
MOMENTUM TRANSFER AND TURBULENT KINETIC ENERGY
BUDGETS WITHIN A DENSE MODEL CANOPY

D. POGGI
Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili Politecnico di Torino, Torino, Italy &
Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina,

U.S.A.

G. G. KATUL
Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina,

U.S.A.

J. D. ALBERTSON
Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina,

U.S.A.

(Received in final form 8 July 2003)

Abstract. Second-order closure models for the canopy sublayer (CSL) employ a set of closure
schemes developed for ‘free-air’ flow equations and then add extra terms to account for canopy
related processes. Much of the current research thrust in CSL closure has focused on these canopy
modifications. Instead of offering new closure formulations here, we propose a new mixing length
model that accounts for basic energetic modes within the CSL. Detailed flume experiments with cyl-
indrical rods in dense arrays to represent a rigid canopy are conducted to test the closure model. We
show that when this length scale model is combined with standard second-order closure schemes, first
and second moments, triple velocity correlations, the mean turbulent kinetic energy dissipation rate,
and the wake production are all well reproduced within the CSL provided the drag coefficient (CD)
is well parameterized. The main theoretical novelty here is the analytical linkage between gradient-
diffusion closure schemes for the triple velocity correlation and non-local momentum transfer via
cumulant expansion methods. We showed that second-order closure models reproduce reasonably
well the relative importance of ejections and sweeps on momentum transfer despite their local closure
approximations. Hence, it is demonstrated that for simple canopy morphology (e.g., cylindrical rods)
with well-defined length scales, standard closure schemes can reproduce key flow statistics without
much revision. When all these results are taken together, it appears that the predictive skills of second-
order closure models are not limited by closure formulations; rather, they are limited by our ability to
independently connect the drag coefficient and the effective mixing length to the canopy roughness
density. With rapid advancements in laser altimetry, the canopy roughness density distribution will
become available for many terrestrial ecosystems. Quantifying the sheltering effect, the homogeneity
and isotropy of the drag coefficient, and more importantly, the canonical mixing length, for such
variable roughness density is still lacking.

Keywords: Canopy turbulence, Closure models, Cumulant expansion, Drag coefficient, Ejections
and sweeps, Mixing length, Nonlocal transport.

Boundary-Layer Meteorology 111: 589–614, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



590 D. POGGI ET AL.

1. Introduction

The need to understand and quantify biogeochemical cycles and their role in cli-
mate change has sparked substantial interest in canopy turbulence. This interest is
perhaps most visible by the proliferation of long-term eddy-flux measurements of
carbon dioxide aimed at quantifying the carbon sink in the terrestrial biosphere
(Baldocchi et al., 2001). An understanding of the flow within morphologically
simple canopies is a necessary first step toward these broader problems (Finnigan,
2000).

The spatial and temporal domains of biosphere-atmosphere exchange problems
are on the order of tens of kilometres and several decades, respectively (Katul et
al., 2001). Since many of the important scalar transfer problems focus on turbulent
fluctuations from the mean state, some information about the statistical structure of
the turbulent excursions must be considered. Among the most detailed approaches
to simulate turbulent excursions is the large-eddy simulation (LES) technique,
in which energetic eddies along with many attributes of the energy cascade are
explicitly resolved. LES for canopy flows has progressed significantly over the
last decade since the seminal work of Shaw and Schumann (1992) and now offers
a promising tool for resolving interactions between landscape heterogeneity and
turbulence (Albertson et al., 2001). However, the time scales required for model-
ling landscape dynamics (e.g., decades) and biogeochemical cycles (e.g., years)
far exceed the computational ability of LES, thus necessitating the use of compu-
tationally efficient but simpler transport models such as Reynolds averaged closure
approaches. The minimum level of complexity needed to describe the distribution
of these excursions is second-order closure (Launder, 1996; Hanjalic, 2002; Ayotte
et al., 1999).

While second-order closure models were originally developed and have been
used for more than 30 years (e.g., Meller, 1973; Lumley, 1978; Launder, 1996;
Hanjalic, 2002), their application to canopy turbulence continues to be a major
research area. After Wilson and Shaw’s (1977) study, numerous second-order clos-
ure models for the canopy sublayer (CSL) were proposed (e.g., Meyers and Paw U,
1986; Wilson, 1988; Katul and Albertson, 1998; Massman, 1999; Katul and Chang,
1999; Ayotte et al., 1999) but the reported successes have been mixed (Katul and
Albertson, 1998; Katul and Chang, 1999; Pinard and Wilson, 2001). Some of the
weaknesses of second-order closure models have been attributed to the inability
of eddy-viscosity models to simulate flows subject to forces imposed by bodies
immersed in the fluid or flows with significant non-local momentum exchange, as
is the case within the CSL (Shaw 1977; Raupach 1988; Wilson 1988; Ayotte et
al., 1999; Finnigan, 2000; Hanjalic, 2002). Attempts to rectify these limitations by
increasing the closure order have not translated into significantly improved pre-
dictive skill (Katul and Albertson, 1998; Hanjalic, 2002). An underlying reason for
the inaccuracies is the dependence on a single (and typically local) length scale
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to characterize the entire effect of turbulence on the statistical moments being
modelled.

Here, we propose a formulation of the mixing length that accounts for the basic
energetic modes within the canopy CSL and we embed this within a second-order
closure model. Using detailed flume experiments we verify that this approach
reproduces well the first and second moments, and even triple velocity correla-
tions. Furthermore, this study demonstrates analytical linkages between standard
second-order schemes, large organized structures, and non-local transport inside
the canopy via third-order cumulant expansion (CEM). In fact, we show that the
incomplete third-order CEM proposed by Katul et al. (1997), when combined with
second-order closure principles, quantitatively describes many key statistical at-
tributes of the ejection-sweep cycle within the CSL. The flume experiments used
to test the closure model include detailed spatial velocity measurements using non-
intrusive laser Doppler anemometry (LDA). The LDA provides velocity statistics
near obstacles as well as the channel bottom even when a dense canopy is placed
within the flume. These measurements are well suited for assessing how well clos-
ure models reproduce terms such as turbulent wake production. However, before
discussing these experiments, a brief review of second-order closure models within
the CSL is first provided.

