
Limits of Real Numbers
Drawn from Real analysis with real applications
by Kenneth R. Davidson and Allan P. Donsig

1. Limits

The notion of a limit is the basic notion of analysis. Limits are the culmination of an infinite
process. It is the concern with limits in particular that separates analysis from algebra. In
this section, we will deal with limits of a sequence of real numbers. Later we will need other
kinds of limits, such as limits of functions possibly with vectors or more general values.

In the 1680s, Newton and Leibniz independently developed calculus. But it is not calculus
as we know it today. Their writings about limits were vague and depended on physical reasoning
that was somewhat circular and certainly was imprecise. In the late eighteenth century, some
mathematicians, such as d’Alembert, saw the need to develop a precise notion of limit, while
other great mathematicians, such as Lagrange, tried to develop calculus without dependence
on this notion. Gauss in 1812 was the first mathematician to concern himself with tests for
convergence of infinite series as necessary before attempting to evaluate the limit. It was not
until 1829 that Cauchy gave a definition of limit that is close to the modern one we use today.

Intuitively, to say that a sequence an converges to a limit L means that eventually all the
terms of the (tail of the) sequence approximate the limit value L to any desired accuracy. To
make this precise, we introduce a subtle definition.

1.1. Definition of the Limit of a Sequence. A real number L is the limit of a sequence
of real numbers (an)∞n=1 if for every ε > 0, there is an integer N = N(ε) > 0 such that

|an − L| < ε for all n ≥ N.

We say that the sequence (an)∞n=1 converges to L, and we write lim
n→∞

an = L. A sequence

which does not converge is said to diverge.

The important issue in this definition is that for any desired accuracy, there is a point in
the sequence such that every element after that point approximates the limit L to the desired
accuracy. Clearly, the N that works (meaning it satisfies the condition in definition) for, say,
ε = 1/10 will work for any larger value of ε. It suffices to consider only values for ε of the form
1
210−k. The statement |an−L| < 1

210−k means that an and L agree to at least k decimal places.
Thus a sequence converges to L precisely when for every k, no matter how large, eventually
all the terms of the sequence agree with L to at least k decimals of accuracy.

1.2. Example. Consider the sequence (an) = (n/(n+ 1))∞n=1, which we claim converges to
1. If the definition agrees with our intuitive idea of convergence, we should be able to pick N
for any ε. Suppose ε = .05. We need to find some N so that∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ < .05 for all n ≥ N.

First we simplify the left-hand side of this equation:
∣∣∣ n
n+1 − 1

∣∣∣ = 1
n+1 . If n ≥ 20, then∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ =
1

n+ 1
≤ 1

21
< .05.

1



2

So it is enough to choose N = 20.
We could also choose N = 73. It is not necessary to find the best choice for N . However,

as we shall see in connection with the analysis of numerical methods, better estimates can lead
to better algorithms for computation.

Observe that
∣∣∣ n
n+1 − 1

∣∣∣ = 1
n+1 . So if ε = 1

210−k, we can choose N = 2 · 10k. Then for all

n ≥ N , ∣∣∣ n

n+ 1
− 1
∣∣∣ =

1

n+ 1
≤ 1

2 · 10k + 1
< 1

210−k = ε.

We could also choose N = 73 · 10k. It is not necessary to find the best choice for N . But in
practice, better estimates can lead to better algorithms for computation.

1.3. Example. Consider the sequence (an) with a2n−1 = π+ 1
n and a2n = π for n ≥ 1. This

sequence converges to π. Indeed, given ε > 0, choose a large positive integer N so that 1
N < ε.

Then if n > 2N , we may write n = 2k − 1 or n = 2k for some k > N . In the first case,

|an − π| = |a2k−1 − π| =
1

k
<

1

N
< ε,

while in the second case,

|an − π| = |a2k − π| = 0 < ε.

Note that some terms of a convergent sequence may actually equal the limit exactly.

What does it mean for a sequence to diverge? To contradict the definition of limit, one
must show that for every L, the definition of limit fails. This means that we need to find one
value of ε > 0 so that we cannot satisfy the definition; which means that for every N , there is
an n ≥ N so that |an − L| ≥ ε.

We can understand this symbolically. Notice that (an)∞n=1 converges means

∃L ∀ε>0 ∃N ∀n≥N |an − L| < ε.

The negation flips the for all and exists quantifiers:

∀L ∃ε>0 ∀N ∃n≥N |an − L| ≥ ε.

1.4. Example. Consider the sequence (an) with an = (−1)n. Since this flips back and forth
between two values that are always distance 2 apart, intuition says that it does not converge.
To show this using our definition, we need to show that the definition of limit fails for every
choice of L. However, for each choice of L, we need find only one value of ε that violates the
definition.

Split the argument into two cases:
Case 1, L ≥ 0. Take ε = 1. Then for any (large) positive integer N , pick n = 2N + 1 ≥ N .
Then

|an − L| = | − 1− L| = L+ 1 ≥ 1.

Case2: L < 0. Take ε = 1. Then for any (large) positive integer N , pick n = 2N ≥ N . Then

|an − L| = |1− L| = |L|+ 1 ≥ 1.

Consequently, this sequence does not converge.
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1.5. The Squeeze Theorem.
Suppose that three sequences (an), (bn), and (cn) satisfy

an ≤ bn ≤ cn for all n ≥ 1 and lim
n→∞

an = lim
n→∞

cn = L.

