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Abstract 

Sprinkler kinetic energy has been linked to a number of problems in irrigated fields. This 

work presents the characterization of sprinkler drop kinetic energy and specific power 

from low-speed photographic drop data using a commercial impact sprinkler and three 

operating pressures. The spatial variability of specific power (W m-2) was assessed for 

different sprinkler spacings, showing different patterns in rectangular and triangular 

spacings. The specific power uniformity coefficient ranged from 38 % to 77 %, depending 

on sprinkler spacing and operating pressure. An attempt was made to characterize specific 

power from estimated (measured diameter and estimated velocity) and simulated data 

(using a ballistic model). While estimated data produced adequate results, simulated data 

resulted in a large overestimation. Discrepancies in kinetic variables between measured 

and simulated drop data permit to conclude that it is important to continue experimental 

drop characterization efforts as well as sprinkler simulation model development. 

Keywords: kinetic energy, drop diameter, drop velocity, indoor experiments, sprinkler 

irrigation, low-speed photography, disdrometer. 
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Introduction 

The design of a solid-set sprinkler irrigation system is based on the adequate selection of 

the irrigation hardware, the sprinkler layout and riser elevation, and the operating 

conditions. Among these, the nozzle operating pressure determines drop size distribution 

and therefore the sprinkler water application pattern, including the wetted radius. Drop 

characterization refers to the statistical determination of drop static and dynamic 

properties namely drop diameter, the module of drop velocity and the angle of drop 

trajectory relative to a horizontal plane. Drop characterization is commonly performed at 

different distances from the sprinkler, and near the soil surface. This technique permits to 

understand the behavior of a sprinkler at a certain pressure (Kincaid et al. 1996) and to 

estimate the water application pattern using ballistic simulation models (Fukui et al. 1980). 

Drop characterization is also required to develop analytical models of wind drift and 

evaporation losses. In these models evaporation affects individual drops, modifying their 

diameter, aerodynamic drag and velocity along their trajectory from the sprinkler to the 

soil surface (De Wrachien and Lorenzini 2006). Despite its obvious importance, the 

application of drop characterization to irrigation practice is severely limited by 

experimental difficulties and by the need to experiment with each combination of 

sprinkler model, nozzle size and operating pressure. 

Drop characterization is needed to evaluate the relationship between the irrigation system 

design and management, the soil and the crop, through the effect of drop impact on soil 

structure. A number of researchers have found strong relations between the kinetic energy 

of water drops and the change in physical properties of the soil surface. Thompson and 

James (1985) analyzed the increase in hydraulic resistance of the soil surface layer as the 
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drop kinetic energy per unit soil surface area increased. These authors also reported a 

decrease in soil infiltration with increasing rainfall intensity, kinetic energy per water 

droplet and water droplet energy flux. In their experimental work, Thompson and James 

(1985) used a Warden silt loam soil and applied precipitation at a rate of 30 mm h-1 with 

an average drop diameter of 3 mm. They found infiltration depths (prior to ponding) of 

120 mm and 40 mm for drop kinetic energies of 67.9 10-7 J and 1,206 10-7 J, respectively. 

They also experimented with the same drop kinetic energy (1,206 10-7 J) and different 

rainfall intensities (30 mm h-1 and 150 mm h-1), and found that infiltration decreased 51 % 

for the highest rainfall intensity (infiltration rate of 40 mm vs. 22 mm, respectively). 

Kohl et al. (1985) reported an increase in kinetic energy per unit volume of discharged 

water (J L-1) when the operating pressure was reduced. Similar results were obtained by 

Basahi (1998), when determining the specific power (W m-2) of experimental water drops 

impacting on a surface. This author obtained fluxes of 0.047, 0.038 and 0.025 W m-2 for 

pressures of 69, 103 and 138 kPa, respectively. For an isolated impact sprinkler with a 

nozzle diameter of 3.97 mm and an operating pressure of 400 kPa, Kohl et al. (1985) 

determined sprinkler kinetic energy per unit volume of water at different distances from 

the sprinkler. They obtained values of 4, 7, 11, and 17 J L-1 for distances of 3, 6, 9, and 12 m, 

respectively. These authors identified kinetic energy peak values of 25 J L-1, but only in 

small portions of the wetted area.  

Mohammed and Kohl (1987) discussed previous experiments performed by Duley (1939) 

and Ellison (1947), whose results showed that water drops destroyed surface aggregates 

and gradually formed a surface seal characterized by much lower hydraulic conductivity 

than the original soil surface. Surface seal development has been linked to rainfall energy 
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and intensity, as well as to soil aggregate stability (Thompson and James 1985; Lehrsch 

and Kincaid 2010).  

Wind velocity has been shown to have direct influence on drop kinetic energy. Based on a 

simulation model, Kincaid (1996) presented in a graph the relationship between wind 

velocity and kinetic energy for an impact sprinkler with a 3.8 mm diameter nozzle and 

operating at 400 kPa. The sprinkler kinetic energy for a set of drops traveling in no wind 

conditions was 12 J L-1. For wind velocities of 5 and 10 m s-1, sprinkler kinetic energies 

were 25 and 58 J L-1, respectively. 

