100. L-ANALOGIES-OFFLINE runs in approximately

20 seconds on conceptnet-small and in 30 minutes on the full ConceptNet.

The analogies found by CROSSBRIDGE are quite reasonable, and we present some

of them in figure 4.1.



car road drive person
plane sky fly pilot

apartment town live person
pantry kitchen store food food

instrument music orchestra make music string

Figure 4-2: Some analogies discovered in ConceptNet. Examples were selected from

the top 10 results (in different domains) of CROSSBRIDGE. (The top results typically

include many analogies to the same domain, e.g. {sleep, pillow case, bed, person}

and {sleep, pillow case, bed, human}. We show only one example from each domain

here.)

4.2 Comparison with Structure Mapping

This section compares CROSSBRIDGE to structure mapping. We describe

STRUCTURE-MAP, an implementation of structure mapping for semantic networks,

then compare its efficiency and its results with CROSsBRIDGE. We show that

CROSSBRIDGE is more efficient than STRUCTURE-MAP and that both

STRUCTURE-MAP and CROSSBRIDGE find similar analogies.

4.2.1 Structure Mapping Implementation

According to structure mapping, there is an analogy between two semantic net-

works if the two networks are isomorphic. Therefore, to find analogies for a net-

work of target concepts T, we must search through a semantic network knowledge

base G for subgraphs that are isomorphic to T. We describe our implementation of

STRUCTURE-MAP that performs this search for isomorphic subgraphs.

The input to STRUCTURE-MAP is a semantic network G and a network of target

concepts T. STRUCTURE-MAP returns a list of mappings from the vertices of G to

vertices of T. The algorithm searches for an isomorphism between the target graph T

cook pot kitchen chef

study classroom school student
sleep pillow case bed person
pray pew church christian
eat restaurant table restaurant human



and a subgraph of G by searching over possible mappings from T to G. Note that the

isomorphism we search for is the opposite of the isomorphism required by structure

mapping. In structure mapping, a subgraph of the target domain must be must be

isomorphic to the base domain, yet STRUCTURE-MAP searches for subgraphs of the

base domain that are isomorphic to the target domain. This reversal corresponds

to searching for only the best matching analogies, that is analogies in which every

relation from the base domain can be mapped to the target domain.

The mapping is constructed one vertex at a time by guessing that an unmapped

target vertex t maps to some vertex of G. After each guess, the algorithm checks if the

edge mappings are consistent, which means that G contains all of the edges in T that

can be mapped into G. If the mapping is not consistent, the algorithm tries another

vertex mapping for t. If the mapping is consistent, the algorithm continues increasing

the size of the current mapping. If all the vertices of t are mapped, then the algorithm

has found a subgraph of G that is isomorphic to T. Each isomorphic subgraph is saved

and all isomorphic subgraphs are returned when the search completes.

The algorithm sketched above only finds source domains that are exactly analo-

gous to the target domain, whereas CROSSBRIDGE is capable of finding nearly anal-

ogous source domains. We created variants of STRUCTURE-MAP that find nearly

analogous source domains by modifying the consistency check to allow up to q un-

mapped edges. These unmapped edges are edges in the target graph that are not part

of the source graph. We name the modified variants STRUCTURE-MAP-q, where q is

the number of allowed unmapped edges. Each of these variants effectively performs

structure mapping with a quality threshold on the retrieved analogies. As q increases,

the quality of the retrieved analogies decreases. The results, of these variants are more

directly comparable to CROSSBRIDGE because they return nearly analogous source

domains.

We implemented STRUCTURE-MAP in Python.



Test Set
fly, bird, wing
fly, sky, bird, wing
fly, airplane, sky, bird, wing
fly, sky, wing, duck, airplane, bird
school, student, learn
school, book, student, learn
read, school, book, student, learn
school, read, text, book, student, learn
wood, tree, forest
tree, wood, leaf, forest
tree, wood, leaf, forest, branch
leaf, tree, wood, forest, branch, snake
table, eat, restaurant
food, table, eat, restaurant
food, table, restaurant, eat, person
plate, restaurant, food, person, table, eat

Table 4.1: The target concept sets used in the efficiency comparison.

