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We visualize the Kohn-Sham kinetic energy density (KED), and the ingredients – the

electron density, its gradient and Laplacian – used to construct orbital-free models

of it, for the AE6 test set of molecules. These are compared to related quantities

used in metaGGA’s, to characterize two important limits – the gradient expansion

and the localized-electron limit typified by the covalent bond. We find the second-

order gradient expansion of the KED to be a surprisingly successful predictor of the

exact KED, particularly at low densities where this approximation fails for exchange.

This contradicts the conjointness conjecture that the optimal enhancement factors

for orbital-free kinetic and exchange energy functionals are closely similar in form.

In addition we find significant problems with a recent metaGGA-level orbital-free

KED, especially for regions of strong electron localization. We define an orbital-

free description of electron localization and a revised metaGGA that improves upon

atomization energies significantly.
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I. INTRODUCTION

The Kohn-Sham kinetic energy density (KED) – the kinetic energy per volume defined by

the orbitals generated by the Kohn-Sham equation – plays a central role in the development

of density functional theory (DFT). In the “Jacob’s Ladder” paradigm for characterizing

the exchange-correlation (XC) energy in density functional theory,1 the KED is the key

variable of the central, metaGGA rung of functionals.2–5 As a local energy density, it provides

information about electronic structure complementary to that provided by the local electron

density and its derivatives that describe lower rungs of DFT. Particularly important is its

ability to distinguish between regions of electron localization,6–8 for which self-interaction

error is important, and regions of delocalization such as metals where they are not.

The centrality of the KED in DFT development is highlighted by the implicit role it plays

in the rungs of DFT lower than the metaGGA. These may be thought of as a Jacob’s ladder

of approximations to the KED as much as one of approximations to the exchange-correlation

energy. The lowest rung of the XC ladder, the local density approximation or LDA,9 cor-

responds to the Thomas-Fermi approximation10,11 to the KED. The more commonly used

generalized gradient approximation (GGA) introduces, in addition to the local density, the

gradient of the density as a variable in XC functional construction. The same information

is contained in the von Weizsäcker KED12 that describes the KE of localized electron pairs.

It has been used to generate a large number of GGA’s for the KED, both empirical13–16

and nonempirical,17,18 though not with the success they have enjoyed in describing the XC

energy. To describe the XC energy at the next, metaGGA, level of the theory, not only

the KED, but also the Laplacian of the density19–22 may be used as an additional variable

in functional construction. A metaGGA description of the KED is thus possible, using the

Laplacian.13,23,24 The similarity of the KED and XC functional ladders leads to a conjoint-

ness conjecture25 that the optimal orbital-free correction to the Thomas-Fermi KE is similar

in form to that for LDA exchange. More importantly, it enables one to apply lessons learned

in constructing the one functional to constructing the other. This is important for orbital-

free DFT, in which the Kohn-Sham KED is replaced by an explicit functional of the density,

removing completely the need for orbitals.

The orbital-free modeling of the KED has taken on increasing importance in recent

years.26,27 Given a cubic scaling in the number orbitals, the Kohn-Sham method becomes
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prohibitively expensive for large-scale applications that require the accuracy of atomistic

simulation. These involve applications such as the dynamics of nanoscale materials27 requir-

ing intrinsically large system size, high throughput as in alloy design, or a need for large

number of excited states, as can occur for finite-temperature applications such as warm dense

matter (WDM).28,29 A completely orbital-free density functional theory (OFDFT), using an

orbital-free expression for the kinetic energy, becomes an important tool in these cases. Un-

fortunately, OFDFT is inherently less accurate than Kohn-Sham DFT; for example, the

Thomas-Fermi approximation is unable to predict molecular binding,30 something the LDA

has no problem doing. Nevertheless, nonlocal models31–34 have achieved reasonably high ac-

curacy, allowing for impressive calculations for solid-state applications,35,36 albeit within the

limitation of requiring different functionals for different material classes. And, with a focus

on improving potentials and thus forces in the context of WDM, a number of GGA-level

OFDFT’s have been developed in recent years.13,18,26 These coincide with improvements in

infrastructure for practical calculations.37,38

A third role of the KED has been as a tool for visualizing the electronic structure of

the chemical bond. The kinetic energy density has been the subject of investigation39,40

particularly as a localized-orbital locator (LOL),41,42 and an impressive number of related

quantities have been defined and investigated as well.43 Perhaps the most popular is the

electron localization factor ELF, which is based upon a comparison of the Kohn-Sham

to Thomas-Fermi and von Weizsäcker KED’s.6,44,45 It is of particular importance for the

development of metaGGA’s for the XC energy and in the conceptual understanding of why

they work.7,8 Also of note is the quantum theory of atoms in molecules (QTAIM),46–48 an

approach to visualization which is in some ways an orbital-free version of ELF analysis,

using gradients and Laplacians of the density to analyze bonding structures.

Despite the strong connection between the arguments used to build XC metaGGA’s2,4,7,49

and those used to visualize the chemical bond, the tool of visualization has not often been

used to provide feedback into DFT development. The properties of the exchange-correlation

hole, describing the hole around an electron caused by Pauli exclusion and Coulomb repulsion

have been an important tool in the construction of both GGA’s and their successors.50–52 In

particular, the visualization of the hole has been a valuable tool in assessing the accuracy of

DFT’s.53,54 However, the exchange-correlation hole is a difficult many-body calculation, and

the dependence of measurables like the atomization energy or bond length on the nature
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of the XC hole occurs implicitly through the mediation of complex functionals and thus is

hard to determine. (But connections can sometimes be made.55,56) In the case of the KED,

however, visualization is of direct help57–59 – how an orbital-free density functional theory

for the Kohn-Sham KED actually compares to the real thing requires no more than running

a standard DFT code and visualizing the results.

In this paper, we perform highly converged Kohn-Sham DFT calculations and visualize

the electron density, its gradient and Laplacian, the KED and some approximations for these

used in DFT, for the AE6 test set of molecules, in a pseudopotential plane wave approach.

The AE6 test set60 is a set of 6 molecules – Cyclobutane (C4H8), Propyne (C3H4), Glyoxal

(C2H2O2), Silicon Monoxide (SiO), Disulfur (S2), and Silicon Tetrahydride (SiH4) – chosen

for their ability to reproduce the average atomization energy of common DFT’s over much

larger test sets. For such a small set the AE6 shows a richness of bonding scenarios – single,

double, and triple bonds, covalent to nearly ionic, including first and second row atoms, and

a large-cation, small-anion system similar to important semiconductors like GaN. Thus it

covers many situations commonly seen in organic chemistry and in semiconductors as well.

Our motive for using pseudopotentials is two-fold. First of all, many current OFDFT

applications rely upon the use of pseudopotentials,33,34 although more accurate approaches

do exist.61 More importantly, the pseudopotential plane-wave approach permits an arbitrary

convergence of the particle density associated with the pseudopotential and thus a map be-

tween a v−representable density and the related KE density that is as accurate as possible.

It thus gives insight into the universal map between kinetic energy and density that is a

corollary of the Hohenberg-Kohn theorem. Although the method does not produce the cor-

rect density for real molecules, and thus introduces errors into the chemical characterization

of the test set, it arguably gives us simpler problem to model, and much of what is learned for

pseudopotential systems should help to construct functionals for the all-electron case.62 The

use of pseudopotentials enables particularly the study of asymptotic features not possible

with a typical gaussian basis set.

Finally, the choice of exchange-correlation functional is irrelevant to the universal map-

ping between the Kohn-Sham kinetic energy and the charge density, in which the electro-

static potential energy plays no role. We work with the LDA and PBE exchange-correlation

functionals, which produce reasonably accurate bond lengths for the test set and should

produce densities and orbitals close to the exact ones for pseudopotential systems.
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In our visualization, we have deemphasized (but do not ignore) the ELF, already studied

extensively for a large number of molecular systems. We look rather at the basic ingredients

of the orbital-free KED, the electron density n, and related derivatives |∇n|2 /n and ∇2n,

focusing especially on applications of their use in DFT. One is a common approximation

based upon the gradient expansion in the limit of slowly varying densities used in many

metaGGA’s to replace ∇2n, a natural descriptor in this limit, for τKS. The second is

a sophisticated metaGGA-level orbital-free model of the Kohn-Sham KED, the mGGA.23

This takes advantage of lessons learned in developing metaGGA’s for exchange, particularly

of defining and respecting key constraints and limiting cases for the kinetic energy. Despite

the promise of its design philosophy, the mGGA has deficiencies – its potential does not

bind molecules13 and even used non-self-consistently fails to improve upon Thomas-Fermi

predictions of atomization energies.24 However, it is of value as a starting point of thinking

how to construct a metaGGA; and since it is a model of the kinetic energy density as such, it

is directly testable by visualization of this quantity. Our investigation of the mGGA shows,

despite its excellent description of atomic KED’s, surprising failures in its description of

the KED of bonds, and thus in its prediction of atomization energies. Our visualization

work makes it easy to diagnose and suggest a fix to this problem, one which defines, and

demonstrates at least in an ad hoc fashion, a potential, hitherto unrecognized, lower bound

to the KED.