Regarding soil erosion, Basahi (1998) used a piezoelectric film sensor to show that the 

erosive energy increases with decreased operating pressure, as well as with increased 

irrigation time. The average experimental values for soil erosion rate reported by this 

author (for an irrigation time of 100 min) were 2.3, 2.1, and 1.2 Mg ha-1 h-1 for operating 

pressures of 69, 103, and 137 kPa, and application rates of 32, 33 and 39 mm h-1, 

respectively. When the soil was exposed to an irrigation time of 150 min, the average 

experimental erosion rates were 5.9, 3.0, and 1.4 Mg ha-1 h-1 (for the same operating 

pressures and application rates).  

An adequate characterization of drops emitted by a sprinkler irrigation system permits 

evaluation of the kinetic energy with which drops impact the soil surface. Drop 

characteristics depend on a number of factors, including the type of sprinkler and nozzle 

design and diameter, the operating pressure and the environmental conditions. Different 

experimental methods for drop characterization have been reported in the literature since 

the 19th century (Wiesner 1895). However, a number of experimental approaches have 

been reported since the 1990s. The most relevant techniques used for drop diameter 



5 

 

determination are: stain method (Magarvey 1956), momentum method (Joss and 

Waldvogel 1967), oil immersion method (Eigel and Moore 1983), flour method (Kohl and 

DeBoer 1984), optical methods (Hauser et al. 1984; Kincaid et al. 1996; Montero et al. 2003; 

King et al. 2010) and photographic methods (Jones 1956; Sudheer and Panda 2000; 

Salvador et al. 2009). These techniques have been applied to either rainfall or sprinkler 

irrigation drop diameter determination (Cruvinel et al. 1996; Cruvinel et al. 1999; Salles et 

al. 1999; Sudheer and Panda 2000; Montero et al. 2003; Bautista-Capetillo et al. 2009).  

Routine, fast drop diameter and velocity determinations can be currently performed using 

laser beams (Kincaid et al. 1996). An alternative technique is based on the attenuation of a 

luminous flow -such as the disdrometer technique– (Montero et al. 2003; King et al. 2010). 

This is a simple technique that can be used even in outdoor conditions. Bautista-Capetillo 

et al. (2009) analyzed data quality resulting from a disdrometer (model ODM 470, 

Eigenbrodt, Königsmoor, Germany). These authors confirmed the quality of drop 

diameter measurements, and concluded that velocity estimates could not be obtained from 

this particular device. Low-speed photography (Salvador et al. 2009) has recently been 

proposed as a simple method to measure sprinkler drop diameter, velocity and vertical 

angle. These experimental determinations are commonly performed in no-wind 

conditions, since drop dynamics are strongly influenced by wind speed and direction, and 

these variables continuously fluctuate. Wind tunnel experiments have not been reported in 

sprinkler irrigation.  

Salvador et al. (2009) presented an empirical logarithmic equation predicting drop velocity 

(near the soil surface) from drop diameter. The equation was derived from experiments 

performed in Zaragoza, Spain for an isolated sprinkler installed at an elevation of 2.15 m 
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with a 4.8 mm nozzle at 200 kPa. Bautista-Capetillo et al. (2009) revised the equation, 

adding an independent data set obtained at pressures of 200, 300 and 400 kPa. The 

proposed equation was: 

25.3)ln(28.2  dV  [1] 

Where: 

d is drop diameter (m); and 

V is the module of drop velocity (m s-1). 

This equation explained 89 % of the variability in the data set, and resulted in a standard 

error of 0.43 m s-1 in the range of velocities 1-8 m s-1, approximately. 

In a number of sprinkler droplet characterization studies, drop velocity was estimated 

using classical physics. Seginer (1965) proposed a procedure based on ballistic concepts to 

estimate the tangential velocity of water drops with diameters of 1-6 mm. This 

methodology was used by Kohl et al. (1985), Mohammed and Kohl (1987) and Kincaid 

(1996), among others. Ballistic sprinkler simulation models take as basic input the 

sprinkler and nozzle model and elevation, the operating pressure and the wind velocity 

vector (Fukui et al. 1980; Vories et al. 1987; Carrión et al. 2001; Playán et al. 2006). Model 

calibration and validation is based on: 1) the experimental radial water application pattern 

obtained at no-wind conditions; and 2) A number of experiments performed under 

different wind conditions in which a matrix of collectors is located under a given sprinkler 

spacing (the space between four sprinklers in a rectangular or triangular arrangement). 

Model calibration involves the determination of the drop diameter distribution 

minimizing the error in the simulation of the radial water application pattern. Once 
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calibrated and validated, a ballistic model can simulate the spatial distribution of water 

application, drop diameters and velocities under windy conditions. Burguete et al. (2007) 

reported on the current degree of empiricism of sprinkler simulation models, resulting on 

the introduction of empirical parameters. As a consequence, performing drop 

characterization from ballistic models can be subjected to relevant errors. 

This paper reports on the kinetic energy emitted by an irrigation sprinkler in the absence 

of wind (indoor conditions), using drop diameters and velocities obtained from low-speed 

photographs. Maps of specific power and coefficients of uniformity are presented as a 

methodological contribution to decision making in sprinkler system design and 

management. Finally, two additional sources of specific power data are assessed: 

1) measured drop diameter and estimated drop velocity from diameter measurements; 

and 2) simulated drop diameter and velocity using a ballistic model. The application of 

these data sources to the estimation of specific power is assessed. 
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Materials and methods 

Experimental Data 

Bautista-Capetillo et al. (2009) reported on an experiment performed on an isolated 

irrigation impact sprinkler in indoor conditions. The sprinkler model was VYR35 

manufactured in brass (VYRSA, Burgos, Spain). The sprinkler nozzle was 4.8 mm in 

diameter and had an inclination angle of 26º respect to a horizontal line. Drops were 

characterized at an elevation of 0.50 m below the sprinkler nozzle. Three operating 

pressures (200, 300 and 400 kPa), and four distances from the sprinkler (3, 6, 9 and 12 m) 

were used for drop characterization using low-speed photography (Salvador et al. 2009). 