4.2.2 Running Time Comparison

To compare CROssBRIDGE and STRUCTURE-MAP, we created a test set of analogies.

The test set contains four sets of 6 target concepts; each set of target concepts is

further subdivided into four target domains of differing sizes. The test set of analogies

is shown in table 4.1.

Our first test compared the running time of CROSSBRIDGE and STRUCTURE-MAP.

We tested two variants of STRUCTURE-MAP: STRUCTURE-MAP-0 does not tolerate

unmapped edges and STRUCTURE-MAP-1 tolerates 1 unmapped edge. We measured

the running time of each algorithm on each test set using the conceptnet-small

semantic network. Figure 4-3 shows the average running time of each algorithm as a

function of the number of target concepts. The figure shows that CROSSBRIDGE is

somewhat faster than STRUCTURE-MAP-0 and significantly faster than

STRUCTURE-MAP- 1.
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Figure 4-3: The average running time of three analogy algorithms as a function of

analogy size. This test was run on the conceptnet-small data set.



Test Set CROSsBRIDGE Structure-Map-0 Structure-Map-i

fly, bird, wing 177 0 86

fly, sky, bird, wing 433 0 72

fly, airplane, sky, bird, wing 537 0 3
fly, sky, wing, duck, airplane, bird 957 2 26

school, student, learn 227 1 26
school, book, student, learn 337 0 5

read, school, book, student, learn 542 0 5

school, read, text, book, student, learn 1022 0 1

wood, tree, forest 279 0 43

tree, wood, leaf, forest 483 1 31
tree, wood, leaf, forest, branch 971 1 32

leaf, tree, wood, forest, branch, snake 1735 3 31

table, eat, restaurant 247 79 13869

food, table, eat, restaurant 889 1 16

food, table, restaurant, eat, person 1032 1 20

plate, restaurant, food, person, table, eat 1724 0 8

Table 4.2: The number of analogies found by the analogy algorithms on each test set.

These counts do not include the trivial analogy in which every concept is mapped to

itself.

4.2.3 Result Comparison

We also compared analogies retrieved by CROSSBRIDGE with those retrieved by

STRUCTURE-MAP. We show that the best analogies found by CROSSBRIDGE are

very similar to the best analogies found by structure mapping. We also show that

CROSsBRIDGE consistently finds many more analogies than structure mapping.

The comparison between CROSSBRIDGE and STRUCTURE-MAP is not straight-

forward because structure mapping on ConceptNet typically produces very few analo-

gies. Even when structure mapping produces multiple analogies, the vast majority of

them map several of the query concepts to themselves. Table 4.2 shows the number

of analogies retrieved by each algorithm for each test query.

In all but one of the test cases, the top 15 results of CROSSBRIDGE include all

of the results of STRUCTURE-MAP-0. The exception is {table, eat, restaurant}, on

which STRUCTURE-MAP-0 returns 79 analogies. Of these results, 72 are in the top

79 results of CROSSBRIDGE. These results show that the best analogies found by



CrossBridge are very similar to the best analogies found by structure mapping.

Comparing CROSSBRIDGE with STRUCTURE-MAP-1 is more subjective since

analogy quality plays a role in the comparison. On the test sets, agreement between

STRUCTURE-MAP-1 and the top 100 results of CROSSBRIDGE averages 52%, showing

that both algorithms return relatively similar results. The target domain seems to

influence whether agreement is high or not. Agreement is around 80% on all test sets

including {forest, tree, wood}, and agreement is close to 20% on all test sets including

{bird, fly, wing}. Subjectively, both result sets make intuitive sense. However, the

analogies returned by STRUCTURE-MAP-1 are rather repetitive; most of the retrieved

source domains share many concepts with the target domain. CROSSBRIDGE tends

to return many more analogies to novel source domains.