The rest of this paper is organized as follows – Sec. II describes the theoretical background

of the paper – the density functional theory of the kinetic energy and its relation to exchange

in metaGGA’s. Sec. III covers the basic methodology used. Sec. IV details the chief results

of visualization, while Sec. V applies the lessons learned to construct and make preliminary

tests of a correction to the Perdew-Constantin mGGA and Sec. VI presents our conclusions.

II. THEORY

The positive definite form of the kinetic energy density in Kohn-Sham theory is given by

τKS =
1

2

occup∑
i

fi |∇φi|2 , (1)
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where φi are Kohn-Sham orbitals from which the electron density is constructed:

n =

occup∑
i

fi |φi|2 , (2)

and fi is the occupation number of each orbital. Integration over all space gives the kinetic

energy

TKS[n] =

∫
τKS(r)d3r. (3)

A generalization in terms of the spin density and spin-decomposed KED’s is easily con-

structed by restricting the sums in the equations above to a specific spin species but will

not be considered here. The KED is well defined only up to the arbitrary addition of a

divergence of a vector function – the integration of such an addition is zero and leaves the

physical measurable TKS unchanged. Thus any number of physically equivalent KED’s may

be constructed, with a common alternative to Eq. (1) being

τ ′KS = −1

2

occup∑
i

fiφ
∗
i∇2φi = τKS −

1

4
∇2n. (4)

The value of Eq. (1) is that it is positive-definite like the particle density, and that a number

of properties of the KE are conveniently framed in terms of it.

The key principle for this paper is that since TKS[n] is a functional of the ground state

electron density n, τKS must be one too. There exists some map τKS[n] from Eq. (2) to

Eq. (1) that need not explicitly rely on orbitals. However the form of this map is unknown,

and unlike the exchange-correlation functional of standard Kohn-Sham theory, approximate

functionals are often far from satisfactory. Specifically, as is done in the lower rungs of

the XC ladder of approximations, we can define a “semilocal” model of TKS[n], in terms of

functions of the local density and its derivatives:

T approxKS [n] =

∫
τapprox[n(r),∇n(r),∇2n(r)]d3r (5)

This is the take-off point for many orbital-free functionals for TKS,13–16,18,23,24 and the point

of view considered in this paper. At the same time, nonlocal functionals31–33,63,64 take the

form

TKS[n] =

∫ ∫
nα(r)W (r, r′)nβ(r′)d3rd3r′ (6)

which may be related to the semilocal picture through an expansion of the kernel W (r, r′)

for small r− r′.65
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The lowest level of semilocal functional – the equivalent to the LDA in XC functionals –

is the Thomas-Fermi model,

τTF =
3

10
k2Fn∼n5/3, (7)

with kF = (3π2n)1/3 the fermi wavevector of the homogeneous electron gas (HEG). At the

next level of approximation, the gradient expansion (GEA)66,67 of the KED is given by:

τGEA = τTF +
1

72
|∇n|2/n+

1

6
∇2n+O(∇4). (8)

Terms up to fourth68 and sixth order69 in this expansion are known.

As is the case with exchange, in order to preserve the proper scaling of TKS under the

uniform scaling of the charge density, the form of an orbital-free functional for the KED is

restricted to that of a function of scale-invariant quantities times the local density approxi-

mation. Thus the GEA can be recast as

τGEA =

[
1 +

5

27
p+

20

9
q

]
τTF , (9)

in terms of invariant quantities:

p =
|∇n|2
4k2Fn

, (10)

q =
∇2n

4k2Fn
. (11)

Similarly, the most general form for a semilocal functional is a generalization of the GEA

form in terms of an enhancement factor FS modifying τTF :

τsemilocal=FS(p, q)τTF . (12)

The enhancement factor FS for the kinetic energy plays a similar role to that for exchange,

FX , in conventional GGA’s, where the exchange energy density is expressed as a correction

to the LDA in the form FXe
LDA
X .

In constructing generalized gradient functionals, it is conventional to omit the term pro-

portional to ∇2n in the GEA expansion as this integrates to zero and does not contribute

to the overall kinetic energy.66 Then, by approximating the gradient expansion to all orders

in the remaining variable p, one obtains the next natural step, the GGA.16 However, our

goal is to visualize the local quantity τKS(r), and for this purpose, the ∇2n term in its

gradient expansion cannot be ignored. Moreover, keeping it is necessary to implement local
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constraints on orbital-free approximation to τKS (and thus constraints on TKS) correctly,

and we do so in the work that follows. ∇2n is normally considered as a higher-order variable

whose introduction in a functional defines the next, metaGGA, rung of functionals.

Up to this level of approximation, the process of building a kinetic energy functional

mirrors that for exchange, so that the conjointness conjecture has been made25 that the

optimal form for each functional at a given level of approximation are closely related: FS∼
FX . This relationship has never been explicitly defined, but is normally taken to be that

of nearly identical functional forms with different constants.14–16 This strict conjecture has

been demonstrated to be wrong,70 but a philosophy of conjointness, using the experience of

designing exchange-correlation functionals to inform the design of KE functionals, is common

practice.17,18,24

Nevertheless, there are fundamental differences between the two functionals, particularly

in the physics of the large inhomogeneity limit p, |q| � 1. For the Kohn-Sham KED in

real systems, the most crucial issue is the limit of a one-particle system or two-particle

spin-singlet system. In this case it reduces to the the von Weizsäcker12 functional:

τvW =
1

8

|∇n|2
n

. (13)

This is the exact result for a system of N particles obeying Bose statistics, so that in the

ground state they occupy a single ground state orbital, φ0 =
√
n/N. The KED needed to

create the density n(r) with fermions, that is, the energetic cost of Pauli exclusion, is given by

the difference between the Kohn-Sham and Wigner KED’s, and must be positive definite:71

τPauli = τKS − τvW ≥ 0. (14)

Notably, this von Weizsäcker lower bound is not respected by the GEA. If we rewrite Eq. (13)

in terms of an enhancement factor, we find F vW
S = 5p/3 – a dependence on p that is nine

times faster than that of the GEA. For q=0, τGEA falls below τvW for the relatively modest

value of p=27/40. The constraint can be imposed by changing the coefficient in the gradient

expansion to 5/3, in which case the slowly-varying limit is incorrect. In contrast, exchange

is constrained by the Lieb-Oxford bound72 that limits the contribution from the low density

tail outside the classically allowed range of electron. This limit has no intrinsic tie to the

single-orbital limit and we shall see that the KED behaves very differently from exchange

in this limit.
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Recently a metaGGA-level KED functional of the form of Eq. (12), the Perdew-

Constantin mGGA,23 has been developed by applying lessons learned in constructing

constraint-based exchange-correlation functionals. It satisfies the gradient expansion up

to fourth-order in the limit of slowly varying density and the von Weizsäcker bound and

other constraints for large values of p and q. The function interpolates between the gradient

expansion and von Weizsäcker limits using a nonanalytic but smooth interpolating func-

tion that depends on an effective localization measure z = FGE4−M−FvW , with FGE4−M a

metaGGA designed to be the best-possible analytic functional built from the starting point

of the slowly varying electron gas. This is explicitly a model of the kinetic energy density,

designed to take the place of the KED in exchange-correlation metaGGA’s, and thus is

meaningfully tested by means of visualization of the KED.

So far, the Jacob’s Ladder of approximations of the Kohn-Sham KED parallels the de-

velopment of exchange functionals. A divergence now occurs in that, for exchange and

correlation, the KED itself can be used as a variable for building further approximations.

In the standard approach2 to constructing metaGGA’s for exchange, the Laplacian of the

density, which appears irreducibly in fourth and higher-order terms in the gradient expan-

sion is introduced implicitly through the use of the Kohn-Sham KED. This is achieved by

rewriting the gradient expansion for τKS, [Eqs. (8–9)], to construct a replacement for ∇2n,

good to second order in this expansion. This “pseudo-Laplacian” is given by:

∇2n = 6 (τKS − τTF )− 1

12
|∇n|2/n, (15)

which then replaces ∇2n in the construction of the metaGGA. ∇2n approaches ∇2n in the

limit of slowly varying density, deviating from it only where the ∇2n gets large, such as at

the cusp in the electron density at the nucleus. It is unknown how well this approximation

works in practice for features of electronic structure like covalent bonds, which locally may

have small p and q but are part of systems that are far from the slowly-varying limit globally.

This quantity can then serve to test the quality of the GEA.

Perhaps the most physically significant role played by the KED in a metaGGA is as a

measure of electron localization.2,7 This is done by taking the ratio of the Pauli contribution

to the Kohn-Sham KED to that of the Thomas-Fermi model,

α =
τKS − τvW

τTF
. (16)
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In regions where the KE density is determined predominantly by a single molecular orbital,

τKS approaches τvW and α→0. This limit describes single covalent bonds and lone pairs, and

generally situations in which the self-interaction errors in the GGA and LDA are most acute.

The HEG, and presumably systems formed by metallic bonds, corresponds to τKS = τTF ,

τvW ∼0 and α∼1. Between atomic shells and at low density, α�1, potentially tending to

∞ for an exponentially decaying density if τPauli vanishes more slowly than n5/3. This limit

can be used to detect weak bonds such as van der Waals interactions and define interstitial

regions in semiconductor systems. The information on local environment can then be used

to customize gradient approximations for specific subsystems.7

It is a short step from α to the electron localization factor or ELF6 used in the visualization

of electronic structure:

ELF =
1

1 + α2
. (17)

This converts the information contained in α to a function between one, when α=0, to zero

(α→∞), useful for visualization, but less so in functional construction. The related LOL41

is closer in form to ∇2n, and is basically the enhancement factor FKS =τKS/τTF recast into

a convenient form: LOL = 1/(1 + FKS).