Wetted radii of 14.40, 15.60 and 16.80 m and flow rates of 1,235, 1,500 and 1,760 L h-1 were 

obtained for operating pressures of 200, 300 and 400 kPa, respectively. Drop diameter, 

vertical angle and velocity were measured in a total of 1,229 drops identified in images 

obtained with a standard reflex digital camera. More experimental details can be obtained 

at the original reference. Additionally, the complete drop characterization data set can be 

obtained at www.eead.csic.es/drops.  

Kinetic energy and power 

Drop kinetic energy (Ekd, J) was determined according to Kohl et al. (1985) as: 

23

12

1
VdE wkd   [2] 

Where ρw is water density (kg m-3), and the other terms as defined previously 
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The sprinkler kinetic energy applied to a certain domain  per unit volume of water 

application ( kE , J L-1) can be determined from the total drop kinetic energy and the total 

volume of a given set of drops of size n (King and Bjorneberg 2010).  
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Depending on the selection of the domain (and therefore of the set of drops), EkΩ can be 

determined for all the area irrigated by a sprinkler or for a sprinkler irrigated subarea (i.e., 

a square domain or a circular crown). While Ekd is useful to characterize individual drops, 

EkΩ conveys information on the agronomic effects (soil loss due to erosion and reduction in 

the infiltration rate) resulting from sprinkler irrigation in a certain area. 

EkΩ can be combined with the precipitation falling in the domain to determine kinetic 

power: 

  REP kk  [4] 

Where: 

kP  is the kinetic power applied to a domain (W); and 

R  is the precipitation rate applied to a domain (L s-1) 

Switching from kinetic energy to kinetic power is important in the context of sprinkler 

irrigation, since the irrigation time (per irrigation event, per season…) is an important 

management variable. Once power is determined, multiplying it times a certain irrigation 

duration (often expressed in hours) will result in the kinetic energy of a given irrigation 

event or a set of irrigation events. 
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The specific power ( p , W m-2) is the flux of kinetic energy per unit area and time, and can 

be determined as: 

REkp   [5] 

Where R is the precipitation rate (L m-2 s-1).  

Specific power is useful to assess the effect of sprinkler irrigation on cropped soils, and 

permits comparisons between sprinkler irrigation systems. Specific power has been related 

to the modification of the physical properties of the soil surface (Kincaid, 1996). 

Ballistic theory applied to sprinkler irrigation systems 

Different models have been developed in the last decades to simulate sprinkler irrigation 

(Fukui et al. 1980; Vories et al. 1987; Carrión et al. 2001). These models take into account 

the effect of wind as a major determinant of irrigation uniformity for a given sprinkler 

hardware and operating pressure. In the models, a sprinkler is considered as a device 

emitting drops of known diameters. Drop trajectory (from the nozzle to the soil surface or 

crop canopy) is determined by the application of ballistic theory. According to ballistics, 

drop movement is influenced by the initial velocity vector, the gravitational force (acting 

in the vertical direction), the wind vector and the aerodynamic drag (applied in the 

opposite direction to the relative drop movement) (Vories et al. 1987; Carrión et al. 2001; 

Dechmi et al. 2004a; Dechmi et al. 2004b).  

Due to the complexities derived from the analysis of the sprinkler jet breakup, the 

following simplifications are commonly included in ballistic sprinkler models (Carrión et 

al. 2001): 1) the jet disintegrates into drops of different diameters at the nozzle; 2) drops 

move independently from each other; 3) the drag coefficient is constant and it is 
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commonly calculated independent of sprinkler elevation from the soil surface, jet vertical 

angle, wind speed and nozzle diameter; and 4) drops of different diameters land at 

different distances from the sprinkler; all drops landing at a certain distance from the 

sprinkler have the same diameter. 

Fukui et al. (1980) presented the set of three differential equations governing drop 

trajectory in a three-dimensional Cartesian system. These equations relate drop 

acceleration to air and water density, the drag coefficient (Cd) and wind velocity. The drag 

coefficient can be determined as a function of the Reynolds number, following different 

formulations (Okamura 1968; Fukui et al. 1980; Park et al. 1982; Kincaid 1996). 

Alternatively, Cd can be determined as a function of the operating pressure, the drop 

diameter, the equivalent nozzle diameter and the discharge coefficient of the nozzle (Li 

and Kawano 1995): 

mm2for30

mm;2for4651 3183936118111790




d.C

d≤CDdH.C

d

..
e

..
d  [6] 

Where: 

H is the operating pressure (kPa); 

De is the equivalent nozzle diameter (mm), determined as: 

4

eD ; 

  is the area of nozzle outlet section (mm2); 

  is the wetted perimeter of nozzle outlet section (mm); and 

C is the nozzle discharge coefficient. 
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In order to solve the ballistic equations (Fukui et al. 1980), a fourth order Runge-Kutta 

numerical integration method (Press et al. 1988) was used. The equations were solved for 

discrete time intervals (0.005 s). In the experimental conditions, the solution for a given 

drop diameter and operating pressure consists of the values of distance from the sprinkler 

and V at the point where drop elevation from the nozzle is equal to –0.5 m (the relative 

elevation of the drop characterization points, with elevations measured upwards being 

positive). Since the experiments were performed indoors, windless conditions were 

assumed in all cases. 