2. Theory

Upon time and horizontal averaging the instantaneous momentum equation for
non-stratified flows, we obtain:

∂〈ui〉
∂t

+ 〈uj 〉∂〈ui〉
∂xj

= −∂〈p〉
∂xi

+ ∂τij

∂xj

+ fF,V, (1)

where

τij = −〈u′
iu

′
j 〉 − 〈u′′

i u
′′
j 〉 + ν

∂〈ui〉
∂xj

(2)

and

fF,V =
〈
∂p′′

∂xi

〉
+

〈
ν

∂2u′′
i

∂xj ∂xj

〉
. (3)

In these expressions, t is time, xi (x1 = x, x2 = y, x3 = z) are the longitudinal,
lateral, and vertical directions, respectively; ui (u1 = u, u2 = v, u3 = w) are the
instantaneous velocity components along xi ; p is the static pressure normalized
by the mean fluid density; and ν is the kinematic viscosity. All flow variables are
decomposed into temporal and planar averages with turbulent excursions defined
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from the time-averaged (denoted by overbar) and horizontally-averaged (denoted
by angular brackets) quantities using the convention in Raupach and Shaw (1982)
and Finnigan (1985, 2000). That is,

φj = φj + φ′
j , (4a)

φj = 〈φj 〉 + φ′′
j . (4b)

All double primed terms arise because horizontal averaging and differentiation do
not commutate for the multiply-connected air spaces within the vegetation. Hence,
they represent the explicit effects of the vegetation on the spatial and temporal
statistics of the flow. These terms contain the drag force fF,V, which is composed of
form and viscous drag terms. The stress tensor τij also contains the conventional
turbulent and viscous stresses and a dispersive flux term 〈u′′

i u
′′
j 〉 resulting from

spatial correlations in the time-averaged velocity field. Using the same averaging
procedures, the second-moment equations are given by

(
∂

∂t
+ 〈uj 〉 ∂
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)
〈u′

iu
′
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j u
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i
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〉
+

〈
∂p′u′

k

∂xi
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+ν

∂2〈u′
iu

′
k〉

∂xj ∂xj
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〈
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(
∂u′

i

∂xk

+ ∂u′
k

∂xi

)〉
− 2ν

〈
∂u′

i

∂xj

∂u′
k

∂xj

〉
. (5)

The closure parameterizations for the triple velocity moments, the mean turbulent
kinetic energy dissipation rate, the pressure-velocity interaction, and the effect of
the canopy on the flow field are discussed next.

2.1. THE CLOSURE SCHEMES

The closure approximations we adopted are those of Wilson and Shaw (1977),
which we repeat for completeness. We chose this model because (i) it explicitly
links the closure schemes to an empirical mixing length, (ii) it is the most parsimo-
nious among the numerous second-order closure models proposed, and (iii) it is the
most cited canopy second-order closure model to date. For the mean momentum
equation, the closure approximations are:〈

∂p′′

∂xi

〉
= Cd a 〈|u|〉〈ui〉, (6a)
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ν

〈
∂2u′′

i

xj xj

〉
≈ 0, (6b)

where |u| is the magnitude of the velocity. Such an approximation assumes that
the form drag by the canopy on the fluid can be modelled as a general drag force
characterized by a drag coefficient (Cd ) and a local canopy density (a). Also, the
viscous drag was neglected relative to the general drag force.

For the Reynolds stresses, the closure approximations include the following
(Mellor, 1973; Wilson and Shaw, 1977). For the transport terms

PT =
(〈

∂p′u′
i

∂xk

〉
+

〈
∂p′u′

k

∂xi

〉)
+ ∂

∂xj

〈u′
iu

′
ju

′
k〉, (7)

the standard gradient-diffusion model is adopted

PT = − ∂

∂xj

(
qλ1

(
∂〈u′

iu
′
j 〉

∂xk

+ ∂〈u′
iu

′
k〉

∂xj

+ ∂〈u′
j u

′
k〉

∂xi

))
, (8)

where q =
√

〈u′
iu

′
i〉 is the turbulent velocity scale, and λ1 is a characteristic length

scale for the triple velocity correlation. Here, we neglected the dispersive trans-
port terms. Several wind-tunnel experiments suggest that such dispersive transport
terms are small (Finnigan, 2000).

The expansion of pressure velocity correlation, along with the return to isotropy
closure approximation, leads to:

(〈
p′ ∂u′

j

∂xi

〉
+

〈
p′ ∂u′

i

∂xj

〉)
= −qλ2

[
〈u′

iu
′
j 〉 − δij

q2

3

]
+Cq2

[
∂〈ui〉
∂xj

+ ∂〈uj 〉
∂xi

]
,

where λ2 is a characteristic length scale of the velocity-pressure correlation, and
C is a closure constant to be determined. The viscous dissipation is modelled as a
function of the available turbulent kinetic energy, and is given by

2ν

〈
∂u′

i

∂xj

∂u′
k

∂xj

〉
= 2

3

q3

λ3
δik, (9)

where λ3 is a dissipation length scale.
When the dispersive fluxes are negligible, as expected in dense canopies (e.g.,

Finnigan, 2000; Poggi et al., 2003b), the wake production terms are given by

−
〈
u′

iu
′
j

′′ ∂u′′
i

∂xj

〉
= 〈ui〉

〈
∂p′′

∂xi

〉
, (10)
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as shown in Raupach and Shaw (1982). Based on the Wilson and Shaw (1977)
closure models, these terms can be expressed as

−
〈
u′

iu
′
j

′′ ∂u′′
i

∂xj

〉
= 〈ui〉 Cd a 〈ui〉2. (11)

The present closure model is an over simplification of the energetic pathway
when compared to more recent closure models (e.g., Wilson, 1988; Ayotte et al.,
1999) as the TKE is not explicitly split into large-scale (SKE) and wake-scale
(WKE) bands.