Finally we note that the α used in defining the ELF is also the enhancement factor for

the Pauli KE: τPauli = ατTF . And thus one can consider the project of constructing OFDFT

as intimately tied to the project of visualizing electronic structure – constructing orbital-free

models to the ELF and the information on electron localization it contains. This has been

the perspective of several recent studies of the KED.57,73

III. METHODOLOGY

As noted in the introduction, we use the plane-wave pseudopotential method for perform-

ing DFT calculations – this allows us to solve nearly exactly the Kohn-Sham equation for

a model system and acquire highly accurate orbitals, but for an approximate system. For

this purpose, the ABINIT plane-wave pseudopotential code74–76 was employed with an LDA

and PBE XC functionals. Standard Troullier-Martins pseudopotentials77 from the ABINIT

library were used for both. Geometries were optimized using the Broyden-Fletcher-Goldfarb-

Shanno algorithm,78 to a force tolerance of 5× 10−5 hartree/bohr.

The main convergence error in our calculations was that of using a finite-sized periodic
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simulation cell, necessitated by the use of a plane-wave expansion. The simulation cell size

was chosen so that total energies were converged to within 3 × 10−5 hartree. Errors in

nearest-neighbor bond-lengths due to finite system size are less than 5× 10−5 Å. In order to

get good spatial resolution of plots, we took a plane-wave cutoff of 99 hartree for all systems,

well above that needed for convergence of energies to chemical accuracy (<40 hartree) in the

pseudopotential systems. The convergence errors in total energy from the finite plane-wave

cutoff range from 10−7 hartree for SiH4 to 10−6 for C4H8 and the error in nearest-neighbor

bond-lengths, from 10−7 to 10−6 Å. Converged simulation-cell parameters for each molecule

may be found in the supplementary information.

Given a periodic cell, the density and related expectations should suffer boundary effects.

Most notably, whereas the density and its derivatives and the kinetic energy density should

decay exponentially to zero in a finite system, these will approach a small finite value at the

cell boundary. For the cell sizes used, this minimum value of the density is on the order of

10−8 a.u., for systems with maximum densities on the order of an a.u.; a significant distortion

from exponential decay is observable only within two bohr of the location of the minimum.

The ABINIT code outputs density and KE density as a three-dimensional uniform grid

over the periodic simulation cell, with grid spacing determined by the dimensions of the fast

Fourier transform used in the plane-wave code. The real-space grid used to accommodate

a 99 hartree plane-wave cutoff has a resolution of 0.11 bohr, defining the resolution of our

plots. The Laplacian and gradient of density were evaluated numerically on this grid using a

Lagrange-interpolating polynomial method. Color surface plots and contours were generated

using gnuplot and the associated pm3d utility.

IV. RESULTS

First of all, to assess the quality of data within the plane-wave pseudopotential approach,

we show results for basic structural properties for the AE6 test set. Table I shows the mean

relative error (MRE) and mean absolute relative error (MARE) of LDA and PBE pseu-

dopotential predictions of bond lengths for the AE6 test set, as compared to experimental

data. The LDA gives an excellent fit to double and triple bonds and about a 1% over-

binding of single bonds, in line with other results for the LDA.60,79,80 An atypical tendency

to under-bind for C–H bonds leads to a MRE whose accuracy we suspect would not hold for
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larger test sets. The overall tendency of the PBE is to increase bond lengths relative to the

LDA, again the expected trend, which results in a slightly better absolute agreement with

experiment.

LDA PBE

MRE (%) -0.006 -0.087

MARE (%) 0.68 0.53

TABLE I. Performance of pseudopotential DFT calculations for the bond lengths of the AE6 test

set – mean relative error (MRE) and absolute relative error (MARE) in angstroms compared to

experimental data from Ref. 81.

The summary performance of DFT predictions for atomization energies is shown in Ta-

ble II. Again the trend of the LDA is to over-bind with respect to experiment and that of

the PBE to remove much of this error. The LDA does worst energetically for systems with

a double or triple bond: S2, SiO and C2H2O2. Our pseudopotential estimate of the MAE

for the PBE functional on the AE6 test set compares reasonably well with those obtained

from all-electron calculations82,83 using gaussian basis sets. The two approaches agree for

singly-bonded systems while our pseudopotential approximation overestimates the atom-

ization energy of molecules with double bonds by about 10 kcal/mol per double-bond. A

purely numerical calculation on an ultrafine grid80 reports a MAE of 3.0 kcal/mol per bond

for the PBE functional as compared to 3.6 kcal/mol per bond here, indicating that use of

a pseudopotential overestimates binding but perhaps not by as much as indicated by the

gaussian basis-set calculations. In any case, this error is minute in comparison to the large

errors between orbital-free and Kohn-Sham kinetic energies.

Further information about the convergence with respect to the finite size of the cell is

shown in the supplementary material for this paper,84 including converged finite-size cell

parameters for each molecule in Table S-I and finite cell boundary errors for S2 in Fig. S-1.

Table S-II shows per-molecule data from LDA and PBE pseudopotential calculations of the

bond lengths of the AE6 test set, compared to experimental data, and S-III does the same

for atomization energies.
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LDA PBE PBE-ae

MSE 67.1 20.8 12.0

MAE 67.1 23.0 15.1

MARE (%) 16.0 7.4 4.4

TABLE II. Summary errors (mean signed, mean absolute and mean absolute error in percent)

of pseudopotential DFT calculations, and of an all-electron PBE calculation82 for the atomization

energy of the AE6 test set, measured relative to experimental data from Ref. 60. In kcal/mol.
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FIG. 1. (color online) Comparison of all-electron and pseudopotential kinetic energy densities for

the carbon atom. Shown are the radial probability density versus distance from nucleus for the

Thomas Fermi (solid line), von Weizsäcker (dashed), and Kohn-Sham KED (lighter solid) as well

as the quantity uvW (dot-dashed) defined in the text. The equivalent pseudopotential quantity for

each is shown as a dotted line, matching at the cutoff radius 1.498 aB.

A. Electronic structure: atoms

Before showing results for molecules, it is instructive to compare pseudopotential and all-

electron results for atoms. Fig. 1 demonstrates this comparison for the density, its gradient

and Laplacian and the Kohn-Sham KED of the C atom. In order to make a clean comparison

between quantities, we convert the first three functions into equivalent kinetic-energy density

models: τTF ∼n5/3, τvW = |∇n|2 /8n, and uvW =∇2n/4. The last is generated by taking the

functional derivative of τvW with respect to density.
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The pseudopotentials for C are designed so that the pseudo-valence density matches the

all-electron density after a cutoff radius of 1.498 aB. This match is respected for the other

quantities as well. However the pseudodensity and thus τTF continue to match the real

density with reasonable agreement almost to the core-valence transition radius at about

0.8 aB. The other pseudo-quantities deviate from their all-electron equivalents much more

quickly, especially τKS and uvW . In the all-electron case, core orbitals smooth out the

density and thus reduce the magnitude of the ∇2n< 0 peak in the valence shell, and they

add extra terms to τKS. The quantitative impact on ∇2n is quite significant: the region

of peak negative ∇2n (the valence shell charge concentration or VSCC in QTAIM analysis)

is broader in extent and the position of the critical point about 40% closer to the nucleus

than in all-electron calculations. The maximum negative value of ∇2n is typically three

times larger than its all-electron equivalent, with similar errors for the VSCC’s of molecules.

Plots shown below for ∇2n and τKS in molecules do faithfully reproduce the qualitative

topological features of the all-electron case, and are quantitatively accurate at bond centers

and asymptotically; but they must be treated with caution with respect to other quantitative

details.

B. Electronic Structure: molecules

Figures 2, 3, 4 and 5 show contour plots for the density and related quantities for pseu-

dopotential models of several of the molecules of the test set: C3H4, C2H2O2 and SiH4. and

SiO. In Fig. 2, we show in the first row (a) the ground-state pseudo-density n and (b) the

gradient factor |∇n|2 /n that appears in the gradient expansion of τKS [Eq. (8)] and the

von-Weizsäcker KED [Eq. (13)]. The second row shows (c) the Laplacian of the density

∇2n, and the gradient-expansion derived pseudoLaplacian [Eq. (15)] used in metaGGA’s.

The third row shows (e) the Kohn-Sham KED τKS and (f), the Perdew-Constantin mGGA

model for the same. All quantities are plotted in hartree atomic units; all except (a) are

thus dimensionally energy densities. The other figures show subsets of this suite of data, as

identified by subcaptions, for the other three molecules.