Determining specific power radial curves 

Equations were built to estimate p  as a function of distance from the sprinkler for 

operating pressures of 200, 300 and 400 kPa. Different data sources were used: 

Experimentally measured drop diameter and velocity data 

Equations 2 to 5 were applied to the experimental data set, obtaining kinetic energy and 

power corresponding to distances of 3, 6, 9 and 12 m from the sprinkler. Using these data, 

exponential equations were built to estimate p  as a function of distance from the 

sprinkler to a distance of 12 m. In the absence of experimental data beyond 12 m, a linear 

decrease in p  was assumed from this point to the maximum sprinkler reach (where by 

definition p  = 0 W m-2).  

Estimated drop velocity data 

This case is based on the use of a disdrometer for drop characterization. As a consequence, 

only drop diameter is available for each drop in the data set. Bautista-Capetillo et al. (2009) 

used a disdrometer to measure 13,254 drop diameters in the same conditions used in low-



13 

 

speed photography. At each pressure and distance from the sprinkler the disdrometer 

measured drop diameters were used, and drop velocities were derived from Eq. 1. The 

low-speed photography data set used in this study constituted part of the source data for 

the derivation of Eq. 1, although the agreement between data presented by Salvador et al. 

(2009) and Bautista et al. (2009) was very relevant. Kinetic energy was determined for each 

drop in the data set. Average values of specific power were determined for each pressure 

and each distance from the sprinkler. Finally, the p  radial curve was obtained from a 

combination of exponential and linear regressions merging at a distance of 12 m. 

 Simulated drop diameter and velocity data 

The ballistic model was used to estimate the relationship between the distance from the 

sprinkler and the resulting p . This process was based on the simulation of trajectory for 

drops of different diameters (with 0.5 mm increments) till the sprinkler reach was 

obtained. Simulated exponential equations were combined with a linear decrease from the 

peak point of specific power (12.5, 11.4 and 12.7 m for operating pressures of 200, 300 and 

400 kPa, respectively) to the maximum sprinkler reach. 

Specific power in a sprinkler spacing: maps and uniformity 

Analysing specific power within a sprinkler spacing permits construction of power maps. 

Locating the areas within a sprinkler spacing having high or low specific power has 

relevant agronomic and irrigation management implications. In the present paper this 

analysis was performed for different sprinkler spacings (rectangular, R and triangular, T). 

Sprinkler spacings are commonly expressed by the letter R or T followed by the spacing 

between sprinklers within a line (m), times the spacing between the lines (m). The 
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sprinkler spacings considered in this work were: R15x15, R18x18, T15x15, T18x18 and 

T18x15. Among the considered triangular spacings, only T18x15 is an equilateral triangle, 

thus optimizing water application. 

At a given point the overlapping of the drops supplied by all contributing sprinklers 

determines the received water and the resulting specific power. For the experimental 

conditions, in the absence of wind, these amounts depend on the operating pressure and 

on the sprinkler spacing. Measured, estimated and simulated specific power radial curves 

can be used to produce specific power maps and kinetic energy maps (if the irrigation time 

is known). 

The sprinklers located at the vertices of Rectangular and Triangular sprinkler spacings 

were assigned cartesian coordinates from a datum located at the lower left corner. Each 

sprinkler spacing was discretized using 400 cells of equal dimensions (rectangles or 

triangles for rectangular or triangular spacings, respectively). The specific power applied 

by each sprinkler at the centre of the cell was determined using the radial curves. The total 

specific power at a certain point was obtained as the addition of the power applied by the 

four sprinklers located at the vertices of a rectangular spacing or the three sprinklers 

located at the vertices of a triangular spacing.  

Specific power estimates were obtained at each cell for each calculation method 

(measured, estimated and simulated), sprinkler spacing (two rectangular spacings and 

three triangular spacings), and operating pressure (200, 300 and 400 kPa). Specific power 

maps were produced using the ordinary Kriging interpolation technique using a spherical 

semivariogram model. These maps permit one to characterize the spatial variability of this 

variable. Uniformity indexes, commonly used in irrigation analysis, were additionally 
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used for this purpose. Following the criteria adopted by Chistiansen (1942) to evaluate the 

uniformity of sprinkler irrigation systems, Merriam and Keller (1978) proposed the 

coefficient of uniformity (CU, %). This coefficient was applied in this work to specific 

power in a sprinkler spacing ( p
CU , %). In standard irrigation evaluation procedures, a 

sprinkler spacing is divided into a matrix of rectangular domains with a water collector 

located at the centre. Collectors are used to estimate the precipitation rate at each domain. 

In this work, the sprinkler spacing was divided into 400 cells. As a consequence, 
p

CU  can 

be expressed as: 


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where: 

i
p  is the specific power at the centre of cell i (W m-2); and 

p  is the average specific power on the sprinkler spacing (W m-2). 
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Results and discussion 

Kinetic energy and power from measured data 

Kinetic energy was determined for each of the 1,229 drops characterized during the 

experimental isolated irrigation sprinkler experiment. Figure 1 presents the relation 

between kinetic energy from measured data and drop diameter for the different operating 

pressures and distances to the sprinkler. Logarithmic energy axes were required, since 

differences in kinetic energy within the experimental range in diameters (approximately 

between 0.5 and 5.5 mm) approached three orders of magnitude. 