Then lim
n→∞

bn = L.

Proof. Let ε > 0. Since lim
n→∞

an = L, there is some N1 such that

|an − L| < ε for all n ≥ N1,

or equivalently, L− ε < an < L+ ε for all n ≥ N1. There is also some N2 such that

|cn − L| < ε for all n ≥ N2

or L− ε < cn < L+ ε for all n ≥ N2. Then, if n ≥ max{N1, N2}, we have

L− ε < an ≤ bn ≤ cn < L+ ε.

Thus |bn − L| < ε for n ≥ max{N1, N2}, as required. �

In this proof, as in the examples, to show lim
n→∞

bn = L, we must show that there is an ‘N ’

that works for every possible value of ε. On the other hand, we know lim
n→∞

an exists so we get

to pick any value of ε we like and the existance of the limit is the guarantee that there is an
‘N ’ that works for that value. When we know a limit exists, we will take full advantage of this
freedom to pick any value we like for ε.

1.6. Example. Consider the sequence ((sinn)/n)∞n=1. The numerator oscillates, but it re-
mains bounded between ±1 while the denominator goes off to infinity. We obtain the estimates

− 1

n
≤ sinn

n
≤ 1

n
.

We know that lim
n→∞

1/n = 0 = lim
n→∞

−1/n. By the Squeeze Theorem,

lim
n→∞

sinn

n
= 0.

Exercises for Section 1

A. In each of the following, compute the limit. Then, using ε = 10−6, find an integer N that satisfies
the limit definition.

(a) lim
n→∞

sinn2√
n

(b) lim
n→∞

1

log log n
(c) lim

n→∞

3n

n!

(d) lim
n→∞

n2 + 2n+ 1

2n2 − n+ 2
(e) lim

n→∞

√
n2 + n− n f) lim

n→∞
cos 1

n

B. Prove from the definition that the sequence an = L for n ≥ 1 has a limit.

C. Show that lim
n→∞

sin nπ
2 does not exist using the definition of limit.

D. Prove that if an ≤ bn for n ≥ 1, L = lim
n→∞

an, and M = lim
n→∞

bn, then L ≤M .

E. Prove that if L = lim
n→∞

an, then L = lim
n→∞

a2n and L = lim
n→∞

an2 .

F. Define a sequence (an)
∞
n=1 such that lim

n→∞
an2 exists but lim

n→∞
an does not exist.
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G. Sometimes, a limit is defined informally as follows: “As n goes to infinity, an gets closer and closer
to L.” Find as many faults with this definition as you can.

(a) Can a sequence satisfy this definition and still fail to converge?
(b) Can a sequence converge yet fail to satisfy this definition?

H. Suppose that lim
n→∞

an = L and L 6= 0. Prove there is some N such that an 6= 0 for all n ≥ N .

I. Give a careful proof, using the definition of limit, that lim
n→∞

an = L and lim
n→∞

bn = M imply that

lim
n→∞

2an + 3bn = 2L+ 3M.

J. For each x ∈ R, determine whether
( 1

1 + xn

)∞
n=1

has a limit, and compute it when it exists.

K. Let a0 and a1 be positive real numbers, and set an+2 =
√
an+1 +

√
an for n ≥ 0.

(a) Show that there is N such that for all n ≥ N , an ≥ 1.
(b) Let εn = |an − 4|. Show that εn+2 ≤ (εn+1 + εn)/3 for n ≥ N .
(c) Prove that this sequence converges.

L. Show that the sequence (log n)
∞
n=1 does not converge.

M. Provide an example of three sequences, (an), (bn), and (cn), with an ≤ bn ≤ cn such that both
lim
n→∞

an and lim
n→∞

cn exist, but lim
n→∞

bn does not exist.

2. Basic Properties of Limits

We have already developed a number of basic properties of limits in the examples and
exercises of the previous section. For example, the Squeeze Theorem and Exercise 1.D show
that limits respect order. It is also crucial that limits respect the arithmetic operations. Proving
this is straightforward. We will prove parts (1) and (4). The other parts are done in a similar
manner.

2.1. Theorem. If lim
n→∞

an = L, lim
n→∞

bn = M , and α ∈ R, then

(1) lim
n→∞

an + bn = L+M,

(2) lim
n→∞

αan = αL,

(3) lim
n→∞

anbn = LM, and

(4) if M 6= 0, then there is an integer N0 so that bn 6= 0 for n ≥ N0, and lim
n→∞

an
bn

=
L

M
.

(We only consider terms with n ≥ N0 so that
an
bn

is defined.)

Proof. (1) Notice that

|(an + bn)− (L+M)| = |an − L+ bn −M | ≤ |an − L|+ |bn −M |.

Since lim
n→∞

an = L, we can find N1 > 0 so that

|an − L| <
ε

2
for all n ≥ N1.

Similarly, we can find N2 > 0 so that

|bn −M | <
ε

2
for all n ≥ N2.
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Define N = max{N1, N2}. If n ≥ N , then

|(an + bn)− (L+M)| ≤ |an − L|+ |bn −M | <
ε

2
+
ε

2
= ε

(4) Since M 6= 0, |M |/2 > 0. Using ε = |M |/2, we can find some N0 so that

|bn −M | <
|M |

2
for all n ≥ N0.