4.3 Sensitivity Analysis

We investigated the effects of different parameter choices on the performance of

CROSSBRIDGE and found that the parameter values do not drastically affect the

results of CROSSBRIDGE. We ran CROSSBRIDGE on conceptnet-small while vary-

ing the number of SVD dimensions and the size of relation structures. For each choice

of parameters, we computed the top 20 analogies for each of the test sets shown in

figure 4.1. We compared each pair of parameter settings by measuring the agreement

between the top 20 analogies, that is the percent of top 20 analogies returned by

both algorithms. The results are presented in table 4.3, which shows that as long as

the minimum structure size is less than 3, CROSSBRIDGE does not appear to be too

sensitive to parameter changes.



k 100 100 100 100 100

fmin 1 1 1 2 3
fmax 1 2 3 3 3

k fmin fmax
50 1 1 0.81 0.71 0.70 0.66 0.21
100 1 1 1.00 0.66 0.62 0.55 0.21
200 1 1 0.98 0.67 0.64 0.55 0.21
300 1 1 0.98 0.67 0.64 0.55 0.21

50 1 2 0.70 0.75 0.73 0.70 0.21
100 1 2 0.66 1.00 0.86 0.73 0.23
200 1 2 0.67 0.86 0.81 0.71 0.21
300 1 2 0.80 0.79 0.78 0.68 0.21

50 1 3 0.67 0.75 0.75 0.70 0.21
100 1 3 0.62 0.86 1.00 0.74 0.21
200 1 3 0.64 0.87 0.83 0.71 0.21
300 1 3 0.71 0.81 0.81 0.70 0.21

50 2 3 0.31 0.39 0.35 0.37 0.28
100 2 3 0.55 0.73 0.74 1.00 0.27
200 2 3 0.60 0.79 0.77 0.76 0.26
300 2 3 0.66 0.75 0.74 0.69 0.24
50 3 3 0.22 0.26 0.27 0.31 0.84
100 3 3 0.21 0.23 0.21 0.27 1.00
200 3 3 0.41 0.46 0.44 0.43 0.43
300 3 3 0.62 0.66 0.62 0.65 0.35

Table 4.3: Agreement within the top 20 analogies when CROssBRIDGE is run with

various parameter settings. Agreement is around 70% when fmin < 3, which demon-

strates that CROSSBRIDGE is not sensitive to small parameter changes.
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Chapter 5

An Application of CROSSBRIDGE

In this chapter we present CrossBridge, a simple application that helps teachers find

analogies to use as teaching aids. Analogies are useful teaching aids, but it is some-

times difficult to find an analogy for a subject. CrossBridge is designed to help

teachers in this situation by searching for helpful analogies in a knowledge base.

Teachers use CrossBridge by entering a concept they wish to teach (e.g. "circuits")

into CrossBridge's search box. CrossBridge transforms this single concept into a

target domain for an analogy using common sense knowledge from ConceptNet. The

target domain is used as input to CROSSBRIDGE, which returns a set of analogies

from its knowledge base. These analogies are presented to the user, who hopefully

finds them useful.

CrossBridge is implemented as a web application using Python and the Django

web framework'. CrossBridge also uses Divisi 2 to represent sparse matrices and per-

form matrix operations.

5.1 Design

CrossBridge is basically a wrapper around the CROSSBRIDGE algorithm that im-

proves its usability. It uses a simple algorithm to expand the user's single-concept

1Django is available from http: //www. dj angoproj ect. com/.
2Divisi is available from http://divisi. media. mit. edu/.



query into a target domain, then uses CROSSBRIDGE to find analogies. CROSSBRIDGE

queries a knowledge base consisting of ConceptNet and some additional knowledge of

physics concepts. All offline processing for this data set is precomputed and cached,

improving the responsiveness of the website.

The input to CrossBridge is a single concept like "circuit" or "solar system."

Using ConceptNet, CrossBridge expands this concept into a target domain for an

analogy. This query expansion process takes advantage of the fact that an analogy

between two single concepts is really an analogy between the parts of each domain.