The range in drop kinetic energy (Ekd) was very similar for the three operating pressures at 

distances of 3 and 6 m from the sprinkler. Numerical values between 0.60 and 150 10-7 J 

were obtained at 3 m, while at 6 m the range was 0.89 – 415 10-7 J. On the other hand, for 

distances of 9 and 12 m, a clear inverse trend could be appreciated between pressure and 

kinetic energy. The absolute ranges for 9 and 12 m were 2.03-1,621 10-7 J and 

23.6-23,413 10-7 J, respectively. In the experimental conditions the extreme values in drop 

kinetic energy increased with distance from the sprinkler and decreased with sprinkler 

operating pressure. 

Table 1 presents the volumetric mean (dV) and volume median (d50) drop diameters and 

corresponding experimental kinetic energy (Ekd, J 10-7). Data are presented for 

combinations of operating pressure and distance to the sprinkler. While dV is the 

arithmetic mean diameter, d50 is the drop diameter corresponding to 50% cumulative drop 

volume. The distance-averaged differences in kinetic energy between dV and d50 amounted 

to 1 %, 8 % and 9% of dV for operating pressures of 200, 300 and 400 kPa, respectively. The 
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average drop kinetic energy clearly increased with distance from the sprinkler. Between 

distances of 3 m and 12 m, the respective pressure-averaged kinetic energy increased by 67 

times for dV and 88 times for d50. Regarding the operating pressure, neither dV nor d50 

revealed a clear trend between operating pressure and Ekd for a distance of 3 m. An inverse 

relationship between operating pressure and Ekd became clear at distances of 6-12 m. For 

instance, at a distance of 12 m, increasing the operating pressure from 200 to 400 kPa 

resulted in a 91 % reduction of Ekd for dV and a 94 % reduction of Ekd of d50. The average 

kinetic energy figures confirmed the conclusions of the analysis on individual drop energy 

(Fig. 1). 

Predictive equations are presented in Table 2 for kinetic energy estimation as a function of 

dV and d50. The resulting coefficients of determination ranged between 0.973 and 0.998. 

These equations are oriented to the estimation of kinetic energy in irrigation system design 

and management applications, since dV and d50 are common outputs of drop 

characterization analyses. The equation derived using data from all three experimental 

pressures did not result in a decrease in the value of R2 with respect to the pressure-

specific equations, in general. 

Kinetic energy per unit volume ( kE , J L-1) was computed from Eq. [2]. Figure 2 presents 

the relationship between distance from the sprinkler and sprinkler kinetic energy. kE  

clearly increased with distance from the sprinkler, following an exponential trend. An 

inverse relationship could be observed between kE  and pressure, in general. This 

relationship was particularly evident for a distance of 12 m. In the rest of distances, the 

differences in kE were much less between 200 and 300 kPa than between 300 and 400 kPa. 
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The decrease in drop diameter with increased pressure, particularly at 6 and 9 m (Table 1) 

seems to be the primary cause for this relationship.  

Table 3 presents values for experimental precipitation rate, sprinkler kinetic energy per 

unit volume and specific power at the four measured radial locations. The values reported 

in this Table are comparable to the previous findings by Kincaid (1996) and DeBoer (2002) 

for different impact sprinklers and operating conditions, and by DeBoer and Monnens 

(2001) for a rotating spray plate sprinkler. The significance of these estimates was affected 

by the fact that only four observation points were available along the sprinkler irrigated 

radius. Kinetic energy per unit volume, EkΩ, increased with distance from the sprinkler 

and decreased with operating pressure, while p  exponentially increased with distance to 

the sprinkler. Exponential regression equations 8, 9 and 10 were obtained for experimental 

specific power ( p ) measured at 200, 300 and 400 kPa, respectively. In these equations, 

independent variable x represents the distance to the sprinkler. The coefficients of 

determination (R2) follow the equations: 

922.0;000630.0 2262.0
200  Re x

kPap  [8] 

986.0;000820.0 2214.0
300  Re x

kPap  [9] 

981.0;00107.0 2179.0
400  Re x

kPap  [10] 

 Comparing specific power determined from different data sources 

Figure 3 presents radial curves of specific power derived from measured, estimated and 

simulated data. Notable agreement was observed between measured and estimated 

specific power at pressures of 200 and 300 kPa, although in specific areas of the curve and 
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for certain experimental pressures, errors were relevant. This is the case for the pressure of 

400 kPa, in which estimated velocity resulted in severe underestimation of specific power 

at short distances from the sprinkler.  

In contrast to measured and estimated data, simulated power data were available at 

distances beyond 12 m. It is interesting to note how in all three pressures simulated 

specific power decreased for distances exceeding approximately 12 m, and how this 

decrease could be assimilated to a linear trend. This observation provided validation for 

the hypothesis used to model specific power.  

Simulated velocity resulted in a very important overestimation of specific power. While 

experimental data include a statistical distribution of drop diameters and velocities, 

simulated data are based on the drop diameter landing at each observation distance and 

its kinetic energy. This has a relevant effect on kinetic energy estimation, since the 

relationship between diameter and energy is strongly non-linear (Fig. 1). Burguete et al. 