Therefore

|bn| ≥ |M | − |bn −M | > |M |/2;

and hence bn 6= 0 when n ≥ N0. Taking the reciprocals of both sides, we get

1

|bn|
≤ 2

|M |
for all n ≥ N0.

For n ≥ N0, we can write∣∣∣∣anbn − L

M

∣∣∣∣ =

∣∣∣∣anM − LbnbnM

∣∣∣∣
=

∣∣∣∣anM − LM + LM − Lbn
bnM

∣∣∣∣
≤
∣∣∣∣anM − LMbnM

∣∣∣∣+

∣∣∣∣LM − LbnbnM

∣∣∣∣
= |an − L|

∣∣∣∣ 1

bn

∣∣∣∣+ |M − bn|
∣∣∣∣ L

bnM

∣∣∣∣
≤ |an − L|

2

|M |
+ |M − bn|

2|L|
M2

.

Now we are set to use the convergence of an and bn. Choose N1 so that

|an − L| <
ε|M |

4
for all n ≥ N1;

and choose N2 so that

|bn −M | <
ε|M |2

4|L|+ 1
for all n ≥ N2.

Let N = max{N0, N1, N2}. If n ≥ N , then since bn ≥ |M |/2 > 0, we know bn is not zero
and we can use our estimate to conclude∣∣∣∣anbn − L

M

∣∣∣∣ ≤ ∣∣an − L∣∣ 2

|M |
+
∣∣M − bn∣∣2|L|

M2

<
ε|M |

4

2

|M |
+

εM2

4|L|+ 1

2|L|
M2

<
ε

2
+
ε

2
= ε. �

Another important observation is that convergent sequences are bounded.

2.2. Proposition. If (an)∞n=1 is a convergent sequence of real numbers, then it is bounded.
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Proof. Let L = lim
n→∞

an. If we set ε = 1, then by the definition of limit, there is some N > 0

such that |an − L| < 1 for all n ≥ N . In other words,

L− 1 < an < L+ 1 for all n ≥ N.

Let M = max{a1, a2, . . . , aN−1, L+ 1} and m = min{a1, a2, . . . , aN−1, L− 1} . Clearly, for all
n, we have m ≤ an ≤M . �

There is no special reason to use 1 in this proof except convenience. We could have picked
ε = 1/2 or ε = 42 and the argument would still work.

Exercises for Section 2

A. Prove parts (2) and (3) of Theorem 2.1.

B. Compute the following limits.

(a) lim
n→∞

3n5 − n4 + 175

7n5 + 100N3 − 32n
(b) lim

n→∞

2100+5n

e4n−10
(c) lim

n→∞

2n

n!
+

2 arctann

log n

C. If lim
n→∞

an = L > 0, prove that lim
n→∞

√
an =

√
L. Be sure to discuss the issue of when

√
an makes

sense. Hint: Express |√an −
√
L| in terms of |an − L|.

D. Let (an)
∞
n=1 and (bn)

∞
n=1 be two sequences of real numbers such that |an − bn| < 1

n . Suppose that
L = lim

n→∞
an exists. Show that (bn)

∞
n=1 converges to L also.

E. Find lim
n→∞

log(2 + 3n)

2n
. Hint: log(2 + 3n) = log 3n + log 2+3n

3n

F. (a) Let xn = n
√
n− 1. Use the fact that (1 + xn)n = n to show that x2n ≤ 2/n.

Hint: Use the Binomial Theorem and throw away most terms.
(b) Hence compute lim

n→∞
n1/n.

G. Show that the set of rational numbers is dense in R, meaning that every real number is a limit of
rational numbers.

H. (a) Show that b−1
b ≤ log b ≤ b− 1. Hint: Integrate 1/x from 1 to b.

(b) Apply this to b = n
√
a to show that log a ≤ n( n

√
a− 1) ≤ n

√
a log a.

(c) Hence evaluate lim
n→∞

n
(

n
√
a− 1

)
.

I. Suppose that lim
n→∞

an = L. Show that lim
n→∞

a1 + a2 + · · ·+ an
n

= L.

J. Show that the set S = {n+m
√

2 : m,n ∈ Z} is dense in R. Hint: Find infinitely many elements
of S in [0, 1]. Use the Pigeonhole Principle to find two that are close within 10−k.

3. The Least Upper Bound Principle

After defining the least upper bound of a set of real numbers, we prove the Least Upper
Bound Principle (3.3). This result depends crucially on our construction of the real numbers.
It will be the basis for the deeper properties of the real line.

3.1. Definition. A set S ⊂ R is bounded above if there is a real number M such that
s ≤ M for all s ∈ S. We call M an upper bound for S. Similarly, S is bounded below if
there is a real number m such that s ≥ m for all s ∈ S, and we call m a lower bound for S.
A set that is bounded above and below is called bounded.
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Suppose a nonempty subset S of R is bounded above. Then L is the supremum or least
upper bound for S if L is an upper bound for S that is smaller than all other upper bounds,
i.e., for all s ∈ S, s ≤ L, and if M is another upper bound for S, then L ≤ M. It is denoted
by supS.

Similarly, if S is a nonempty subset of R which is bounded below, the infimum or greatest
lower bound, denoted by inf S, is the number L such that L is an lower bound and whenever
M is another lower bound for S, then L ≥M.