For example, the analogy "an atom is like the solar system," is really a mapping from

electrons and electricity to planets and gravity. To expand a query for concept x,

CrossBridge finds all concepts y that are a part of x by following "PartOf" relations

in the knowledge base. The query to CROSSBRIDGE is the maximal subgraph of the

knowledge base whose vertices are x and all of the ys.

The knowledge base used by CROSSBRIDGE is ConceptNet augmented with some

additional assertions about common physics concepts. We added the knowledge of

physics concepts by hand to help illustrate the purpose of CrossBridge. We precom-

pute and cache the results of L-ANALOGIES-OFFLINE on this semantic network. As

in the evaluation section, we use the parameters 1 = 3, t = 3, fmin = 2, fmax = 3

and k = 100.

CROSSBRIDGE returns a list of analogies which are minimally processed and pre-

sented to the user. The processing filters out analogies from the same source domain

by removing analogies whose source concept set is a subset of a higher-ranked anal-

ogy. The processing makes the presented results more interesting because it prevents

the user from seeing several similar analogies.



I want to teach about

Find Analogies
(e.g. "house*, "circuit")

Please enter something to teach

Figure 5-1: A screenshot of the CrossBridge website before the user enters a query.

5.2 Sample User Interaction

When a user visits the CrossBridge website, he or she is presented with the screen

shown in figure 5-1. The user then enters a concept to teach into the search box on

the upper left of the screen and clicks the "Find Analogies" button. Upon clicking

this button, CrossBridge retrieves analogies for the chosen concept. The retrieved

analogies are listed to the right of the search box, as shown in figure 5-2.



I want to teach about
Iatom

Find Analogies
(e.g "house" "circuit")

Top Analogies
A atom is like a solar system
A charge is like a mass
A electromagnetism is like a gravity
A electron is like a planet
A nucleus is like a sun

A atom is like a rotating bucket on string
A charge is like a string
A electromagnetism is like a tension
A electron is like a bucket
A nucleus is like a center point

A atom is like a body
A charge is like a arm
A electromagnetism is like a hand
A electron is like a muscle
A nucleus is like a heart

Figure 5-2: A screenshot of the CrossBridge website after the user has entered a
query. In this case, the user has searched for analogies for "atom".



Chapter 6

Discussion and Future Work

CROssBRIDGE differs from previous analogy algorithms in one significant aspect:

CROSSBRIDGE simultaneously addresses both the retrieval and mapping subproblems

of finding analogies. An advantage of this approach is that statistical information from

the entire source corpus can be used while finding analogies. In contrast, algorithms

that only address the mapping problem do not have access to this information. This

statistical information improves the quality of results by allowing CROSSBRIDGE to

make inferences about missing data.

CROSSBRIDGE uses statistical information to improve the robustness of analogy

finding. The truncated singular value decomposition (SVD) used by CROSSBRIDGE

automatically accounts for correlations between similar relation structures. These

correlations are exploited during the matching process and lead to improved analogy

recall.

Global statistical information may also improve the evaluation portion of the

analogy process. Typically, analogy algorithms use a heuristic to rate the quality

of an analogy. The statistical information can be used to rank the analogies in a

principled way. For example, the score for an analogy can be related to the SVD

similarity score between the two domains. The SVD may not be the best option in

this case because its similarity scores have no inherent meaning. This problem could

be addressed by using Probabilistic Latent Semantic Indexing[12], which constructs

a proper probabilistic model that resembles the SVD.



Simultaneously addressing retrieval and mapping does have some issues, however.

It is challenging to design an efficient algorithm that addresses both problems without

resorting to heuristics. CROSSBRIDGE uses heuristics to reduce the size of the SVD

matrix and to form large analogies from small analogies. Without these heuristics,

the running time of CROSSBRIDGE would be significantly larger. In general, retrieval

is challenging because there are a large number of possible source domains for an

analogy. The inefficiency of analogical retrieval makes it an important consideration

for future analogy algorithms.