(2007) described how - during the process of jet break-up and the travel of large drops – 

small drops are continuously formed. The formation of these drops at variable distances 

between the sprinkler nozzle and the sprinkler reach can not be reproduced by current 

ballistic sprinkler models. As a consequence, at a given distance from the sprinkler, the 

ballistic drop diameter at that distance represents the upper bound of drop diameter. In 

addition, a population of smaller drops appears at this point. This statistical distribution of 

drop diameters results in a specific power which is much smaller than the one 

corresponding to the ballistic drop diameter. Discrepancies between simulated and 

observed data indicate that it is important to continue experimental drop characterization 

and simulation model development efforts.  
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Computing and mapping specific power for different sprinkler spacings 

Figures 4 and 5 present experimentally determined contour maps of specific power under 

no-wind conditions for the selected rectangular and triangular sprinkler spacings. In 

rectangular spacings, specific power attained maximum values at the central part of the 

spacing, with a total range between spacings and pressures of 0.0675-0.0750 W m-2 (Table 

4). Areas of lower specific power appeared at the sprinkler spacing boundaries (Fig. 4). In 

these areas power ranged from 0.0010 to 0.0075 W m-2 (Table 4). In triangular spacings, a 

common pattern of specific power distribution could be observed: low energy near the 

boundaries and often at the centre (Fig. 5). The maximum specific power did not exceed 

0.0525 W m-2 in triangular spacings (Table 4). Comparing the same spacings in rectangular 

and triangular arrangements, the highest values of specific power were obtained in 

rectangular arrangements.  

Figure 6 reproduces some of the cases presented in Figures 4 and 5, but using estimated 

and simulated data. The common spacings T18x18 and R18x15 operating at 300 kPa are 

presented. These maps were similar to maps derived from measured variables in terms of 

the patterns of high and low specific power areas. However, the differences in the 

magnitude of specific power identified in Fig. 3 resulted in under- and overestimation of 

the specific power determined from experimental measurements. Despite these scale 

errors, estimated and simulated data succeeded in locating areas of high and low specific 

power.   

Table 5 presents the average values of specific power in the analyzed sprinkler spacings 

for all three sources of data. In general, a given spacing in m x m results in the same 

average specific power in the R and T versions. Small numerical differences are likely due 
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to the non-linear nature of the first reach of the radial curve. For a given pressure, the 

differences in the average value of specific power are only related to the amplitude of the 

spacing. Data in Table 5 permits one to quantify the average errors, compared to measured 

powers, due to specific power estimation (underestimation by 17 %) and simulation 

(overestimation by 172 %). 

Specific power coefficients of uniformity (
p

CU , %) are also presented in Table 5 for the 

different spacings and operating pressures, using the three data sources. Theoretically 

adequate spacings, such as R15x15, R18x18 and T18x15 showed fair 
p

CU based on 

measured data at the recommended operating pressure of 300 kPa (65, 50 and 65 %, 

respectively). Spacing T18x18, an isosceles triangle which is favored by local farmers in 

Spain due to its relatively low cost and good adaptation to farm machinery, showed a 

reasonable 
p

CU  of 47 %. Specific power uniformity (averaged across all spacings) based 

on measured, estimated and simulated data resulted in remarkable agreement (60 %, 53 % 

and 59 % on the average, respectively). Specific power uniformity nearly always increased 

with operating pressure. A regression analysis was performed on measured vs. estimated 

and simulated 
p

CU . The regression model could explain 90 and 99 % of the variability in 

estimated and simulated
p

CU , respectively. Additionally, the regression line for 

simulated data could not be distinguished from a 1:1 line at a 95 % probability level (Fig. 

7). An additional analysis was performed to confirm the correspondence between specific 

power values. Statistical correlation was assessed between paired estimates of specific 

power at the 400 cells, comprising measured data on one side and estimated or simulated 
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data on the other. Average correlation coefficients were 0.980 and 0.998 for estimated and 

simulated data, respectively.  
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Conclusions 

The data set containing windless experimental measurements of drop diameter and 

velocity has permitted us to characterize impact sprinkler kinetic energy based on 

measured drop diameter and velocity. Drop kinetic energy exponentially increased with 

drop diameter. Sprinkler kinetic energy and specific power exponentially increased with 

distance from the sprinkler. Empirical equations were presented to estimate drop kinetic 

energy from average drop diameter and to estimate specific power from distance to the 

sprinkler at three pressures. Measured, estimated and simulated data were used to 

estimate specific power. The results showed similarities between the three data sources in 

a number of aspects. However, simulated values largely overestimated (by 172 %) average 

specific power. Estimated specific power showed moderate underestimation (by 17 %) 

when compared with measured data.  

While the ballistic simulation model produced just one drop velocity per distance to the 

sprinkler, the measured and estimated data sets (low-speed photography and 

disdrometer, respectively) contained a population of drops at each distance. Counting on 

just one velocity value per distance from the sprinkler is more problematic for the 

estimation of kinetic energy than it is for the estimation of irrigation depth, due to the 

strong non-linearity between drop diameter and energy. As a consequence, estimated 

drop data are much more valuable to reflect the adequate magnitude of drop kinetic 

energy and related variables than simulated drop data. The estimated data set can be 

considered adequate to determine kinetic energy and power variables. However, the 

equation used to estimate velocity from drop diameter should be further validated to 

assess its applicability in different conditions. Regarding low-speed photography data, 
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more intense (more drops) and detailed (more observation points) data sets would be 

required to obtain more accurate estimates. 