The supremum of a set, if it exists, is unique. We have not defined suprema or infima
for sets that are not bounded above or bounded below, respectively. For example, R itself
has neither a supremum nor an infimum. For a nonempty set S ⊆ R, sometimes we write
supS = +∞ if S is not bounded above and inf S = −∞ if S is not bounded below. Finally,
by convention, sup∅ = −∞ and inf ∅ = +∞.

Note that supS = L ∈ R if and only if L is a upper bound for S and for all K < L, there
is x ∈ S with K < x < L. There is an equivalent characterization for inf S.

Recall that the maximum of a set S ⊂ R, if it exists, is an element m ∈ S such that
s ≤ m for all s ∈ S. Thus, when the maximum of a set exists, it is the least upper bound. The
situation for the minimum of a set and its infimum is the same. We use maxS and minS to
denote the maximum and minimum of S.

3.2. Examples.

(1) If A = {4,−2, 5, 7}, then any L ≤ −2 is a lower bound for A and any M ≥ 7 is an upper
bound. So, inf A = minA = −2 and supA = maxA = 7.

(2) If B = {2, 4, 6, . . .}, then inf B = minB = 2 and supB = +∞.

(3) If C = {π/n : n ∈ N}, then supC = maxC = π. However, for any element of C, say π/n,
we have a smaller element of C, such as π/(2n). So C does not have a minimum. Clearly, 0 is
a lower bound and for all x > 0, there is some π/n ∈ C with π/n < x, showing that 0 is the
greatest lower bound.

(4) If D = {(−1)nn/(n+1) : n ∈ N}, then D has neither a maximum nor a minimum. However,
D has upper and lower bounds, and inf D = −1 and supD = 1. Neither 1 nor −1 belongs to
D.

In proving the Least Upper Bound Principle, the definition of the real numbers as all infinite
decimals is essential. The principle is not true for some subsets of the rational numbers. For
example, {s ∈ Q : s2 < 2} is bounded above but has no least upper bound in Q.

3.3. Least Upper Bound Principle.
Every nonempty subset S of R that is bounded above has a supremum. Similarly, every
nonempty subset S of R that is bounded below has an infimum.

Proof. We prove the second statement first, since it is more convenient. Let M be some lower
bound for S with decimal expansion M = m0.m1m2 . . . . Let s be some element of S with
decimal expansion s = s0.s1s2 . . . . Notice that since m0 ≤ M , we have that m0 is a lower
bound for S. On the other hand, s < s0 + 2. So s0 + 2 is not a lower bound. There are only
finitely many integers between m0 and s0 + 1. Pick the largest of these that is still a lower
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bound for S, and call it a0. Since a0 + 1 is not a lower bound, we may also choose an element
x0 in S such that x0 < a0 + 1.

Next pick the greatest integer a1 such that y1 = a0 + 10−1a1 is a lower bound for S. Since
a1 = 0 works and a1 = 10 does not, a1 belongs to {0, 1, . . . , 9}. To verify our choice, pick an
element x1 in S such that a0.a1 ≤ x1 < a0.a1+0.1. Continue in this way recursively. Figure 3.1
shows how a2 and x2 would be chosen.

x2

a0.a1 a0.a1a2 a0.(a1 + 1)

Figure 3.1. The second stage (k = 2) in the proof.

At the kth stage, we have a lower bound yk−1 = a0.a1 . . . ak−1 and an element xk−1 ∈ S
such that yk−1 ≤ xk−1 < yk−1 + 101−k. Select the largest integer ak in {0, 1, . . . , 9} such that
yk = a0.a1a2 . . . ak is a lower bound for S. Since yk + 10−k is not a lower bound, we also pick
an element xk in S such that xk < yk + 10−k to verify our choice.

We claim that L = a0.a1a2 . . . is inf S. If L = yk for some k, then L is a lower bound for
S. Otherwise, L > yk for all k and, in particular, for each k there is l > k with yl > yk. If
s = s0.s1s2 . . . is in S, then it follows that s > yk for each k. By the definition of the order,
either si = ai for 1 ≤ i ≤ k or there is some j, 0 ≤ j ≤ k, with si = ai for 1 ≤ i < j and
sj > aj . If the latter occurs for some k, then s > L; if the former occurs for every k, then
s = L. Either way, L is a lower bound for S.

To see that L is the greatest lower bound, suppose M = b0.b1b2 . . . > L. By the definition
of the ordering, there is some first integer k such that bk > ak and bi = ai for all i with
0 ≤ i < k. But then

M ≥ a0.a1 . . . ak−1bk ≥ yk + 10−k > xk.

So M is not a lower bound for S. Hence L is the greatest lower bound.
A simple trick handles upper bounds. Notice that S ⊂ R is bounded above if and only

if −S = {−s : s ∈ S} is bounded below and that L is an upper bound for S precisely when
−L is a lower bound for −S. Further, M < L if and only if −M > −L, so M is an upper
bound of S less than L exactly when −M is a lower bound of −S greater than −L. Thus
supS = − inf(−S), so supS exists. �

Exercises for Section 3

A. Suppose that S ⊂ R is bounded above. When does S have a maximum? Your answer should be
expressed in terms of supS.

B. For the following sets, find the supremum and infimum. Which have a max or min?
(a) A = {a+ a−1 : a ∈ Q, a > 0}.
(b) B = {a+ (2a)−1 : a ∈ Q, 0.1 ≤ a ≤ 5}.
(c) C = {sinn : n ∈ Z}.
(d) D = {xe−x : x > 0}.