We made some ad-hoc decisions while designing CROSSBRIDGE, and it may be

beneficial to revisit some of these choices. One possible area for improvement is the

analogy composition process. In some situations, the current process does not score

analogies fairly. For example, if there are two different ways to form an analogy A

from candidate analogies, this improves our confidence that A is a good analogy. The

current scoring method does not account for this case.

Another possible area for future work is to adapt CROSSBRIDGE to operate on

semantic networks with a richer set of relationships. The quality of the analogies

found in a network is very dependent on the available set of relationships. ConceptNet

has only 21 relationships; as a result the found analogies sometimes miss important

distinctions. For example, ConceptNet only has one relationship, "AtLocation", to

denote that two objects are found together. This occasionally leads to noticeably odd

analogies.

It should be possible to adapt CROSSBRIDGE to operate on a data set with richer

relationships such as the corpus of websites used by Turney's Latent Relational Map-

ping Engine[26]. The only reason this may be challenging is that the number of

relation structures grows very rapidly in the number of possible relationships. For

data sets with a large number of relationships, it may be necessary to modify the

choice of relation structures.

Blending[11] is another possible approach to extending the available set of rela-

tions. Blending is a technique for combining domain-specific knowledge with common

sense knowledge. Using this technique, we may be able to import more specific rela-



tionships into ConceptNet. Using this technique, we may be able to make analogies

from complex domains to common sense knowledge; these analogies could be helpful

as teaching aids.

Another limitation CROSSBRIDGE is that it operates on semantic networks in-

stead of on propositional logic. Semantic networks cannot represent statements about

statements. For example, a semantic network cannot represent "people think dogs

are pets," because the statement "dogs are pets" is not a first-class object. The

lack of descriptive power makes it difficult to find analogies between domains with

complex structure. This problem also prevents CROSsBRIDGE from applying the

systematicity criterion of structure mapping theory[6]. Extending CROSSBRIDGE to

either propositional logic or to reified semantic networks would address this issue.

In this thesis we have only considered structural constraints on analogies. In

practice, other types of constraints may be useful. For example, in case-based rea-

soning or information retrieval applications, we may only want analogies that contain

a specific vertex mapping. These hard mapping constraints are easy to implement

with CROSSBRIDGE; simply filter out any of results that do not meet the hard con-

straint. This method, though simple, is somewhat inefficient because CROSSBRIDGE

will consider many invalid analogies. The efficiency could be improved by construct-

ing an index that, for every concept, stores the rows of U the concept appears in.

CROSSBRIDGE could use this index to limit the analogy search to plausible analogies.

Similarity constraints may also be useful in applications[5]. We think these con-

straints could be included in CROSSBRIDGE using blending[ll], which is a technique

for combining multiple knowledge bases using the SVD. A blend of the structure

matrix M with a matrix containing the properties of each concept would incorpo-

rate similarity constraints into the graph similarity metric. Blending also allows us

to configure the importance of the two types of constraints by selecting a blending

factor. We believe this technique is a promising possibility for applications requiring

similarity constraints.

The ultimate goal for analogy mechanisms is to solve real problems. We may

be able to use CROSSBRIDGE in a case-based reasoning system[15]. CROSSBRIDGE



mechanism could be used in both the problem matching step and the solution mod-

ification steps of case-based reasoning. The major difficulty in designing such an

application is obtaining an appropriate data set.

In this thesis, we present CROSSBRIDGE, a novel algorithm for finding analogies

in large semantic networks. CROSSBRIDGE uses dimensionality reduction to find the

most salient systems of relationships within domains of knowledge. Dimensionality

reduction creates a space of domains in which nearby domains are analogous. The

construction of domain space uses statistical trends from a large corpus to smooth

over sparsity. CROSSBRIDGE finds analogies by combining similarity information

from domain space with a heuristic search process. Our approach is unique because

the quality of an analogy between two domains is dependent not only on the domains,

but also on global statistical information from the entire semantic network. These

global statistics improve the robustness of CROSSBRIDGE's analogy comparisons.
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