2.2. THE CSL SECOND-ORDER CLOSURE MODEL

Upon replacing the above closure approximations into the mean momentum and
Reynolds stress equations, assuming a stationary and planar-homogeneous flow,
and neglecting all the dispersive fluxes, the standard second-order closure model
of Wilson and Shaw (1977) for CSL turbulence reduces to (in meteorological
notation):

〈u〉 : ∂〈u′w′〉
∂z

+ Cd a 〈u〉2 = 0, (12)

〈u′w′〉 : −〈w′2〉d〈u〉
dz

+ 2
d

dz

(
qλ1

d〈u′w′〉
dz

)
− q

〈u′w′〉
3λ2

− Cq2 d〈u〉
dz

= 0, (13)

〈u′u′〉 : −2〈u′w′〉d〈u〉
dz

+ d

dz

(
qλ1

d〈u′u′〉
dz

)
+ 2Cda〈u〉3

− q

3λ2

(
〈u′u′〉 − q2

3

)
− 2

3

q3

λ3
= 0, (14)

〈v′v′〉 : d

dz

(
qλ1

d〈v′v′〉
dz

)
− q

3λ2

(
〈v′v′〉 − q2

3

)
− 2

3

q3

λ3
= 0, (15)

〈w′w′〉 : d

dz

(
qλ1

d〈w′w′〉
dz

)
− q

3λ2

(
〈w′w′〉 − q2

3

)
− 2

3

q3

λ3
= 0. (16)

It is common to express the three length scales λ1, λ2, and λ3 as a function of one
principle length scale using (Wilson and Shaw, 1977; Katul and Albertson, 1998)

λi = bi leff; i = 1, 2, 3 (17)

where bi are closure coefficients, and leff is the effective (or principle) length scale
of the closure model. This length scale is central to the accuracy of the closure



CLOSURE MODELS AND CANOPY TURBULENCE 595

model calculations and is the subject of sub-Section 5.2. To solve for the flow
statistics within the CSL using the above set of equations, appropriate boundary
conditions, the parameters leff, Cd , and a, as well as the four closure constants
bi(i = 1, 2, 3) and C must be determined or specified. Given that the characteristic
velocity (q) and leff in the closure model are intimately linked with the turbulent
kinetic energy (TKE), we consider how the standard closure assumptions affect the
individual components of the TKE budget.

2.3. THE TURBULENT KINETIC ENERGY BUDGET

With the above closure approximations, the components of the turbulent kinetic
energy (TKE) budget reduce to:

0 = Ps + Pw + PT + Pd, (18)

where Ps , Pw, Pt , and Pd are the shear production, wake production, turbulent
transport, and viscous dissipation rates, respectively, and are given by:

Ps = −2〈u′w′〉d〈u〉
dz

, (19)

Pw = 2Cda〈u〉3, (20)

Pt = d

dz

(
qλ1

[
d〈u′u′〉

dz
+ d〈v′v′〉

dz
+ d〈w′w′〉

dz

])
, (21)

Pd = −2
q3

λ3
. (22)

The TKE budget will serve as a benchmark, by assessing how well the closure
model reproduces the measured Ps , Pw, Pd , and Pt .

2.4. NON-LOCAL TRANSPORT AND SECOND-ORDER CLOSURE MODELS

As earlier stated, one of the main criticism of second-order closure models is their
failure to simulate non-local momentum exchange within the CSL (see Katul and
Albertson, 1998). Here, we associate non-local momentum transport with large-
scale vortical motion that is produced elsewhere in the flow domain but contributes
to the local Reynolds stress at a given layer. Hence, it is constructive to assess how
well this closure model reproduces the measured effects of these non-local trans-
port phenomena, such as the ejection-sweep cycle, on the local momentum flux
when a realistic leff is employed. The ejection-sweep cycle is typically quantified
via conditional sampling methods and quadrant analysis, as reviewed in Antonia
(1981). Quadrant analysis refers to the joint scatter of two turbulent quantities (e.g.,
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w′ and u′). The four quadrants defined by the cartesian plane (abscissa is u′ and
ordinate is w′) reflects four modes of momentum transfer: quadrant 1 for which
u′ > 0 and w′ > 0 is commonly labeled as the outward interaction quadrant,
quadrant 2 for which u′ < 0 and w′ > 0 is dominated by ejections, quadrant 3
for which u′ < 0 and w′ < 0 is often labeled as the inward interaction quadrant,
and quadrant 4 for which u′ > 0 and w′ < 0 is dominated by sweeps. Nakagawa
and Nezu (1977) and Raupach (1981) showed that the difference in stress fractions
(�So), given by

�So = 〈w′u′〉|4 − 〈w′u′〉|2
〈u′w′〉 (23)

is connected with ejections and sweeps, where 〈w′u′〉|i/〈u′w′〉 is the stress fraction
in quadrant i (i = 1, 2, 3, 4). To link �So with second-order closure models, we
build on the pioneering work of Nakagawa and Nezu (1977) and Raupach (1981)
in which the third-order cumulant expansion method (CEM) was proposed and
successfully used. For example, Raupach (1981) demonstrated that:

�So = (Ruw + 1)

Ruw

√
2π

[
2C1

(1 + Ruw)2
+ C2

1 + Ruw

]
, (24)

where Ruw, C1, and C2 are given by

Ruw = 〈w′u′〉
σuσw

,

C1 =
(

1 + Ruw

)[
1

6
(M03 − M30) + 1

2
(M21 − M12)

]
,

C2 = −
[

1

6
(2 − Ruw)(M03 − M30) + 1

2
(M21 − M12)