Each figure shows a two-dimensional slice through the molecule, with a color surface plot

with values ranging from blue (minimum value shown) to red (maximum). The numerical

scales for the surface plots are shown in the bar to the right of each subplot. Superimposed
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upon these are contour plots. Thicker contour lines for the Laplacian and pseudo-Laplacian

[Fig. 2(c) and (d)] indicate the zero contour; the other four functions plotted are positive

definite. The contours are adjusted to bring out details of bonding regions, and do not

cover the atom cores. Contour values and ranges for the equivalent quantities of Laplacian

and pseudo-Laplacian are identical, as are those for the two KED’s in subplots (e) and (f).

Atoms and bonds in the plane of a plot are indicated by black dots and thick black lines;

projections of out-of-plane atoms and bonds onto the plane of the plot are shown as open

circles and thick dashed lines.

We start out with a discussion of the four direct measures of electronic structure – the

density, |∇n|2 /n, ∇2n, and τ and consider the two approximations ∇2n and τmGGA in

following subsections.

The subject of Fig. 2, C3H4, is perhaps the richest example of the test set, illustrating

several types of bonds. Three hydrogens (H1 to H3) bond with a tetrahedral geometry to a

carbon (C1), which is joined to the second carbon (C2) through a single bond, the second

carbon shares a triple bond with the third (C3), and this is terminated with a final carbon-

hydrogen bond. Our plots show a cut through the three central carbon pseudo-atoms aligned

along the x-axis and one hydrogen on either end; the other two hydrogens extend out on

either side of the far left-hand side of the plane.

The valence particle density (a) shows some features common to each molecule of the

set. As in the single-atom case (Fig. 1), the density tends smoothly to a minimum at the

center of each carbon pseudo-atom. In contrast, the hydrogen atom has no core electrons

and the effect of the pseudopotential is simply to smooth out the cusp in the density at

the nucleus. The highest electron density is thus naturally within bonds – especially the

triple bond (C2−C3). The gradient-squared of the density (b) is nearly zero in regions with

bonding, where the Laplacian (c) shows most structure, and is largest in the pseudo-atom

core and at the edges of the molecule where ∇2n is zero, as indicated by the thicker contour

line in (c). The Laplacian is negative almost entirely along the center except for the interior

of each carbon pseudo-atom. This is a hallmark of covalent bonding in QTAIM analysis47,85

– the center of a bond is a saddle critical point for the particle density, with a negative value

for a covalent bond because of the the buildup of charge between atoms. The value of ∇2n

at the C1–C2 bond critical point is -0.700 and that for C2–C3 is -1.143, reasonable values

for C–C bonds.85 ∇2n is positive in the pseudo-atom core, where the density is at a local
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(a) n (b) |rn|2 /n

(c) r2n (d) r2n

(e) ⌧KS (f) ⌧mGGA

FIG. 2. Functionals of the density for C3H4 within the pseudopotential approximation, showing

cut through the C–C–C bond axis and two hydrogens. In-plane atoms and bonds are shown as

black disks and line segments; specific atoms are identified by labels. Out-of-plane ones shown as

dashed lines and open disks. Contour levels for Laplacian (c) and pseudo-Laplacian of Eq. (15)

(d) are identical, with thick contour at zero. Contour levels for mGGA KED (f) are the same as

those of the Kohn-Sham KED (e).

minimum, and in the classically forbidden region far from the molecule. The Kohn-Sham

kinetic energy (e), is the smoothest and least structured of the measures of the Kohn-Sham

system shown. As it has no simple relationship to the electron density, it not surprisingly

has little apparent correlation with it. It is primarily concentrated in the pseudo-atom cores

with a strong peak at the center of the pseudo-atom. This follows the qualitative trend of

16



(a) r2n (b) r2n

(c) ⌧KS (d) ⌧mGGA

FIG. 3. Functionals of the density for pseudo-C2H2O2, showing cut through the bond plane and

an oxygen, carbon, and hydrogen atom. Details are the same as in Fig. 2.

the KED of all-electron systems,42 except for the absence of shell structure. Otherwise it is

significantly larger in the triple bond than in the single bonds, where it is nearly zero.

Fig. 3 shows Laplacian and KED quantities for the C2H2O2 pseudo-molecule. This has

a trigonal-planar form with a line of symmetry through the center of the molecule. The

oxygens share polar double bonds with the carbons, and the carbons form covalent single

sp2 bonds with each other and the hydrogens. There are two lone pairs of electrons present

on each oxygen. The plot shows one oxygen, carbon and hydrogen, and part of the C–C

bond at the bottom of the plot. The single C–C and C–H bonds are very similar to those

in C3H4, so that the scale is adjusted to favor the oxygen atom which has a much larger

density and KE density.

The C–O bond, being polar, exhibits several features not seen in C3H4. The density

gradient is nonzero in the bond – the push of density towards the more electronegative

oxygen causes a local saddle point in the gradient on the oxygen side. VSCC lobes due to

two sets of unpaired electrons are identifiable on the oxygen, but none on the bond axis, a
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(a) |rn|2 /n (b) r2n

(c) ⌧KS (d) ⌧mGGA

FIG. 4. Functionals of the density for pseudo-SiH4, showing cut through a plane containing a Si

atom at center and two tetrahedrally bonded hydrogens. Details are the same as in Fig. 2. similar

to C3H4.

reflection of the change in character of the bond. However, the VSCC lobes of peak negative

∇2n (a) around the carbon atom are similar to those of the pure covalent bond. The kinetic

energy density, as for C3H4, is concentrated in atom cores with little contribution from

within the bond, and thus the bond’s polar character causes no observable change from that

of the covalently bonded system.

Next we consider SiH4, a nearly spherical molecule closely resembling a filled-shell atom

in structure. It exhibits straightforward tetrahedral bonding, with sp3 hybridization of the

silicon orbitals and covalent Si-H bonds. Fig. 4 shows a cut through a plane containing three

18



FIG. 5. Laplacian of the density for pseudo-SiO, showing cut through the bond axis. Details

same as for Fig. 2(c)

of the atoms (H, Si, H) of the pseudo-molecule. A pair of hydrogen atoms is located above

and below the plot plane as indicated by the open circles.

An item of interest is the comparison between τKS (c) and |∇n|2 /n (a). Recalling that

the von Weizsäcker KED [Eq. (13)] is |∇n|2 /8n, we set the color scales of (a) and (c) to

an exact 8:1 ratio so that a comparison of τKS relative to τvW can be made. (For the

other molecules, such a scheme wipes out almost all information about the gradient of the

density, because τKS is much larger than τvW .) Here it is apparent that the Kohn-Sham

KED reaches the von Weizsäcker limit everywhere in the vicinity of a hydrogen atom. This

seems reasonable in that each hydrogen atom has a single occupied orbital, and is in a sense

a paradigm for the von Weizsäcker limit in fermionic systems. The Laplacian for the Si–H

bond (b) heavily emphasizes the H atom because of the more dispersed nature of Si valence

orbitals as compared to those of H.

A final example from the test set is SiO, which features a double bond that should be

polar covalent given an electronegativity difference of 1.6. Fig. 5 shows a surface plot of the

Laplacian of the density for a cut through the pseudo-molecule Si–O bond. Other quantities

are available for SiO in the supplementary material. The valence electrons that participate

in this bond heavily favor oxygen, the more electronegative atom, leaving the silicon atom

hypovalent.81 The zero contour (thicker contour) of ∇2n is of interest for this system as it

indicates a bond topology qualitatively different from the other cases. The orientation of the

zero contour, crossing the bond perpendicularly to the bond axis, indicates that ∇2n>0 in

the bond center – specifically in the region between the two closed contours surrounding Si
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and O respectively. This indicates in QTAIM analysis that the bond is ionic; the maximum

value of∇2n=0.194 is comparable to that of NaCl.85 There is essentially a catastrophe in the

topology of the zero contours whereby the Si–O bond cannot be mapped to a polar-covalent

geometry, such as the C–O bond in C2H2O2, without breaking and rejoining contours.

Surface plots for the last two molecules of the AE6 test set (S2 and C4H8) are not shown

in this paper but are available in the supplementary data.84 Although they repeat themes

already discussed for the other molecules, they have individual characteristics that should

benefit from further investigation. The triplet ground state of S2, with a double bond and

two lone pairs per atom, is similar in structure to C3H4 and C2H2O2. Nevertheless, the

KED shows interesting structure near the valence shell peak and in the bond. Cyclobutane

(C4H8) is a cyclic molecule with a ring of four carbons and two hydrogens bonded to each.

Unique to this system is the low-density region inside the carbon ring where the gradient of

the density is zero but the Laplacian and KED are not. This topology is similar to that of

the bond-center of a nearly dissociated molecule, and not found elsewhere (at equilibrium

geometry) in the test set. Such regions have been of interest for QTAIM analysis47 and may

provide a glimpse into how well approximated KED’s perform in predicting binding.