C. Suppose (an)
∞
n=1 and (bn)

∞
n=1 are sequences of positive real numbers and S =

{an
bn

: n ≥ 1
}

is

bounded above. Prove that there is a constant M such that an ≤Mbn for all n ≥ 1.
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D. Let D denote the set of all finite decimals.. Show that sup{a ∈ D : a2 ≤ 3} =
√

3.
Hint: show that if 0 < d < 2, then (d+ 10−n)2−d2 < 5 ·10−n. Consider the largest d = 1.a1 . . . an
such that d2 < 3. Hence get an estimate for

√
3− d.

E. A more elegant way to develop the arithmetic properties of the real numbers is to prove the results
of this section first and then define addition and multiplication using suprema. Let Q denote the
set of all rational numbers.

(a) Let x, y ∈ R. Prove that x+ y = sup{a+ b : a, b ∈ Q, a ≤ x, b ≤ y}.
(b) Suppose that x, y ∈ R are positive. Show that xy = sup{ab : a, b ∈ Q, 0 ≤ a ≤ x, 0 ≤ b ≤ y}.
(c) How do we define multiplication in general?

4. Monotone Sequences

We now consider some consequences of the Least Upper Bound Principle (3.3).

4.1. Definition. A sequence (an) is (strictly) monotone increasing if an ≤ an+1 (or
an < an+1) for all n ≥ 1. Similarly, we define (strictly) monotone decreasing sequences.

4.2. Monotone Convergence Theorem.
A monotone increasing sequence that is bounded above converges.
A monotone decreasing sequence that is bounded below converges.

Proof. Suppose (an)∞n=1 is an increasing sequence that is bounded above. Then by the Least
Upper Bound Principle, there is a number

L = sup{an : n ∈ N}.
We will show that lim

n→∞
an = L.

Let ε > 0 be given. Since L− ε is not an upper bound for A, there is some integer N such
that aN > L− ε. Then because the sequence is monotone increasing,

L− ε < aN ≤ an ≤ L for all n ≥ N.
So |an − L| < ε for all n ≥ N as required. Therefore, lim

n→∞
an = L.

If (an) is decreasing and bounded below by B, then the sequence (−an) is increasing and
bounded above by −B. Thus the sequence (−an)∞n=1 has a limit L = lim

n→∞
− an. Therefore

−L = lim
n→∞

an exists. �

4.3. Example. Consider the sequence given recursively by

a1 = 1 and an+1 =
√

2 +
√
an for all n ≥ 1.

Evaluating a2, a3, . . . , a9, we obtain 1.7320508076, 1.8210090645, 1.8301496356, 1.8310735189,
1.831166746, 1.8311761518, 1.8311771007, 1.8311771965. It appears that this sequence in-
creases to some limit.

To prove this, first we show by induction that

1 ≤ an < an+1 < 2 for all n ≥ 1.

Since 1 = a1 <
√

3 = a2 < 2, this is valid for n = 1. Suppose that it holds for some n. Then

an+2 =
√

2 +
√
an+1 >

√
2 +
√
an = an+1 ≥ 1,
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and

an+2 =
√

2 +
√
an+1 <

√
2 +
√

2 < 2.

This verifies our claim for n+ 1. Hence by induction, it is valid for each n ≥ 1.
Therefore, (an) is a monotone increasing sequence. So by the Monotone Convergence

Theorem (4.2), it follows that there is a limit L = lim
n→∞

an. It is not clear that there is a nice

expression for L. However, once we know that the sequence converges, it is not hard to find a
formula for L. Notice that

L = lim
n→∞

an+1 = lim
n→∞

√
2 +
√
an =

√
2 +

√
lim
n→∞

an =

√
2 +
√
L.

We used the fact that the limit of square roots is the square root of the limit (see Exercise 2.C).

Squaring both sides gives L2 − 2 =
√
L, and further squaring yields

0 = L4 − 4L2 − L+ 4 = (L− 1)(L3 + L2 − 3L− 4).

Since L > 1, it must be a root of the cubic p(x) = x3 +x2− 3x− 4 in the interval (1, 2). There
is only one such root. as graphing the curve shows (see Figure 4.1). Indeed,

p′(x) = 3x2 + 2x− 3 = 3(x2 − 1) + 2x

is positive on [1, 2]. So p is strictly increasing. Since p(1) = −5 and p(2) = 2, p has exactly
one root in between.

x

y
6

-6

1 2

Figure 4.1. Graph of x3 + x2 − 3x− 4.

For the amusement of the reader, we give an explicit algebraic formula:

L =
1

3

(
3

√
79+
√
2241

2 +
3

√
79−
√
2241

2 − 1
)
.

4.4. Example. Notice that we first prove that the sequence converges, and then evaluate
the limit. This is important. Consider the sequence given by a1 = 2 and an+1 = (a2n + 1)/2
for n ≥ 1. This is a monotone increasing sequence. Suppose we let L denote the limit and
compute

L = lim
n→∞

an+1 = lim
n→∞

(a2n + 1)/2 = (L2 + 1)/2.
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Thus (L−1)2 = 0, which means that L = 1. This is an absurd conclusion because this sequence
is monotone increasing and greater than 2. The fault lay in assuming that the limit L actually
exists, because instead it diverges to +∞ (see Exercise 4.A).