]
,

Mab = 〈w′au′b〉
σ a

wσ b
u

; σs =
√

〈s′s′〉,
where σs is the time and horizontally averaged standard deviation of any flow
variable s. After demonstrating that the mixed moments M12 and M21 contribute
much more to �So than M03 and M30, Katul et al. (1997) suggested a further
simplification given by

�So ≈ 1

2Ruw

√
2π

[
M21 − M12

]
(25)

hereafter referred to as an incomplete CEM (ICEM). Using the gradient-diffusion
approximations for 〈w′u′w′〉 and 〈w′u′u′〉 along with the ICEM, and after algebraic
manipulations, the second-order closure model prediction for �So reduces to:

�So = −1

2
√

2π

qλ1

〈w′u′〉
[

1

σu

∂〈u′u′〉
∂z

− 2

σw

∂〈w′u′〉
∂z

]
. (26)
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Comparison between measured and modelled �So from Equation (26) provides
an explicit evaluation of how well second-order closure models reproduce the stress
fraction contribution of ejections and sweeps. Given that the contribution to mo-
mentum transfer of ejections and sweeps is non-local, such �So comparison serves
as an independent benchmark of how well second-order closure models capture
non-local transport phenomena in the CSL.

3. Experimental Setup

Much of the experimental setup is described in Poggi et al. (2004a); however, a
brief review is provided for completeness. The experiment was conducted at the hy-
draulics Laboratory, DITIC Politecnico di Torino, in a re-circulating flume whose
main component is a rectangular channel 18 m long, 0.90 m wide and 1 m high.
The model canopy is composed of an array of vertical rustproof steel cylinders
120 mm high (= h), and 4 mm in diameter (= dr ) arranged in a regular pattern
along the 9 m long and 0.9 m wide test section. The frontal area index (λFAI) is
1072 rods m−2. As discussed later, this frontal area index leads to a drag coefficient
comparable to drag estimates reported for dense forested ecosystems with leaf area
index (LAI) ranging from 3.5 to 6 (Katul and Albertson, 1998).

The water velocity was measured by two-component laser Doppler anemometry
(LDA) employed in a forward scattering mode. An advantage of LDA is its small
averaging volume, its non-intrusive nature, and its ability to measure water velo-
cities close to the cylinders and channel bottom. In this study, a measurement run
consists of sampling the u and w time series at a particular position between the
rods. Given the spatial non-homogeneity in the flow statistics, 11 measurement
locations were used. These 11 locations were unevenly spaced between the rods;
locations were chosen such that sampling was densest within regions in which the
flow statistics exhibit the highest spatial variability. In Figure 1, the plan view of
the locations of the cylinders and the sampling positions are shown along with the
representative area used to weight each measurement position. At each of the 11
positions, we collected 15 runs in the vertical (see Figure 1). The sampling duration
and frequency were 300 s and 2500–3000 Hz, respectively.

The experiments were conducted at two very high Reynolds numbers differ-
ing by a factor of about 1.5 to further quantify whether the closure schemes and
constants are overly sensitive to the Reynolds number variations (Pope, 2000).
Using the vertically-averaged velocity (Ub) across the entire water depth (hw),
the resulting bulk Reynolds number Reb (= Ubhw/ν) for the two experiments are
116,560 and 172,300, which ensures fully-developed turbulent flows in both cases.
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Figure 1. A view of the three hierarchical scales of the experiment: The channel flow facility and
the working section (top left), the plan view of the spatial sampling points and their area-weighted
contribution to spatial averaging (top right), and the section view of the measurement locations in
relation to the canopy dimensions (bottom).

4. Data Analysis

Before comparing measured and modelled quantities, a brief description on
how the measurements were used or processed to arrive at statistics that can
be compared with the time and planar-averaged closure model calculations is
discussed.

4.1. MEASUREMENTS OF THE STATISTICAL MOMENTS

When computing the measured statistical moments and their vertical profiles, we
first time averaged and then planar-averaged the quantities, in keeping with the
averaging procedures described in Raupach and Shaw (1982). The planar averaging
at each vertical position was performed using a weighted scheme, with weights pro-
portional to the fraction of total ground area represented by each position as shown
in Figure 1. The statistics that are explicitly considered in model comparisons with
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measurements include: 〈u〉, 〈u′w′〉, 〈u′u′〉, 〈w′w′〉, 〈w′u′u′〉, 〈w′u′w′〉, 〈�So〉, Ps ,
and Pt . With spatial time series data we can directly estimate key components of
the TKE budget such as Pw, which are difficult to estimate in atmospheric field
experiments.

4.2. MEASUREMENTS OF WAKE PRODUCTION AND TKE DISSIPATION

In the temporally and spatially averaged Reynolds stress equation, and in the ab-
sence of dispersive fluxes, the wake production of turbulent kinetic energy is given
by Raupach and Shaw (1982); Finnigan (2000); Ayotte et al. (1999)

Pw = −
〈
u′

iu
′
k

′′ ∂ui
′′

∂xk

+ u′
iu

′
k

′′ ∂ui
′′

∂xk

〉
, (27)

which, for a planar homogeneous flow, reduces to

Pw = −
〈
2u′w′′′ ∂u′′

∂z

〉
. (28)

With this estimate, an explicit comparison between modelled and measured Pw

is now possible. Naturally, the limited spatial sampling of the velocity produces
large uncertainties in the measured Pw; hence, agreement between measured and
modelled Pw may in fact provide added confidence in the spatial sampling scheme
proposed in Figure 1.