C. Gradient expansion for the Laplacian

The subfigure (d) of Fig. 2 and (b) of Fig. 3 show the pseudo-Laplacian ∇2n [Eq. (15)]

which approximates the Laplacian in terms of the electron density, its gradient and the

kinetic energy density. Up to a small correction proportional to |∇n|2 /n, this quantity

is simply 6(τKS−τTF ); given that τTF is a power of the particle density, it interprets the

Laplacian as roughly a measure of the difference between the kinetic energy and particle

densities. As seen especially in Fig. 2, our data support this qualitative picture. The

Laplacian (c) is positive and large in the carbon pseudo-cores, precisely where the kinetic

energy density (e) is largest and the charge density (a) is at a minimum; it is most negative

in the bond regions where the situation is reversed. As a result, ∇2n, plotted in (d) with the

identical set of contours as ∇2n, captures the basic qualitative trends of this quantity, and

on average, its relative magnitude in each bond. In contrast, the zero contour of ∇2n and

∇2n, shown as thicker black contours, have qualitatively different topologies. However, it

seems reasonable to expect that, given their qualitative similarity, they could produce similar
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results if used as parameters in a functional for an integrated quantity such as the exchange

energy. Notably, the contour of ∇2n=0 closely matches the shape of the 1/2-contour of the

LOL, a close equivalent when density gradients are small.42

A check on the quality of this approximation can be obtained by the sum rule for ∇2n.

Since it is an exact derivative, the integral of ∇2n over the entire unit cell should be exactly

zero. While the integral for ∇2n is zero to within round-off error, that for ∇2n ranges from

about 0.1 hartree for SiH4 to about 20 hartree for the largest molecules. This is a reflection

of the very large difference between the integrated Kohn-Sham kinetic energy and that of the

Thomas-Fermi approximation. Energy densities can differ by several orders of magnitude in

the pseudo-atom cores, an effect beyond the scale of our surface plots, but clearly shown in

the log plots in Sec. IV E.

D. The mGGA model for the kinetic energy density

The final quantity for which we have made surface plots is the mGGA orbital-free KED.23

It is shown for three molecules, subfigure (f) of Fig. 2 and (d) of Fig. 3 and 4, with contours

and color scale that duplicate those of the Kohn-Sham KED. The agreement between the

two is generally not good. For C3H4 (Fig. 2) the mGGA, like the true KED, peaks in the

pseudo-atom core, but is much smaller in magnitude. It is too large in the center of bonds,

particularly the C2–C3 multiple bond. The most striking difference is the dramatic drop

in magnitude in the mGGA in the region of peak valence charge concentration surrounding

each carbon atom. The shape of these zeroed-out regions correlates with the VSCC lobes

of the Laplacian accentuating regions of peak density. The identical pattern shows up in

C2H2O2 (Fig. 3), with the KED zeroing out in VSCC regions for both oxygen and carbon,

almost perfectly matching the contours of ∇2n for the two lone oxygen pairs. This pattern

occurs around the carbon atoms of C4H8, the two lone pairs of each S atom in S2 and of the

oxygen atom of SiO, indicating a global trend.

SiH4, shown in Fig. 4, is a case in which the mGGA works. In this case, much of the

system is already very close to the von Weizsäcker limit, which the mGGA is designed to

capture exactly. Moreover, errors in the mGGA in different regions, such as in the Si atom

core and near the hydrogen atom, almost exactly cancel, leading to a qualitatitively much

better match of the mGGA to the exact KED than for the other five cases. (Notably, the
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FIG. 6. (color online) The enhancement factor FS = τ/τTF for the Kohn-Sham kinetic energy

density (solid black line) and various orbital-free models, within the pseudopotential approximation,

versus position along the bond axis z for S2. Also shown is FS for uvW =∇2n/4. The Thomas-

Fermi result, trivially one, is shown as a dotted line. Location of the sulfur atom noted by solid

dot.

Si pseudo-atom lacks the strong VSCC lobes associated with unusually low mGGA KED in

C3H4 and C2H2O2.)

E. Plots through bond axes

In this section, we focus on the quantitative comparison of various models for the kinetic

energy density, for which linear plots are convenient. We plot the enhancement factor FS =

τ/τTF , which avoids excessive differences in scale between atoms. We are also interested in

the measure of electron localization α [Eq. (16)], that can also be thought of as the Pauli

contribution to the enhancement factor.

In Fig. 6 we show FS of several model KED’s for the pseudopotential approximation to

the disulfur molecule S2 as a function of displacement z from the molecule center along the

bond axis. The focus is on a single sulfur pseudo-atom, marked by the black dot on the

FS =0 axis; the molecule has a mirror-symmetry plane through the bond center at z=0. The

Thomas-Fermi result is the horizontal line FS =1. The von Weizsäcker enhancement factor,
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τvW/τTF =5p/3, is nearly zero in the bond region and again at the density peak associated

with the lone pair behind the bond. The related expectation uvW has an enhancement factor

equal to 10q/3. It is negative in the covalent bond and the lone-pair behind the sulfur atom,

and positive in the pseudopotential core and asymptotically.

Both the gradient expansion τGEA and the more sophisticated τmGGA are positive definite,

in agreement with the required behavior of τKS. Each is at a minimum in the bond and lone-

pair regions, reach local maxima in the core and tend to ∞ asymptotically. However, τKS

is smooth and featureless, lacking the oscillatory structure of the gradient and Laplacian

of the density. The mGGA, where it differs from the GEA, does a slightly worse job in

describing the Kohn-Sham value. In the lone-pair region around z= 3 a.u., it suffers from

the extinction effect seen in the surface plots for C3H4 and C2H2O2. Here, uvW/τTF <−1,

equivalent to q <−0.3, which proves to be a significant criterion for this problem to occur

in the mGGA. Overall, the mGGA fares better for S2 than for other molecules, perhaps

because this error in its enhancement factor is cancelled by a reverse effect at the center of

the double bond. The electron-localization measure α, not shown in Fig. 6, is available in

Fig. S-1 of the supplementary material.84

Fig. 7 shows enhancement factors for pseudo-SiO. As noted previously, this is the most

polar molecule in the test set and gives a structural contrast to the more covalent molecules.

As such we focus on τvW and uvW as stand-ins for the gradient and Laplacian of the density,

and related variables p and q, as compared to the Kohn-Sham KED. The gradient squared

of the density (∼ τvW ) does not vanish in the bond, as the density steadily increases from

the Si valence shell to the O. The Laplacian (∼uvW ) is positive at the center of bond, the

QTAIM indication of ionic character. It is also instructive to plot the electron localization

measure α, shown as the lighter (cyan) solid line in Fig. 7. In the SiO bond, this measure

approaches 0.5, equivalent to an ELF of 0.67, which is the value approached by the other

double bonds in the test set. A more telling structure occurs behind the Si atom, where α

falls nearly to zero over an extended region of space. The value α∼0 (ELF of one) indicates

that there is at most one occupied orbital so that τKS reaches von Weizsäcker limit almost

perfectly. It also coincides with an abnormally low minimum in τKS. This probably is a

reflection of the hypovalent character of Si in this molecule; however restricting the plot to

the bond axis also eliminates the contribution of two π-bond orbitals to the KED.

Fig. 8 shows enhancement factors for the C3H4 pseudo-molecule, for points through the
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FIG. 7. (color online) The enhancement factor FS =τ/τTF for the Kohn-Sham and von Weizsäcker

KED’s, compared to the difference between the two, α, versus position along the bond axis z for

pseudo-SiO. Also shown is FS for uvW ∼ ∇2n and the mGGArev discussed in Sec. V C; dotted line

indicates the Thomas-Fermi result. Location of each atom on bond axis noted by a solid dot.

axis joining the three C atoms and the on-axis terminal hydrogen (H4). We plot FS on a log

scale to focus on the situation at low densities, characterized by the carbon pseudo-atom

cores and the asymptotic region far from the molecule.

The asymptotic behavior of the Kohn-Sham and other KED’s is dominated by linear trend

of log (FS) to infinity far from the molecule (|z|> 5). This is consistent with exponential

decay of the charge density – and with τTF ∼ n5/3 decaying more rapidly than any other

model. The three orbital-free models shown – the von Weizsäcker model, the GEA and the

mGGA – have roughly the same decay constant, and for the most part match up quite well

with the Kohn-Sham value. Interestingly, the GEA is the best predictor of τKS, performing

better than the mGGA almost everywhere. The von Weizsäcker form almost matches the

Kohn-Sham case for the asymptotic edge near the lone hydrogen (z>5) – an indication that

a single frontier orbital dominates the behavior of τKS in this region. On the other edge of

the bond axis (z<−5) τKS is roughly twice as large as τvW . This area sees the intersection

of three frontier orbitals, one from each of the three C–H bonds that form tetrahedrally off

the central bond axis. This is enough to detach τKS from the single occupied-orbital limit.

An interesting story also occurs in the pseudopotential cores of the carbon atoms, with
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FIG. 8. (color online) The enhancement factor FS = τ/τTF , plotted on a log scale for various

kinetic energy densities versus position along the carbon-carbon bond axis z for the C3H4 (propyne)

pseudo-molecule. Location of atoms on axis noted by a solid dot. The Thomas-Fermi limit FS =1

is shown as dotted line.

similar behavior seen for other atoms that have had core electrons replaced by pseudopoten-

tials. Although this is arguably the least physical region of the molecule, it does represent

one of rapidly varying low density, but negligible density gradient, a topology that occurs in

noncovalent bonds and the interstitial regions of solids. Here again the Kohn Sham KED is

much larger than the Thomas Fermi value – as noted before, the charge and kinetic energy

densities of our pseudopotential systems observe a kind of complementarity, with one being

large where the other is small. Of the three model KED’s, it is the GEA that reproduces the

KS value most accurately. The von Weizsäcker model peaks at the edge of the core region

where |∇n|2 is large, disappearing in the center of the pseudopotential core where it goes to

zero. The GEA here closely follows ∇2n which has a local maximum in the core and thus

the correct qualitative behavior; surprisingly, the result is even quantitatively accurate. The

mGGA trends more with τvW , and is severely deficient in magnitude.