Exercises for Section 4

A. Say that lim
n→∞

an = +∞ if for every R ∈ R, there is an integer N such that an > R for all n ≥ N .

Show that a divergent monotone increasing sequence converges to +∞ in this sense.

B. Let a1 = 0 and an+1 =
√

5 + 2an for n ≥ 1. Show that lim
n→∞

an exists and find the limit.

C. Is S = {x ∈ R : 0 < sin( 1
x ) < 1

2} bounded above (below)? If so, find supS (inf S).

D. (a) Evaluate lim
n→∞

n
√

3n + 5n.

(b) Show that this sequence is monotone decreasing.

E. Suppose (an) is a sequence of positive real numbers such that an+1 − 2an + an−1 > 0 for all n ≥ 1.
Prove that the sequence either converges or tends to +∞.

F. Let a, b be positive real numbers. Set x0 = a and xn+1 = (x−1n + b)−1 for n ≥ 0.
(a) Prove that xn is monotone decreasing.
(b) Prove that the limit exists and find it.

G. Let an = (
∑n
k=1 1/k) − log n for n ≥ 1. Euler’s constant is defined as γ = lim

n→∞
an. Show that

(an)
∞
n=1 is decreasing and bounded below by zero, and so this limit exists.

Hint: Prove that 1/(n+ 1) ≤ log(n+ 1)− log n ≤ 1/n.
(It is unknown whether γ is rational or not. It is known that if γ is rational, then the denominator
has more than 242,000 decimal digits [as of 2007]. So it is suspected to be irrational.)

H. Let xn =

√
1 +

√
2 +

√
3 + · · ·+

√
n.

(a) Show that xn < xn+1 < 1 +
√

2xn.
(b) Hence show that xn converges.

5. Subsequences

Given one sequence, we can build a new sequence, called a subsequence of the original,
by picking out some of the entries. Perhaps surprisingly, when the original sequence does not
converge, it is often possible to find a subsequence that does.

5.1. Definition. A subsequence of a sequence (an)∞n=1 is a sequence

(ank
)∞k=1 = (an1 , an2 , an3 , . . .),

where n1 < n2 < n3 < · · · .

For example, (a2k)
∞
k=1 and (ak3)∞k=1 are subsequences, where nk = 2k and nk = k3, respec-

tively. Notice that if we pick nk = k for each k, then we get the original sequence; so (an)∞n=1
is a subsequence of itself.

It is easy to verify that if (an)∞n=1 converges to a limit L, then (ank
)∞k=1 also converges to

the same limit. On the other hand, the sequence (1, 2, 3, . . .) does not have a limit, nor does
any subsequence, because any subsequence must diverge to +∞. However, we will show that
as long as a sequence remains bounded, it has subsequences that converge.
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5.2. Bolzano–Weierstrass Theorem.
Every bounded sequence of real numbers has a convergent subsequence.

Proof. Let (an) be a sequence bounded by B. Thus the interval [−B,B] contains the whole
(infinite) sequence. Now if I is an interval containing infinitely many points of the sequence
(an), and I = J1 ∪ J2 is the union of two smaller intervals, then at least one of them contains
infinitely many points of the sequence, too.

So let I1 = [−B,B]. Split it into two closed intervals of length B, namely [−B, 0] and [0, B].
One of these halves contains infinitely many points of (an); call it I2. Similarly, divide I2 into
two closed intervals of length B/2. Again pick one, called I3, that contains infinitely many
points of our sequence. Recursively, we construct a decreasing sequence Ik of closed intervals
of length 22−kB such that each contains infinitely many points of our sequence. Figure 5.1
shows the choice of I3 and I4, where the terms of the sequence are indicated by vertical lines.

−B B0

I3

I4

Figure 5.1. Choice of intervals I3 and I4.

Let the left and right endpoints of Ik be bk and ck. Since Ik+1 ⊂ Ik, we have

bk ≤ bk+1 < ck+1 ≤ ck.

Therefore (bk) is an increasing sequence which is bounded above by c1 (or any cm). So by
the Monotone Convergence Theorem 4.2, lim

k→∞
bk = L exists. Similarly, (ck) is a monotone

decreasing sequence which is bounded below by b1. So lim
k→∞

ck = M exists. Moreover, M = L

because

M − L = lim
k→∞

ck − bk = lim
k→∞

22−kB = 0.

Finally, choose an increasing sequence nk such that ank
belongs to Ik. This is possible

since each Ik contains infinitely many elements of the sequence, and only finitely many have
index at most nk−1. Then bk ≤ ank

≤ ck. By the Squeeze Theorem 1.5, lim
k→∞

ank
= L. �

5.3. Example. Consider the sequence (an) = (sign(sinn))∞n=1, where the sign function takes
values ±1 depending on the sign of x except for sign 0 = 0. Without knowing anything about
the properties of the sine function, we can observe that the sequence (an) takes at most three
different values. At least one of these values is taken infinitely often. Thus it is possible to
deduce the existence of a subsequence that is constant and therefore converges.