Furthermore, independent estimates of Pd are possible from our experimental
data using the isotropic relation

Pd = −15ν

〈(
∂u

∂x

)2〉
. (29)

We chose this method of estimating the dissipation rate because it is entirely in-
dependent of the TKE budget. However, care should be used when quantitatively
comparing the second-order closure model calculations with these estimates. This,
in part, is due to the fact that (i) Taylor’s hypothesis is used to estimate the spatial
derivatives from temporal derivatives in high intensity flows, and (ii) the local
dissipation by wakes is only partly accounted for. Nonetheless, the canonical shape
and order of magnitude estimates by this dissipation method are valuable in ‘first
order magnitude’ comparisons between measured and modelled dissipation rates,
given the limited dissipation measurements reported in the CSL.
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5. Closure Model Parameterization

As stated earlier, to solve for the flow statistics by the second-order closure model,
parameters leff, Cd , and a, as well as the four closure constants bi (i = 1, 2, 3) and
C must be determined or specified. In this section, we discuss their estimation and
parameterization.

5.1. ESTIMATION OF THE DRAG COEFFICIENT

To estimate Cd , we use the mean momentum equation, given by

CD = −
(

∂〈u′w′〉
∂z

+ ∂〈p〉
∂x

) (
a 〈u〉2

)−1
(30)

along with the measured ∂〈p〉/∂x and profiles of 〈u′w′〉 and 〈u〉 from a wide range
of experiments conducted in this flume for the same rod type (but different canopy
density) described in Poggi et al. (2004a). When all CD values are combined from
these experiments and plotted as a function of the element Reynolds number Red

(= 〈u〉 dr/ν) in Figure 2, a clear relationship emerges. This relationship can be
approximated by (Poggi et al., 2004a)

CD ≈ 1

2

[
1.5 − 8.5 × 10−4 Red

]
. (31)

At low Reynolds numbers, the CD is consistent with the classical behaviour of
drag on a unit length of an isolated cylinder (i.e., CD � Re1/2

d ; Bachelor, 1967).
With increasing Reynolds number, the CD values monotonically decrease (rather
than attain a constant value, as is the case for an isolated cylinder). This decrease
is generally attributed to the sheltering effect (Raupach and Thom, 1981; Raupach,
1994; Massman, 1997). Interestingly, the computed values are in agreement with
several observed drag coefficients reported in situ and in some wind-tunnel studies
(Thom, 1971; Seginer, 1976; Brunet et al., 1994; Raupach et al., 1996). An imme-
diate consequence here is that CD can be fully described by Red . This approach
is adopted in our closure model calculations; however, we acknowledge that this
relationship requires further testing for other canopy configurations before any
universality should be inferred.

5.2. ESTIMATION OF THE PRINCIPLE LENGTH SCALE

The length scale adopted in our closure model is based on the canonical structure
of turbulence inside and just above the canopy as described by Poggi et al. (2004a).
In Poggi et al. (2004a), it was demonstrated that the effective length scale is dom-
inated by three fundamental length scales: rod diameter (dr ), the shear length scale
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Figure 2. Variation of the measured drag coefficient (CD) with element Reynolds number
Red = dr 〈u〉/ν across all heights and for 5 canopy densities ranging from sparse (67 rods m−2)
to dense (1072 rods m−2).

(Ls = (u(du/dz)−1)z=h), and distance from the wall (z). It was also demonstrated
that the relative importance of these three length scales varies with z/h and λFAI.
For completeness, we briefly review the key arguments in Poggi et al. (2004a).

Inside the canopy (z/h < 0.5), hereafter referred to as Region I, flow visu-
alization and spectral measurements demonstrate that the turbulence is primarily
produced by small vortices associated with von Karman streets. Near the canopy
top (0.5 < z/h < 1.5), hereafter referred to as Region II, the length scale was
shown to be a superposition of a mixing layer length scale, lML, and a boundary-
layer length scale, lBL. We emphasize that these two vortical motions do not coexist
in space, rather, the flow oscillates between one of these two states. Finally, for
z/h > 1.5, hereafter referred to as Region III, the primary length scale collapses
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Figure 3. Conceptual model for the mixing length (leff) within the three regions of the CSL. Region
III is dominated by boundary-layer flows, Region II is a mixing layer superimposed on a boundary
layer, and Region I is dominated by von Karman streets introduced by the rod diameter dr .

to the classical displaced boundary-layer length scale lBL = k(z − d), where d

is the zero-plane displacement height. An estimate of d can be obtained by the
centre-of-pressure method (Thom, 1971; Jackson, 1981)

d =
∫ h

0 zfF,V (z)dz∫ h

0 fF,V (z)dz
. (32)

Hence, the leff in our second-order closure model takes on the following mathem-
atical form for the different regions (see Figure 3). For Region III, the effective
length scale is identical to the standard boundary-layer length scale (lBL) given by

leff = lBL = k(z − d), (33)

where k = 0.4 is the Von Karman constant. For Region I, leff is a constant,
independent of the distance from ground surface, and is given by:

leff ≈ lV = 〈u〉
f

=
(

dr

0.21

)
, (34)

where lV is the mean size of the von Karman street vortex. The value 0.21 is derived
from the Strouhal number (= f dr/〈u〉) linking frequency of periodic vortices (f )

to the mean velocity and the characteristic length scale of the obstacle (in this
case dr ). The Strouhal number is approximately constant across a wide range of
element Reynolds numbers (dr u/ν = 60 to 5000, Schlichting, 1979) suggesting
that the 0.21 value will hold for CSL flows. More important, Poggi et al. (2004a)
demonstrated that this length scale appears independent of λFAI and z/h.

In Region II, the flow field is a superposition of the classical surface layer and
a perturbed mixing layer. A linear superposition model for the mixing length was
proposed by Poggi et al. (2004a) and is given by

leff = (1 − α)lBL(z) + α(lML), (35)



CLOSURE MODELS AND CANOPY TURBULENCE 603

where α changes from 0 (for a very sparse canopy) to 1 (pure mixing lay-
ers) depending on the canopy density. The mixing layer length lML can be well
approximated by

lML = 〈u〉
d〈u〉/dz

∣∣∣∣
z=h

≈ 1

ĈDa

(
u∗
〈u〉

)2

, (36)

where ĉ is the depth-averaged value of a variable c across h as discussed in Poggi
et al. (2004a). For dense canopies, both u∗/〈u〉 and α saturate and become approx-
imately independent of λFAI, with typical values of 0.3 (Raupach, 1994) and 0.5,
respectively. That is, for dense canopies, leff for Region II simplifies to

leff ≈ 0.5

[
lBL(z) + 1

9

1

Ĉda

]
, (37)

which completes the description of the mixing length formulation employed in our
second-order closure model calculations for all three regions.