It is also useful for assessing approximate KED’s to plot the approximation to the electron-

localization factor α obtained within a given model τapprox:

αapprox = (τapprox − τvW )/τTF . (18)
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FIG. 9. (color online) The electron localization measure αapprox = (τ − τvW )/τTF , plotted on a

log scale for various kinetic energy densities versus position along the carbon-carbon bond axis z

for the C3H4 (propyne) pseudo-molecule. Location of atoms on axis noted by a solid dot. The

Thomas-Fermi value α=1 is shown as dotted line. The mGGArev is defined in Sec. V.

Focusing again on C3H4, which has the richest electronic structure of the test set, we plot

in Fig. 9 the α for several model KED’s on a log scale versus position z along the central

bond-axis. For the exact Kohn-Sham τ , we find three regions with α< 1, an indication of

electron localization – the two carbon-carbon bonds and single terminating hydrogen atom.

The other limit, α�1, occurs inside the pseudo-atom cores and asymptotically. The degree

of localization of each small-α region is consistent with the character of that region. It

is weakest (α ∼ 0.5) for the triple bond between the second and third carbons, stronger

(α∼0.3) for the single bond between the first two carbon atoms and extreme (α∼0.05) for

the final hydrogen atom where only a single orbital is occupied. As expected from the other

figures shown, no approximate model does very well in these important situations.

Two subtle order-of-limits issues come into play asymptotically. The approximate GEA

and mGGA both do considerably worse in predicting the asymptotic trend of α in Fig. 9

than they do the enhancement factor of τKS, in Fig. 8. α measures a difference between two

models of τ , and this difference is an order of magnitude smaller than the value of either

model far from the molecule. It is thus a more sensitive probe of error in orbital-free models.

Secondly, while the GEA has the correct asymptotic behavior (although consistently three

times too large), the mGGA has incorrect behavior as |z| → ∞. To understand this, note

that α asymptotically can tend to anything from 0 to∞. By the IP theorem, the numerator
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in Eq. (16) must vanish as the system tends to a one-electron state and τKS→τvW , but the

denominator also vanishes, as n5/3, leaving the ratio undetermined. While the asymptotic

value of α is one in the mGGA, for almost all the cases we have tested (SiO seems an

exception) the observed limit is infinity. This perhaps indicates only that τTF is an infinitely

bad predictor of τPauli for a region in which the Thomas-Fermi approximation fails.

V. ANALYSIS

A. The GEA and asymptotic behavior of the KED

It is worth analyzing in some depth what happens in the region of asymptotic decay far

from the molecule, as demonstrated especially in Fig. 8, and to some degree in Fig. 6. It

is striking that τKS and τGEA match each other almost perfectly in this limit, within 3% at

higher densities and no more than 15% at the lowest densities we can obtain. Consequently

∇2n and its GEA-level approximation, ∇2n, also agree almost exactly for this region. This

close agreement occurs for all systems studied, for example, for SiO as one either moves

away from the hypovalent Si atom or from the nearly filled O atom. This is quite surprising

since the GEA is designed for a completely different situation, that of the slowly varying

electron gas, which is presumably unsuitable for a classically forbidden region of space.

Formally, the regime of validity of the slowly varying electron gas is for systems for which

the inhomogeneity measures p and q are everywhere� 1. Obviously this criterion cannot be

exactly met for a molecule, but one might expect that, in any extended region where these

parameters are small, τKS should approach τGEA. In fact, the opposite proves true: regions

of space like covalent bonds, where p and q are consistently smallest, are where the GEA

does the worst, while the classically forbidden asymptotic region, where both p and q are

much greater than one, is where it performs best. (To compare with the quantities shown in

Figs. 8 and 9, recall τvW/τTF =5p/3 and uvW/τTF =10q/3.) Thus we have to conclude that

some other phenomenon than the physics of the slowly-varying electron gas must explain

the agreement asymptotically.

It is not hard to find one, at least qualitatively. This region is characterized by an

exponential decay of the density, n∼exp (−2kr), where k =
√

2I gives the decay rate of the

frontier orbitals, which have the highest eigenenergy, equal to the ionization potential I, and
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tunnel farthest into the vacuum. As a result, the Kohn-Sham KED should behave as k2n,

decaying at a rate proportional to the local particle density. In contrast the Thomas-Fermi

KED varies as k2Fn with kF ∼n1/3. The enhancement factor FS needed to correct τTF to the

Kohn-Sham value then scales as k2/k2F , causing the exponential growth seen in Figs. 6 and 8.

It is notable that the second-order gradient expansion reproduces this scaling behavior. The

inhomogeneity variable p is equal to (k/kF )2 for any exponentially decaying particle density

– and q is also, up to a correction due to curvature. The form of τGEA [Eq. (8)] gives its

enhancement factor the correct limiting behavior as r→∞. In contrast, the fourth-order

correction has terms which scale like p2 = k4/k4F , which blow up exponentially as r→∞.

And a GGA, a closed expression summing over all orders of the gradient expansion, is not

necessary to capture order-of-magnitude trends and can actually be less accurate than the

second-order GEA.

This is in stark contrast to what happens for the exchange energy: the energy density

associated with a single frontier orbital behaves asymptotically as ( 1
2r

)n while the LDA

scales as kFn. Applying the second-order gradient expansion to the LDA creates an exchange

energy density that scales incorrectly as (k2/kF )n and a potential that diverges exponentially.

A GGA is needed to produce an accurate exchange energy and a potential that is finite (if not

with the correct 1/r form.) This contrast between the correction needed for LDA exchange

∼ n4/3 and Thomas-Fermi KED ∼ n5/3 contradicts the conjointness conjecture in its usual

formulation – the same form of enhancement factor cannot be optimal for both cases.

B. Revisiting the mGGA

It is not hard to diagnose why the mGGA KED has difficulty modeling the molecu-

lar bond. The mGGA was tested primarily for closed-shell atoms and several model one-

dimensional systems.23 The most serious defects of the mGGA seen in the current study are

associated with regions of of joint {p, q} space that these systems do not access. The issue

of vanishing KED is strongly correlated with regions where p∼ 0 and q is negative and of

the order of unity, a combination that does not happen with atoms.86 A second problem is

the mGGA’s large underestimate in the pseudopotential core where p∼ 0 and q >> 0; in

atoms, a large q > 0 is associated with finite and normally large p, and occurs primarily in

the asymptotic region far from the atom where both tend to ∞.87 While both these errors
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FIG. 10. (color online) Kinetic energy density enhancement factor FS(p, q) for orbital free kinetic

energy density models, plotted versus gradient-expansion parameter q for p = 0. Thomas-Fermi

limit (FS = 1) indicated by dotted line. Gray shaded region shows values of F disallowed by the

von Weizsäcker bound given by FS =0.

lead to underestimates of the KE, the former is a failure to model the KED in the valence

shell of an atom or molecule and should have a large impact on the model’s ability to predict

molecular structure.

The common thread here is the behavior of the KED as a function of q for values of

p� |q| and near to zero. In Fig. 10 we plot the p = 0 limit of the KED enhancement factor,

FS(0, q), for several KED models as a function of the scale-invariant factor q. By definition,

FS = 1 for τTF , as shown by the dotted horizontal line. Likewise, the von Weizsäcker KED

for p = 0 is zero for all q. The FS of the fourth-order gradient expansion approximation

reduces to 1 + (20/9)q + (8/81)q2. This is nearly indistinguishable to the second-order

gradient expansion, linear in q, because the fourth order coefficient is so small. The model

of interest is the solid red line, that of Perdew and Constantin. It starts off with the gradient

expansion and applies further constraints. First, the von Weizsäcker bound requires that

the enhancement factor be greater than FvW , in effect greater than zero. For q < 0 the

KED must transition fairly quickly from GEA-like behavior to zero, as the GEA breaks this

constraint at q∼−0.45. The second imposed limit is that the enhancement factor goes to

1 + FvW in the limit of large positive q, seen for example in our data in pseudo-atom cores,

but not shown in Fig. 10.

The flaws in the mGGA seem to be caused by its implementation of these constraints.

The most important, the extinction of KED for negative q and small p, is clearly the result of
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a transition from τGEA to τvW that zeroes out the KED for q<−0.30, a value of q achievable

in the vicinity of an atomic lone-pair or a covalent bond, especially in a pseudopotential

system. This transition scheme implicitly invokes an order of bounds as follows:

τGEA ≥ τKS ≥ τvW (19)

That is, it seeks an interpolation between the two limiting cases, which leaves very little

room for smoothing out the transition.88 It makes more sense to try an interpolation above

the two limiting cases, assuming a constraint

τKS ≥ max(τGEA, τvW ), (20)

demonstrated by the blue dashed curve in Fig. 10. Such a transition is smoother and

thus more physically appealing, and has the effect of enhancing rather than reducing the

KED in high-density, low-q, regions. A smoother transition to zero should also produce a

smoother kinetic energy potential which is important for a self-consistent density functional

minimization. Abrupt changes in the enhancement factor of a Laplacian-based density

functional can be disastrous when taking functional derivatives with respect to ∇2n, since

these involve derivatives of the density up to ∇4n.20

The mGGA model can also be improved by relaxing the large-q cutoff that it imposes.