The reported average values of measured specific power, the associated contour maps and 

the coefficients of uniformity can be used in combination with experimentally obtained 

threshold values of specific power for irrigation design and management purposes. 

Intense field campaigns will be required to obtain these data for a given soil-crop-

irrigation combination. Our contribution to this problem is therefore more methodological 

than practical, since limited data sets are currently available on the impact of kinetic 

energy on agricultural systems. Despite the overestimation in simulated specific power, 

the agreement between the three 
p

CU data sets constitutes a relevant research finding.  

Unfortunately, real conditions include sprinkler models and nozzle configurations 

different than the ones used in this research, untested values of pressure and particularly, 

windy conditions. In the absence of experimental values, estimated and even simulated 

data can be cautiously used to assess specific power distribution and uniformity under 

sprinkler irrigation. This will be particularly important for windy conditions, in which 

kinetic energy can be particularly harmful to the soil, and drop characterization efforts are 

still incipient. Discrepancies between simulated and observed drop data permit one to 

conclude that it is important to continue experimental drop characterization and 

simulation model development efforts. In particular, a larger experimental drop 

characterization data set would be required to provide firmer conclusions. 
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Table 1. Drop kinetic energy (Ekd, J 10-7) from measured drop data. Results correspond to different 

values of average drop diameter (dV and d50) and to combinations of operating pressure and distance 

from the sprinkler in the experimental data set. 

Pressure  Distance from the sprinkler 

(kPa)  3 m 6 m 9 m 12 m 

200 

dV (mm) 1.12 1.48 1.93 3.28 

Ekd (J 10-7) 27.2 79.5 330 3337 

d50 (mm) 1.05 1.40 1.92 3.59 

Ekd (J 10-7) 22.4 67.3 325 4375 

300 

dV (mm) 1.08 1.43 1.44 2.65 

Ekd (J 10-7) 19.8 65.3 114 1282 

d50 (mm) 1.06 1.40 1.39 2.55 

Ekd (J 10-7) 18.7 61.3 103 1142 

400 

dV (mm) 1.19 1.25 1.46 1.78 

Ekd (J 10-7) 26.1 44.8 113 288 

d50 (mm) 1.17 1.18 1.42 1.73 

Ekd (J 10-7) 24.8 37.7 104 265 
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Table 2. Predictive equations for measured drop kinetic energy (Ekd, J 10-7) using the volumetric 

mean diameter (dV, mm) and the volume median diameter (d50, mm) as independent variables. 

Operating pressure 
(kPa) 

Kinetic energy 
(J) 

R2 

200 500000

d
=E

4.553
V

k  0.997 

500000

d
=E

4.350
50

k  0.998 

300 500000

d
=E

4.592
V

k  0.982 

500000

d
=E

4.616
50

k  0.980 

400 1000000

d
=E

5.578
V

k  0.983 

1000000

d
=E

5.671
50

k  0.973 

All 
500000

d
=E

4.624
V

k  0.985 

500000

d
=E

4.486
50

k  0.984 
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Table 3. Precipitation rate (R), sprinkler kinetic energy ( kE ) and specific power ( p ) obtained 

from measured data for combinations of operating pressure and distance to the sprinkler. 

 

 

 

 

 

 

 

 

 

Operating 
pressure 

(kPa) 

Distance from 
sprinkler 

(m) 

Precipitation 
rate 

(mm h-1) 

Sprinkler 
kinetic energy 

(J L-1) 

Specific 
power 
(W m-2) 

200 

3 1.46 4.45 0.0018 
6 1.21 6.89 0.0023 
9 1.66 11.49 0.0053 
12 3.17 21.36 0.0188 

300 

3 1.66 3.69 0.0017 
6 1.66 5.96 0.0027 
9 2.13 8.85 0.0052 
12 2.60 16.07 0.0116 

400 

3 1.88 3.65 0.0019 
6 1.83 5.53 0.0028 
9 2.42 8.88 0.0060 
12 2.62 12.15 0.0088 
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Table 4. Area (both in m2 and in % of the sprinkler spacing area) within specified intervals of measured specific power for different sprinkler 

spacings and operating pressures. 

Operating 
Pressure 

(kPa) 

Range of 
specific power 

(W m-2) 

Sprinkler spacing (Rectangular/Triangular, mxm) 
R 15x15 R 18x18 T 15x15 T 18x18 T 18x15 

Area (m2) Area (%) Area (m2) Area (%) Area (m2) Area (%) Area (m2) Area (%) Area (m2) Area (%) 

200 

0.0010 0.0075 6.00 2.67 62.00 19.14 7.50 6.67 43.00 26.54 25.00 18.52 
0.0075 0.0150 61.00 27.11 36.00 11.11 10.50 9.33 19.00 11.73 13.00 9.63 
0.0150 0.0225 36.00 16.00 112.00 34.57 17.00 15.11 35.00 21.60 27.00 20.00 
0.0225 0.0300 28.00 12.44 59.00 18.21 43.00 38.22 27.00 16.67 23.00 17.04 
0.0300 0.0375 44.00 19.56 19.00 5.86 34.50 30.67 16.00 9.88 31.00 22.96 
0.0375 0.0450 27.00 12.00 8.00 2.47 -- -- 10.00 6.17 16.00 11.85 
0.0450 0.0525 19.00 8.44 9.00 2.78 -- -- 12.00 7.41 -- -- 
0.0525 0.0600 4.00 1.78 7.00 2.16 -- -- -- -- -- -- 
0.0600 0.0675 -- -- 5.00 1.54 -- -- -- -- -- -- 
0.0675 0.0750 -- -- 7.00 2.16 -- -- -- -- -- -- 