5.3. ESTIMATION OF THE CLOSURE CONSTANTS AND BOUNDARY

CONDITIONS

The closure constants bi (i = 1, 2, 3) and C are generally dependent on the bound-
ary conditions. We first discuss the boundary conditions then proceed to show how
the closure constants are computed. The upper boundary condition is set at the
point where the observed Reynolds stress departs from linearity and approaches
zero (z/h � 2.8). At this height, the second-order closure model is assumed to
reproduce standard similarity scaling:

dσu

dz
= 0, (38a)

dσw

dz
= 0, (38b)

dq

dz
= 0, (38c)

d〈u〉
dz

= u∗
k(z − d)

. (38d)

For the Reynolds stress, we assumed that 〈u′w′〉 = 0 at z = hw. These are the most
general boundary conditions that do not require ‘data-specific’ values for σu, σw,
and q. The lower boundary conditions are not specified at the wall; rather they are
specified as a limit with z/h � 1 and are given by

σu = 0, σw = 0, 〈u〉 ≈
√

−∂〈p〉/∂x

Cda
, 〈u′w′〉 = 0.
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We chose this boundary condition because the observed mean velocity near the
wall is finite. To determine the closure constants (b1, b2, b3, and C), we use the
approach of Katul and Albertson (1998) and set Ps = Pd (i.e., local equilibrium)
and neglect all flux-transport terms at z/h = 2.8 so that

b−1
2

(
Aw − q2

3

)
+ b−1

3 (2A2
q) = 0, (39a)

b−1
2

(
Au − q2

3

)
+ b−1

3 (2A2
q) = 6

Aq

, (39b)

b−1
2

(
1

3Aq

)
+ C =

(
Aw

Aq

)2

, (39c)

b1 = 1

Aq

, (39d)

where
σu

u∗
= Au,

σw

u∗
= Aw,

q

u∗
= Aq .

From the experiments, we use for both Reb cases Au = 1.5, Aw = 1.2,
Aq = 2.34. Hence, the precise values of Au, Aw, Aq are imposed on the clos-
ure constants rather than on the boundary conditions. Solving the above algebraic
equations specifies all the needed closure constants for the model calculations.

6. Second-Order Closure Model Testing

Having presented the parameterization of the model, we proceed to the com-
parisons with the experiments for the two Reb values. When comparing to the
measurements, we use four metrics: (1) First and second moments of the flow
field, (2) triple moments, (3) TKE budget, and (4) �So. The first comparison is
to diagnose how well the second-order closure model reproduces the statistics typ-
ically needed in scalar transport calculations, the second comparison permits direct
assessment as to whether gradient-diffusion approximations are reasonable within
the CSL given our proposed leff, the third comparison offers additional insights
about the closure model performance through the wake production term, and the
fourth comparison assesses how well the closure model reproduces certain features
of the non-local momentum transport associated with the ejection-sweep cycle.

6.1. FIRST- AND SECOND-MOMENT COMPARISONS

We show the comparison between measured and modelled 〈u〉, 〈u′w′〉, 〈u′u′〉,
〈w′w′〉 for the two Reb in Figure 4. A quantitative comparison between measured
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Figure 4. Comparison between measured and modelled horizontally-averaged moments with nor-
malized height (z/h) for (a) mean longitudinal velocity 〈u〉/u∗, (b) mean shear stress 〈w′u′〉/(u2∗),
(c) mean longitudinal velocity standard deviation σ+

u = σu/u∗, (d) mean vertical velocity standard
deviation σ+

w = σw/u∗. The solid symbols (measurements) and solid lines (model calculations) are
for Reb = 172,300 while the open symbols (measurements) and dashed lines (model calculations)
are for Reb = 116,560.

and modelled flow statistics is presented in Table I. It is clear that the model re-
produces well the first and second moments irrespective of Reb (for high Reb). The
agreement between measurements and model calculation lends confidence to the
formulation of the mixing length and the CD parameterization because 〈u′u′〉 and
〈w′w′〉 are entirely independent of the mean momentum balance, which was used
to estimate CD.

To place these results in the context of ‘real-world’ canopies, we compare the
model performance for this flume experiment with second- and third-order closure
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TABLE I

Comparison between measured and modelled flow statistics. The model evaluation is
conducted by regressing measured (independent) upon modelled (dependent) flow vari-
able. The regression slope (a) and intercept (b), the correlation coefficient (r), and the
root-mean-squared error (RMSE) are presented for both Reynolds number runs. For
reference, we show the second- and third-order model comparisons reported in Katul
and Albertson (1998) for a 15-year old pine forest. The closure formulations used by
Katul and Albertson (1998) are primarily based on the Wilson and Shaw (1977) model.