Using our knowledge of sine allows us to get somewhat more specific. Now sinx = 0
exactly when x is an integer multiple of π. Since π is irrational, kπ is never an integer for
k > 0. Therefore, an takes only the values ±1. Note that sinx > 0 if there is an integer k such
that 2kπ < x < (2k+ 1)π; and sinx < 0 if there is an integer k such that (2k−1)π < x < 2kπ.
Observe that n increases by steps of length 1, while the intervals on which sinx takes positive
or negative values has length π ≈ 3.14. Consequently, an takes the value +1 for three or four
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terms in a row, followed by three or four terms taking the value −1. Consequently, both 1 and
−1 are limits of certain subsequences of (an).

To compute a particular sequence nk for which ank
= 1 for all k requires a much more

delicate analysis depending on π. One of the nice things about analysis is that one can often
make significant use of such a sequence without knowing the details of which subsequence is
used.

5.4. Example. Now consider the sequence (an) = (sinn)∞n=1. As the angles n radians for
n ≥ 1 are marked on a circle, they appear gradually to fill in a dense subset. If this can be
demonstrated, we should be able to show that L is a limit of a subsequence of our sequence
for every L in [−1, 1].

The key is to approximate the angle 0 modulo 2π by integers. If x is a real number, let
{x} denote the number θ in (−π, π] so that x− θ is an integer multiple of 2π.

Let ε > 0. Choose an integer N so large that Nε > 2π. Divide the circle into N arcs of
length 2π/N radians each. Then consider the N +1 points {0}, {1}, {2}, . . . , {N} . Since there
are N + 1 points distributed into only N arcs, the Pigeonhole Principle implies that at least
one arc contains two points, say i and j, where i < j. Then n = j− i represents an angle with
|{n}| < 2π

N < ε. That is, n = θ + 2πs for some integer s and real number |θ| < ε. Since π is
not rational, n is not an exact multiple of 2π; and thus {n} 6= 0.

So given L in [−1, 1], find an angle α so that sinα = L. Construct a subsequence as follows.
Let n1 = 0. Recursively we construct an increasing sequence nk < nk+1 so that

| sinnk − L| ≤
1

k
.

Once nk is defined, take ε = 1
k+1 . As in the previous paragraph, there is an integer n such

that n = θ + 2πs and |θ| < 1
k+1 . So multiples of n wrap around the circle with less than

1
k+1 gap between each and the next. Thus there is a positive integer t > nk/n such that

|{α− tn}| = |{α− tθ}| < 1
k+1 . Therefore

| sin(tn)− L| = | sin(tθ)− sin(α)| ≤ |{α− tn}| < 1

k + 1
.

Set nk+1 = tn. This completes the induction. The result is a subsequence such that

lim
k→∞

sin(nk) = L.

This used the fact that | sinx− sin y| ≤ |x− y|. This will be proven later using the Mean
Value Theorem.

Exercises for Section 5

A. Show that (an) =
(
n cosn(n)√
n2+2n

)∞
n=1

has a convergent subsequence.

B. Does the sequence (bn) =
(
n+ cos(nπ)

√
n2 + 1

)∞
n=1

have a convergent subsequence?

C. Does the sequence (an) = (cos log n)∞n=1 converge?

D. Show that every sequence has a monotone subsequence.

E. Use trig identities to show that | sinx− sin y| ≤ |x− y|.
Hint: Let a = (x+ y)/2 and b = (x− y)/2. Use the addition formula for sin(a± b).
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F. Let (xn)
∞
n=1 be a sequence of real numbers. Suppose that there is a real number L such that

L = lim
n→∞

x3n−1 = lim
n→∞

x3n+1 = lim
n→∞

x3n. Show that lim
n→∞

xn exists and equals L.

G. Suppose that (an)
∞
n=1 is a sequence such that lim

n→∞
an = L. Let (ank

)∞k=1 be any subsequence of

(an)
∞
n=1. Prove that lim

k→∞
an+k = L.

H. Define x1 = 2 and xn+1 = 1
2 (xn + 5/xn) for n ≥ 1.

(a) Find a formula for x2n+1 − 5 in terms of x2n − 5.
(b) Hence evaluate lim

n→∞
xn.

(c) Compute the first ten terms on a computer or a calculator.
(d) Show that the tenth term approximates the limit to over 600 decimal places.

I. Let (xn)
∞
n=1 be a sequence in R. Suppose there is a number L such that every subsequence (xnk

)
∞
k=1

has a subsubsequence
(
xnk(l)

)∞
l=1

with lim
l→∞

xnk(l)
= L. Show that the whole sequence converges to

L. Hint: If not, you could find a subsequence bounded away from L.

J. Suppose (xn)
∞
n=1 is a sequence in R, and that Lk are real numbers with lim

k→∞
Lk = L. If for each

k ≥ 1, there is a subsequence of (xn)
∞
n=1 converging to Lk, show that some subsequence converges

to L. Hint: Find an increasing sequence nk such that |xnk
− L| < 1/k.

K. Let (xn)
∞
n=1 be an arbitrary sequence. Prove that there is a subsequence (xnk

)
∞
k=1 which converges

or lim
k→∞

xnk
=∞ or lim

k→∞
xnk

= −∞.

L. Construct a sequence (xn)
∞
n=1 such that for every real number L, there is a subsequence (xnk

)
∞
k=1

with lim
k→∞

xnk
= L.