300 

0.0010 0.0075 -- -- 37.00 11.42 5.00 4.44 30.00 18.52 12.00 8.89 
0.0075 0.0150 37.00 16.44 98.00 30.25 9.00 8.00 26.00 16.05 9.00 6.67 
0.0150 0.0225 40.00 17.78 86.00 26.54 41.50 36.89 43.00 26.54 28.00 20.74 
0.0225 0.0300 46.00 20.44 38.00 11.73 38.00 33.78 28.00 17.28 49.00 36.30 
0.0300 0.0375 62.00 27.56 23.00 7.10 15.00 13.33 26.00 16.05 30.00 22.22 
0.0375 0.0450 33.00 14.67 16.00 4.94 4.00 3.56 9.00 5.56 7.00 5.19 
0.0450 0.0525 7.00 3.11 9.00 2.78 -- -- -- -- -- -- 
0.0525 0.0600 -- -- 6.00 1.85 -- -- -- -- -- -- 
0.0600 0.0675 -- -- 6.00 1.85 -- -- -- -- -- -- 
0.0675 0.0750 -- -- 5.00 1.54 -- -- -- -- -- -- 

400 

0.0010 0.0075 -- -- 21.00 6.48 -- -- 18.00 11.11 5.00 3.70 
0.0075 0.0150 10.00 4.44 85.00 26.23 5.00 4.44 23.00 14.20 8.00 5.93 
0.0150 0.0225 38.00 16.89 92.00 28.40 43.00 38.22 38.00 23.46 32.00 23.70 
0.0225 0.0300 52.00 23.11 49.00 15.12 45.00 40.00 38.00 23.46 61.00 45.19 
0.0300 0.0375 88.00 39.11 31.00 9.57 17.50 15.56 40.00 24.69 23.00 17.04 
0.0375 0.0450 37.00 16.44 17.00 5.25 2.00 1.78 5.00 3.09 6.00 4.44 
0.0450 0.0525 -- -- 13.00 4.01 -- -- -- -- -- -- 
0.0525 0.0600 -- -- 9.00 2.78 -- -- -- -- -- -- 
0.0600 0.0675 -- -- 4.00 1.23 -- -- -- -- -- -- 
0.0675 0.0750 -- -- 3.00 0.93 -- -- -- -- -- -- 

 



37 

 

Table 5. Average specific power ( p ) and coefficient of uniformity of specific power for combinations of sprinkler spacing and operating pressure. 

Results are presented for measured, estimated and simulated drop data. 

 Operating 
Pressure 

(kPa) 

Average specific power (W m-2) Coefficient of uniformity of specific power (%) 
Sprinkler spacing (Rectangular / Triangular, mxm) Sprinkler spacing (Rectangular / Triangular, mxm) 

R 15x15 R 18x18 T 15x15 T 18x18 T 18x15 R 15x15 R 18x18 T 15x15 T 18x18 T 18x15 

M
ea

su
re

d
 200 0.025 0.017 0.024 0.017 0.021 53.20 49.40 69.40 38.00 49.30 

300 0.026 0.018 0.024 0.018 0.022 65.10 50.10 75.00 47.00 65.00 

400 0.029 0.021 0.025 0.021 0.024 74.80 53.70 77.20 57.90 74.30 

E
st

im
at

ed
 200 0.024 0.017 0.024 0.017 0.020 48.30 41.60 63.70 32.10 45.50 

300 0.026 0.019 0.024 0.018 0.022 62.50 43.50 69.60 42.90 62.10 

400 0.015 0.011 0.013 0.011 0.013 67.30 39.70 61.00 49.70 64.20 

Si
m

u
la

te
d

 200 0.040 0.028 0.040 0.028 0.034 53.20 49.30 69.40 38.00 49.30 

300 0.082 0.058 0.076 0.058 0.069 63.90 46.90 72.40 45.00 64.00 

400 0.092 0.067 0.078 0.067 0.077 73.20 50.60 73.80 56.10 72.00 
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Figure 1. Scatter plots of drop diameter, d (mm) vs. drop kinetic energy, Ekd (J 10-7) for the combinations of operating
pressure and distance from the sprinkler in the experimental data set.
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Figure 2. Sprinkler kinetic energy (     ) from measured data. Results are presented as a function of 
distance from the sprinkler for the three considered operating pressures.
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Figure 3. Specific power (    ) as a function of distance from the sprinkler for the three considered operating 
pressures. Results are presented from measured, estimated and simulated data.
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Figure 4. Contour maps of specific power ( ) from measured data. Results are presented for combinations of rectangular
sprinkler spacings and operating pressures.
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Figure 5. Contour maps of specific power ( ) from measured data. Results are presented for combinations of triangular
sprinkler spacings and operating pressure.
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Figure 6. Contour map of estimated and simulated kinetic power ( ) for spacings R18x18 and T18x15
operating at 300 kPa.
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coefficients of determination (R2) are presented for both dependent variables.
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