Reb 172,300 116,560

a b r RMSE a b r RMSE

u/u∗ 1.04 −0.43 1.00 0.33 1.02 −0.44 0.99 0.40

σ+
u 1.04 −0.05 0.96 0.09 0.97 0.04 0.95 0.12

σ+
w 1.08 −0.14 0.92 0.11 0.91 0.02 0.94 0.10

u′w′
u2∗

0.84 −0.06 0.99 0.07 0.87 −0.05 0.99 0.06

〈w′u′u′〉
u3∗

0.82 −0.19 0.73 0.37 0.82 0.22 0.73 0.47

〈w′u′w′〉
u3∗

1.48 −0.15 0.91 0.24 1.48 −0.15 0.95 0.28

Ps
h

u3∗
0.86 0.43 0.73 0.94 1.15 0.03 0.98 0.37

Pw
h

u3∗
1.22 0.30 0.98 0.78 1.43 0.17 0.95 1.12

Pd
h

u3∗
1.36 1.57 0.94 1.02 1.39 1.73 0.93 1.29

Pt
h

u3∗
0.23 −0.13 0.38 1.64 0.29 −0.14 0.30 1.83

�S0 1.20 0.03 0.98 0.09 1.22 −0.01 0.97 0.11

Closure 2nd 3rd

a b r2 RMSE a b r2 RMSE

u/u∗ 1.1 −0.37 0.98 0.11 1.1 −0.41 0.98 0.13

〈u′u′〉 0.70 0.36 0.92 0.08 0.69 0.39 0.92 0.08

〈w′w′〉 0.60 0.43 0.95 0.03 0.60 0.42 0.96 0.03

〈u′w′〉 0.80 −0.09 0.92 0.02 0.77 −0.11 0.93 0.02

〈w′u′u′〉 0.11 −0.03 0.1 0.48 0.17 −0.03 0.19 0.42

〈w′w′u′〉 0.11 −0.03 0.31 0.27 0.13 0.03 0.24 0.26

model results already reported by Katul and Albertson (1998) for a 15-year old
pine forest (see Table I). The regression statistics and root-mean-squared error
between measurements and model calculations are quite comparable, at least for
first- and second-order statistics. While this agreement is necessary for a ‘working’
second-order closure model, it is not sufficient. Many authors, including Katul
and Albertson (1998), have demonstrated the possibility of reproducing well 〈u〉,
〈u′w′〉, 〈u′u′〉, 〈w′w′〉 without reproducing well the triple correlations. Hence,
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Figure 5. Comparison between measured and modelled horizontally-averaged moments with nor-
malized height (z/h) for (a) 〈w′u′u′〉/u3∗, (b) 〈w′u′w′〉/u3∗. The solid symbols (measurements) and
solid lines (model calculations) are for Reb = 172,300 while the open symbols (measurements) and
dashed lines (model calculations) are for Reb = 116,560.

we consider next the triple correlation comparisons and also discuss them in the
context of the Katul and Albertson (1998) findings.

6.2. GRADIENT-DIFFUSION AND TRIPLE CORRELATION COMPARISONS

In Figure 5, the comparison between measured and modelled triple moments
(〈w′u′u′〉, 〈w′u′w′〉) are shown for both Reb. Table I presents the regression statist-
ics between measured and modelled quantities shown in Figure 5. For reference,
the triple velocity model comparisons reported by Katul and Albertson (1998)
for the pine forest are also shown in Table I. Within the canopy of the flume
experiment, good agreement between measured and modelled triple velocity cor-
relation is noted. In fact, the agreement between measurements within the canopy
and model calculations is by far superior to the agreement reported by Katul
and Albertson (1998) for their pine forest. Just above the canopy, the agreement
between measured and modelled third-order moments is inferior to that of the
second-moment comparisons. However, the closure model does capture the over-
all shape of these profiles. It is necessary to note here that the abrupt transition
from a finite (and large) drag within the canopy to a zero drag just above the
canopy is likely responsible for much of the departure between measurements and
model. At this transition point, not only is the drag coefficient discontinuous, the
vertical gradient in the shear stress profile, which drives the closure for all triple
velocity correlations, is also nearly discontinuous. How these departures between
model calculations and measurements of triple correlations affect TKE and 〈�So〉
is discussed next.
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6.3. TKE BUDGET COMPARISONS

The modelled Ps , Pw, and Pt agree well with the measurements (see Table I). The
agreement between measured and modelled Ps is not too surprising because Ps is
primarily driven by 〈u〉 and 〈u′w′〉, which are constrained by the mean momentum
balance. The agreement between measured and modelled Pw serves as a stronger
metric for model performance, though uncertainty in our measured Pw (at least
when compared to Ps) is larger. This, in part, is due to the sensitivity of measured
Pw in Equation (28) to spatial sampling of time-averaged velocity and its gradi-
ents. Hence, when taken together with the previous results of Figures 4 and 5, the
agreement shown here lends support to both the wake production parameterization
and the weighted spatial averaging procedures employed in the measurements.
The measured and modelled Pt appear to be in good agreement despite the sharp
discontinuity across the canopy-top in Cda. We emphasize that the measured Pt

is the turbulent transport and ignores contributions from the pressure transport.
Hence, a 1 : 1 comparison between measured and modelled Pt should be treated
with caution, as the contribution of the pressure transport to the overall transport
terms remains uncertain (Finnigan, 2000). Finally, we compared measured and
modelled TKE dissipation rates and note reasonable agreement despite the prim-
itive treatment of the dissipation term by the closure model and the uncertainty in
the measurements.

6.4. NON-LOCAL MOMENTUM TRANSPORT COMPARISONS

Before presenting comparisons between measured and modelled �So, it is neces-
sary to evaluate the accuracy of the third-order CEM and the ICEM first. This
permits us to isolate errors attributed to the CEM expansion from errors attributed
to gradient-diffusion approximations. To assess the CEM expansion, we show a
sample comparison between measured and modelled probability density functions
(pdf) for u′ and w′, respectively, in Figure 7. It is clear that, while some features
of the measured pdf are not well reproduced by third-order CEM, the observed
asymmetry is well reproduced.