As seen especially in Fig. 9, the mGGA clearly overcorrects for the regions where q�1, in

the pseudo-atom core and asymptotically. In both cases, the second-order GEA is a better

approximation to τKS and there is less motivation for a GGA correction to it than is the

case for exchange.

C. Revision of the mGGA and application to atomization energy

We propose to make a revised mGGA following two simple points: imposing the

von Weizsäcker lower bound by means of Eq. (20) and relying on the second-order gra-

dient expansion otherwise. This satisfies the constraints for the two main limiting cases

of the KED – that of delocalized electrons with slowly-varying density and that of strong

electron localization, and otherwise keeps physically reasonable behavior for regions of high

inhomogeneity – pseudo-atom cores and asymptotic decay. We first define a measure of elec-

tron localization z that depends upon the difference between GEA and vW enhancement
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factors for the KED:

z = FGEA − FvW − 1 =
20

9
q − 40

27
p (21)

The factor z can be thought of as a poor-man’s electron localization factor – an orbital-free

expression for the α used to describe electron localization in metaGGA’s and from which the

ELF is constructed. We then look for the simplest possible asymptotic transition between

FGEA and FvW that imposes the von Weizsäcker bound, which occurs for z≤−1. Adapting a

form recently used to construct a ∇2n-based exchange function86 results in an enhancement

factor

FmGGArev
S = FvW + 1 + z

{
1− exp

(
1

z

)
[1−H(z)]

}
(22)

where H is the Heaviside step function. This is shown in Fig. 10 as a function of q for p=0.

The limiting behavior of this correction can be characterized by three cases, roughly

analogous to those defined by the ELF:

1. If z → 0, then both p and q must become small. The density is slowly varying, and

close to the homogeneous gas limit, typical of metallic bonds. In this case, FS goes to

the gradient expansion form:

FS∼FvW + 1 + z = FGEA (23)

2. If z<0, this means that either q becomes negative or p→ +∞ with a finite q. In this

case, FS approaches the von Weizsäcker limit:

FS → FvW +O(1/z). (24)

This is the proper description of a region with strong electron localization, such as a

covalent bond.

3. If z�0, we get the same result as for z small:

FS → FGEA. (25)

The primary situation for which this limit applies is an exponentially decaying density,

for which p∼q →∞ and z → 20q/27.

The final case also describes a situation with q� 1 and finite p, seen here in pseudo-atom

cores, and in the transition between atomic shells in real atoms.
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Also of interest for real atoms is the limit q, z→−∞ which occurs near the nucleus and

is caused by the cusp in the electron density. The functional derivative δτ/δn(r), used for

the self-consistent determination of the charge density in OFDFT, must tend to Z/r near

the nucleus so as to cancel the −Z/r contribution from the electron-nucleus potential. This

behavior is exactly given by the functional derivative of τvW , and thus by τmGGArev as well.

The leading correction to τvW is of order 1/q; its functional derivative is known to be finite,89

but it can cause a sizable error in the cusp of τ at the nucleus.

To evaluate the effects of this revised mGGA, we plot its enhancement factor for SiO

in Fig. 7 and its approximation to α using Eq. (18) for propyne in Fig. 9. As shown in

the latter, the mGGArev by construction follows the GEA curve almost everywhere in

space – except for regions of electron localization, where it enhances the magnitude of the

KED considerably over the GEA. It is thus an improvement over both GEA and mGGA.

However the mGGArev overcorrects for situations of strongest electron localization. For the

single C1-C2 bond of propyne, with a small α of 0.3, the mGGArev gives a modest average

overcorrection. It severely overcorrects for the most localized situations, where α<0.1: near

the terminal H4 atom in propyne and behind the hypovalent Si atom in SiO. This problem

may be ameliorated by tinkering with the rate of transition between GEA and vW limits

in Eq. (22) – in the current form (Fig. 10), it is probably too slow. One region that shows

little change from the mGGA is behind the C1 atom (z∼−4) in Fig. 9. This is not a region

of electron localization since it feels the overlap of three neighboring C–H bond orbitals so

the model has no criterion to correct for the error of the GEA.

In Table III we show errors with respect to the integrated Kohn-Sham KE averaged over

the test set, as a measure of the overall quality of the models discussed in this paper. A net

trend across all models is the underestimation of the KE by roughly 10%. Unfortunately,

by the virial theorem, the total KE is equal in magnitude to the total energy, which varies

from 3.5 hartree for the valence shell of SiH4 to 31 hartree for that of C2H2O2. Absolute

errors in KE can thus be as large as several hartrees. While the second-order GEA is a

modest improvement over the Thomas-Fermi result, the mGGA, in attempting to address

the limitations of the GEA, actually loses some of the ground gained by it. The revised

mGGA introduced here is more consistently an improvement. One situation in which it is

not, SiH4, results in the maximum RE being three times the MARE, and an overestimate,

not an underestimate. As shown in Fig. 4, this molecule is marked by a substantial region
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TF GEA mGGA mGGArev VT84F

MRE -0.162 -0.112 -0.124 0.0021 0.229

MARE 0.162 0.112 0.139 0.0873 0.229

Max RE -0.202 -0.159 -0.178 0.233 0.550

TABLE III. Mean relative error (MRE), absolute relative error (MARE) and maximum relative

error (Max RE) for various orbital-free estimates of the Kohn-Sham kinetic energy.

System Exp. KS VT84F mGGA- mGGA GEA TF

rev

SiH4 322.4 315.9 -178.1 -14.9 57.2 -183.8 -174.9

S2 101.7 124.4 140.9 17.7 -101.5 -72.1 -100.6

SiO 192.1 205.4 -4.8 -4.5 -169.3 -97.6 -213.7

C2H2O2 633.4 680.6 476.6 240.2 -422.8 -119.0 -416.6

C3H4 704.8 726.6 581.9 572.3 24.2 115.9 35.7

C4H8 1149 1175.3 1072.4 811.8 142.6 96.0 -53.3

MAE – 23.0 182.1 246.8 595.5 560.7 671.1

TABLE IV. Atomization energies for the AE6 test set in kcal/mol. Shown are experimental values

from Ref. 60, self-consistent Kohn-Sham results, and results of orbital-free models evaluated with

the Kohn-Sham density. Also shown is the mean absolute error with respect to experiment.

that is near the von Weizsäcker limit, α ∼ 0, for which the mGGArev overestimates the

KED. This again indicates a need for further exploration of how to manage the transition

from delocalized to localized electronic systems.

To further characterize the quality of our revised mGGA, we calculate the atomization

energies of the AE6 test set. This helps gauge the extent to which systematic errors in the

total energy are cancelled out in taking energy differences. This is done not self-consistently,

using conventional PBE Kohn-Sham densities and bond lengths (Table I). The results are

shown in Table IV. First we note how far the Thomas-Fermi atomization energy is from

experiment, with an MAE ten times worse than the LDA and over thirty times worse than

the PBE Kohn-Sham models. It almost always fails to predict binding, at best giving a

marginal binding energy. The second-order GEA does provide a modest improvement over
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the TF case, but again shows severe under-binding. By respecting the von Weizsäcker lower

bound, the mGGA ought to significantly improve GEA atomization energies. Instead it

performs worse for the majority of the test set, and in some cases worse than Thomas-Fermi.

In constrast, the mGGArev does show the expected improvement over Thomas-Fermi and

GEA. It binds all but one molecule, SiH4, the standout worst case in Table III, and the

one case that the mGGA binds. On average it removes 60% of the AE error of the TF and

for one or two systems almost approaches the LDA in quality. However its MAE is still an

order of magnitude worse than the PBE and a factor of three worse than the LDA.

To put these results in perspective, we perform calculations for the VT84F,18 a nonempir-

ical GGA for the kinetic energy. This applies the key constraints of the mGGA – respecting

the gradient expansion in the small-p limit and requiring the von Weizsäcker constraint for

all p; in addition it enforces the non-negativity90 of the Pauli potential, δτPauli/δn(r) ≥ 0.

The VT84F total kinetic energy (Table III) is by a large margin the least accurate of all

models considered, including the Thomas-Fermi model. However it has the overall best

prediction of atomization energies (Table IV), and fails significantly only for SiH4. It may

be hard to enforce both the GEA and the constraint τ > τvW with only access to |∇n|2 as a

variable and not overestimate the total KE. However enforcing constraints on the potential

– an infinitesimal energy difference – seems to help for predicting accurate finite-energy dif-

ferences. It is reassuring that the simple metaGGA we present here is comparable in quality

to the VT84F without (as yet) taking the potential into consideration.

VI. DISCUSSION AND CONCLUSIONS

We present highly converged DFT calculations for the AE6 test set of molecules, within

a plane-wave pseudopotential approach. We use these to visualize the Kohn-Sham kinetic

energy density and related quantities that are ingredients of modern DFT’s, specifically

metaGGA models for the exchange-correlation energy, and orbital-free models for the KED.