A more direct test is how well CEM and ICEM reproduce the measured 〈�So〉
profile. In Figure 8, we used the measured M03, M30, M21, and M12 to compute
〈�So〉 using the CEM and ICEM expressions and then compared these calculations
to the measured 〈�So〉 obtained from quadrant analysis. It is clear that both CEM
and ICEM expressions reproduce the measured 〈�So〉 well (see Table I). Finally,
we compared the measured 〈�So〉 with the second-order closure modelled 〈�So〉
in Figure 9 and found reasonable agreement between second-order closure model
calculations and measurements (see Table I). The next logical question is ‘why do
gradient-diffusion approximations to third moments correctly predict the relative
contributions of ejections and sweeps to momentum transfer?’. To address this
question, we consider whether the sign of 〈�So〉 is inherently well reproduced
by our second-order closure model. It is clear from our experiments, as well as
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Figure 6. Comparison between measured and modelled horizontally-averaged moments with nor-
malized height (z/h) for the components of the TKE budget (a) Psh/u3∗, (b) Pwh/u3∗, (c) Pth/u3∗,
and (d) Pdh/u3∗. The solid symbols (measurements) and solid lines (model calculations) are Reb =
172,300 while the open symbols (measurements) and dashed lines (model calculations) are for Reb

= 116,560.

numerous field measurements (e.g., see review in Katul and Albertson, 1998), that
〈�So〉 appears to be positive within the canopy but approaches zero above the
canopy. Upon examining Equation (26) for a finite and usually negative 〈u′w′〉 in
the CSL, the sign of 〈�So〉 is clearly controlled by

1

σu

∂〈u′u′〉
∂z

− 2

σw

∂〈w′u′〉
∂z

. (40)

Noting that ∂〈w′u′〉/∂z is always negative (= −Cda〈u〉2), and that σu and σw are
monotonically increasing with increasing z implies that Equation (26) will always
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Figure 7. Comparison between measured (symbols) and CEM modelled (solid line) horizont-
ally-averaged probability density function with normalized height (z/h). For reference, the Gaussian
probability density function is also shown (dotted).

predict a positive 〈�So〉 which is consistent with the numerous measurements (in-
cluding ours) that demonstrate sweeps are more important than ejections within
dense canopies (see Katul and Albertson, 1998; Katul et al., 1997). Also, in the
near-constant stress layer, with Ps ≈ Pd ,

1

σu

∂〈u′u′〉
∂z

≈ 2

σw

∂〈w′u′〉
∂z

≈ 0, (41)

which leads Equation (26) to predict a 〈�So〉 ≈ 0 again consistent with numerous
experiments on rough-wall boundary layers (Raupach, 1981; Shaw et al., 1983)
and the atmospheric surface layer (Katul et al., 1997). In short, the combination
of ICEM and gradient-diffusion models reproduces the relative importance of
ejections and sweeps on momentum transfer despite their inherent local closure
assumption. Finally, we note that variations in 〈�So〉 are strongly dependent on
variations in the profiles of 〈u′u′〉 and 〈u′w′〉, both vary on length scales comparable
to h.



CLOSURE MODELS AND CANOPY TURBULENCE 611

Figure 8. Comparison between measured and modelled horizontally-averaged 〈�So〉 with normal-
ized height (z/h)(a) Reb = 172,300 and (b) Reb = 116,560. The symbols are for measurements via
quadrant analysis, the solid line is for the complete CEM (Equation (25)), and the dashed lines are
the incomplete CEM or ICEM (Equation (26)).

Figure 9. Comparison between measured and modelled horizontally-averaged 〈�So〉 with normal-
ized height (z/h)(a) Reb = 172,300 and (b) Reb = 116,560. The symbols (connected by a line) are
for measurements via quadrant analysis, and the solid line are for the second order closure model
calculations with ICEM.

7. Conclusions

Over the last two decades, several second-order closure models have been proposed
and tested for CSL turbulence, each having its own strengths and weaknesses.
These models share an overarching strategy in that they all employ a set of closure
schemes for terms in the ‘free-air’ flow equations and then add extra terms to
account for the canopy related processes such as drag or wake production without
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altering these ‘free-air’ closure forms. Much of the research thrust in CSL clos-
ure models focused on these canopy modifications, their inherent time scales, and
energetic partitioning.

This study did not introduce any new fundamental physics or propose alterations
to existing closure schemes; rather, it proposes a new phenomenological formula-
tion of the mixing length within the context of second-order closure scheme that
takes into account the role of organized motion and effects of non-local transport
within a very idealized canopy morphology: vertical rods. Also, it used independ-
ent experiments to determine the drag coefficient (CD) and the sheltering imposed
by the canopy density. For dense canopies within the CSL, the proposed effect-
ive length scale is dependent on three canonical length scales: rod diameter (dr ),
the mixing layer length scale (LML), and distance from the wall (z). We showed
that when this mixing length scale and CD are combined with the second-order
closure model, agreement between measured and modelled velocity moments is
observed even up to triple velocity correlations within the canopy. The agreement
between measured and modelled wake production and dissipation rate terms was
reasonable, given the inherent uncertainty in both measurements and closure model
parameterizations. Our study went further still and demonstrated a theoretical
connection between the second-order closure model, cumulant expansions, and
the effects of non-local momentum transport phenomena within the CSL (e.g.,
ejections and sweeps). The gradient-diffusion closure scheme for the triple ve-
locity correlations appears to reproduce the relative importance of ejections and
sweeps on momentum transfer reasonably well despite its inherent local closure
assumption.

When these results are taken together, it appears that our predictive skill via
second-order closure modelling is less limited by closure formulations and more
limited by our ability to independently connect the drag coefficient and the effect-
ive mixing length scale to key morphological attributes of the canopy (at least for
undisturbed flows). This is what is lacking for practical applications such as seed
dispersion or biosphere-atmosphere carbon exchange. With recent advancement in
laser altimetry, it is likely that detailed spatial distribution of canopy morphology,
particularly roughness density, will become available. Quantifying the canonical
length scale for canopy elements with multiple length scales (vis-à-vis a well
defined dr ), sheltering effect, the homogeneity and isotropy of the drag coeffi-
cient for such variable roughness density requires a new concerted theoretical and
experimental research effort.
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