By providing a highly accurate map between density and kinetic energy density for physically

reasonable model systems, our data enables the use of visualization techniques employed

in the qualitative analysis of electronic structure to test approximations to this critical

ingredient for DFT. The pseudopotential method works especially well in characterizing the

classically forbidden region far from nuclei, and is reasonable in its description of bonds; its
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main limitation is the loss of knowledge of the core region, most importantly, the character

of the core-valence transition that plays a key role in determining bond lengths.

The choice of the AE6 test set does not break new ground in visualization of electronic

structure, but does an excellent job of illustrating many of the lessons learned from QTAIM

and other visualization approaches, particurly the role of ∇2n in understanding valence

electronic structure and the KED in measuring electron localization. The SiO molecule is

perhaps of most interest structurally, given the relationship between the hypovalent character

of Si and the strong indication of electron localization in the Si valence shell; also of interest

is the identification of the bond as ionic rather than polar covalent by QTAIM criteria.

A major finding of the paper is the surprising success of the gradient expansion expression

for the Kohn-Sham KED. The gradient expansion approximation ∇2n∼ 6(τKS−τTF ) used

in modern metaGGA’s is at least qualitatively very good – ∇2n to some degree picks up the

complementary behavior of the kinetic and particle densities, and detects regions where one

is larger than the other. Rather surprisingly, this approximation is the most accurate in the

lowest density regions, in the classically forbidden regions far from nuclei. This is because

it has the exact asymptotic behavior with respect to distance from nuclei and not too bad

quantitative values for all systems considered.

The asymptotic exactness of the GEA, although not news, is worthy of note since it

points out the limitations of the idea of conjointness between exchange-correlation and

kinetic energy functionals, both as a conjecture and as a design philosophy. Lessons learned

in designing functionals for the former case do not necessarily transfer over to the latter.

The very different behavior of the gradient expansion for exchange in the asymptotic limit

necessitates a fundamentally different functional form for exchange energy GGA’s and kinetic

energy GGA’s. The gradient expansion of the former must be controlled by some form of

cutoff at large values of reduced density gradient p while that of the latter, as best we can

see, is better off mostly untouched.

A second point underscores the difficulty in building orbital-free models of the KE – the

gradient expansion behaves worst in describing “slowly varying” regions of space – where

the inhomogeneity parameters p and q used to describe it are small. For the KE density,

there seems not to be a good “semilocal” approximation for real systems – one cannot rely

on p and q being small locally to predict that the gradient expansion should hold locally,

in contrast with the XC energy density. When taken separately, exchange and correlation
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energy densities have similar problems to those we see here for the KED; however, there is

a notable cancellation of error between the two that makes semilocal approximations work

better than might be expected.91 What the KED lacks then is a companion mechanism such

as correlation by which deviations from the GEA can be cancelled out. This failure does

not contradict the idea of the gradient expansion. The limit in which it is exact is that of

globally small p and q, with the result of delocalized electronic orbitals almost everywhere,

a condition that is not met by any molecule.

The other major finding of this paper relates to the Perdew-Constantin mGGA model

of the kinetic energy density. We have found a number of problems which degrade its

performance with respect to the Thomas-Fermi model. Its description of the KED in regions

of high inhomogeneity and low density are less effective than the simpler second-order GEA.

More importantly, it is subject to an “extinction” effect for large negative values of the

reduced Laplacian q, causing it to plummet to zero in regions of covalent bonding. This

effect is caused by the particular form used in the imposition of the constraint τ > τvW ,

which becomes important in regions of electron localization, such as covalent bonds. It is

aggravated by the use of pseudopotentials, which exaggerate the magnitude of negative-

∇2n or VSCC regions in comparison to their all-electron counterparts. The correlation

between this effect and electron localization seems responsible for the poor binding seen

with this model. The formation of bonds can reduce electron localization and thus reduce

the extinction effect relative to the isolated atom case, leading to a lack of error cancellation

in taking energy differences. Notably, the cases in which the mGGA gives improved binding

energies, SiH4 and C4H8, are the ones with exclusively single bonds and thus roughly the

same degree of electron localization in molecule and atom.

This work points to several avenues of future research. The mGGArev form we propose

for the KED is the simplest, not best, form that can fit the constraints imposed in Sec. V

and should perhaps be used not as a finished functional but as an indication of how to

proceed in developing one. Particularly, the use of an “orbital-free ELF”, using derivatives

of the density to approximate the ELF and its ability to distinguish between different kinds

of bonds, seems worthy of further investigation. However, in its current form, our model

regresses on the mGGA’s capacity to handle covalently bonded hydrogen atoms and other

situations of nearly perfectly localized electrons. Notably, our proposed constraint, that

τ > τGEA when τ → τvW , is not universal – it fails for the 1s shell of atoms, as shown in

36



Ref. 23. Not surprisingly, the mGGA functional, with τ <τGEA in this limit was arrived at

partly through the consideration of this case. However our constraint does appear to be valid

for any other shell of an all-electron atom – and it is responsible for our current revision’s

relative success in predicting binding energies of the AE6 test set. Any more sophisticated

model will thus have to ameliorate somehow the problems for hydrogen encountered by the

mGGArev while keeping its nice features for bonding.

A second notable issue is the large deviation of ∇2n and τKS obtained with pseudopo-

tentials from their all-electron values just inside the pseudopotential cutoff radius. As noted

earlier, the resulting exaggeration of the negative value of ∇2n in VSCC’s contributes to the

failure of the mGGA to predict binding in pseudopotential systems. But, given the sudden

switching behavior that the mGGA shows for negative q (Fig. 10), it is quite possible that

with the smaller q values of all-electron systems, this effect would not be an issue. This raises

the question of how much pseudopotentials that have been constructed to match valence

density alone can be trusted in metaGGA or OFDFT applications that rely upon variables

that are more sensitive to changes in electronic structure.

In the big picture, the ability to get orbital-free DFT’s that are competitive with Kohn-

Sham approaches remains a challenge. However, some progress towards functionals useful

in extreme situations where Kohn-Sham approaches are impractical may yet be done with

metaGGA’s working with semilocal properties of the density. Visualization can be a use-

ful tool in this process, fruitfully bringing together strands of qualitative and quantitative

thinking about electronic structure.
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Communications 181, 2208 (2010).

39K. Ruedenberg and M. W. Schmidt, J. Phys. Chem. A 113, 1954 (2009).

40A. Tachibana, J. Chem. Phys. 115, 3497 (2001).

41H. L. Schmider and A. D. Becke, Journal of Molecular Structure THEOCHEM 527, 51

(2000).

42H. Jacobsen, Phys. Chem. Chem. Phys. 15, 5057 (2013).

43J. S. M. Anderson, P. W. Ayers, and J. I. R. Hernandez, J. of Phys. Chem. A 114, 8884

(2010).

44B. Silvi and A. Savin, Nature (London) 371, 683 (1994).

45T. Burnus, M. A. L. Marques, and E. K. U. Gross, Phys. Rev. A 71, 010501 (2005).

46R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Ox-

ford, 1990).

47R. F. W. Bader, Chemical Reviews 91, 893 (1991).

48C. F. Matta, L. Massa, and T. A. Keith, The Journal of Physical Chemistry A 115, 12427

(2011).

49J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett.

103, 026403 (2009).

50J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

39

http://dx.doi.org/10.1021/cr500524c
http://dx.doi.org/10.1103/PhysRevB.60.16350
http://dx.doi.org/10.1103/PhysRevB.64.089903
http://dx.doi.org/10.1103/PhysRevB.81.045206
http://dx.doi.org/ 10.1103/PhysRevB.89.155112
http://dx.doi.org/10.1103/PhysRevB.88.064106
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.06.016
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cpc.2010.09.001
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cpc.2010.09.001
http://dx.doi.org/http://dx.doi.org/10.1063/1.1384012
http://dx.doi.org/10.1039/C3CP44162H
http://dx.doi.org/10.1021/jp1029745
http://dx.doi.org/10.1021/jp1029745
http://dx.doi.org/10.1103/PhysRevA.71.010501
http://dx.doi.org/10.1021/cr00005a013
http://dx.doi.org/ 10.1103/PhysRevLett.103.026403
http://dx.doi.org/ 10.1103/PhysRevLett.103.026403


51A. D. Becke, Int. J. Quantum Chem. 23, 1915 (1983).

52K. Burke, A. Cancio, T. Gould, and S. Pittalis, (2014), arXiv:1409.4834.

53R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, R. J. Needs, and W. M. C.

Foulkes, Phys. Rev. Lett. 78, 3350 (1997).

54A. C. Cancio and C. Y. Fong, Phys. Rev. A 85, 042515 (2012).

55A. C. Cancio, M. Y. Chou, and R. Q. Hood, Phys. Rev. B 64, 115112 (2001).

56A. C. Cancio and M. Y. Chou, Phys. Rev. B 74, 081202 (2006).

57J. Xia and E. A. Carter, Phys. Rev. B 91, 045124 (2015).

58S. B. Trickey, V. V. Karasiev, and D. Chakraborty, Phys. Rev. B 92, 117101 (2015).

59J. Xia and E. A. Carter, Phys. Rev. B 92, 117102 (2015).

60B. J. Lynch and D. G. Truhlar, Journal of Physical Chemistry A 107, 8996 (2003).
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