6. Cauchy Sequences

Can we decide whether a sequence converges without first finding the value of the limit?
To do this, we need an intrinsic property of a sequence which is equivalent to convergence that
does not make use of the value of the limit. This intrinsic property shows which sequences
are ‘supposed’ to converge. This leads us to the notion of a subset of R being complete if
all sequences in the subset that are ‘supposed’ to converge actually do. As we shall see, this
completeness property has been built into the real numbers by our construction of infinite
decimals.

To obtain an appropriate condition, notice that if a sequence (an) converges to L, then as
the terms get close to the limit, they are getting close to each other.

6.1. Proposition. Let (an)∞n=1 be a sequence converging to L. For every ε > 0, there is an
integer N such that

|an − am| < ε for all m,n ≥ N.

Proof. Fix ε > 0 and use the value ε/2 in the definition of limit. Then there is an integer N
such that |an − L| < ε/2 for all n ≥ N . Thus if m,n ≥ N , we obtain

|an − am| ≤ |an − L|+ |L− am| <
ε

2
+
ε

2
= ε. �

In order for N to work in the conclusion, for every m ≥ N , am must be within ε of aN . It
is not enough to just have aN and aN+1 close (see Exercise 6.B).
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We make the conclusion of this proposition into a definition. This definition retains the
flavour of the definition of a limit, in that it has the same logical structure: For all ε > 0,
there is an integer N . . . .

6.2. Definition. A sequence (an)∞n=1 of real numbers is called a Cauchy sequence provided
that for every ε > 0, there is an integer N such that

|am − an| < ε for all m,n ≥ N.

6.3. Proposition. Every Cauchy sequence is bounded.

Proof. The proof is basically the same as that for convergent sequences in Proposition 2.2.
Let (an)∞n=1 be a Cauchy sequence. Taking ε = 1, find N so large that

|an − aN | < 1 for all n ≥ N.

It follows that the sequence is bounded by max{|a1|, . . . , |aN−1|, |aN |+ 1}. �

Since the definition of a Cauchy sequence does not require the use of a potential limit L,
it permits the following definition.

6.4. Definition. A subset S of R is said to be complete if every Cauchy sequence (an) in
S (that is, an ∈ S) converges to a point in S.

This brings us to an important conclusion about the real numbers themselves, another
property that distinguishes the real numbers from the rational numbers.

6.5. Completeness Theorem.
Every Cauchy sequence of real numbers converges. So R is complete.

Proof. Suppose that (an)∞n=1 is a Cauchy sequence. By Proposition 6.3, {an : n ≥ 1} is
bounded. By the Bolzano–Weierstrass Theorem (5.2), this sequence has a convergent subse-
quence, say

lim
k→∞

ank
= L.

Let ε > 0. From the definition of Cauchy sequence for ε/2, there is an integer N such that

|am − an| <
ε

2
for all m,n ≥ N.

And from the definition of limit using ε/2, there is an integer K such that

|ank
− L| < ε

2
for all k ≥ K.

Pick any k ≥ K such that nk ≥ N . Then for every n ≥ N ,

|an − L| ≤ |an − ank
|+ |ank

− L| < ε

2
+
ε

2
= ε.

So lim
n→∞

an = L. �
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6.6. Remark. This theorem is not true for the rational numbers. Here is an example of a
Cauchy sequence of rational numbers that does not converge to a rational number. Define the
sequence (an)∞n=1 by

a1 = 1.4, a2 = 1.41, a3 = 1.414, a4 = 1.4142, a5 = 1.41421, . . .

and in general, an is the first n + 1 digits in the decimal expansion of
√

2. If n and m are
greater than N , then an and am agree for at least first N + 1 digits. Thus

|an − am| < 10−N for all m,n ≥ N.

This shows that (an)∞n=1 is a Cauchy sequence of rational numbers. (Why?)
However, this sequence has no limit in the rationals. In our terminology, Q is not complete.

Of course, this sequence does converge to a real number, namely
√

2. This is one way to see
the essential difference between R and Q: the set of real numbers is complete and Q is not.

6.7. Example. Let α be an arbitrary real number. Define an = [nα]/n, where [x] is the
nearest integer to x. Then

∣∣[nα]− nα
∣∣ ≤ 1/2. So

|an − α| =
∣∣[nα]− nα

∣∣
n

≤ 1

2n
.

We claim lim
n→∞

an = α. Indeed, given ε > 0, choose N so large that 1
N < ε. Then for n ≥ N ,

|an − α| < ε/2. Moreover, if m,n ≥ N ,

|an − am| ≤ |an − α|+ |α− am| <
ε

2
+
ε

2
= ε.

Thus this sequence is Cauchy.

6.8. Example. Consider the infinite continued fraction

1

2 +
1

2 +
1

2 +
1

2 + · · ·
To make sense of this, it has to be interpreted as the limit of the finite fractions

a1 =
1

2
, a2 =

1

2 + 1
2

=
2

5
, a3 =

1

2 + 1

2+
1
2

=
5

12
, · · · .

We need a better way of defining the general term. In this case, there is a recursive formula
for obtaining one term from the preceding one:

a1 =
1

2
, an+1 =

1

2 + an
for n ≥ 1.

In order to establish convergence, we will show that (an) is Cauchy. Consider

an+1 − an+2 =
1

2 + an
− 1

2 + an+1
=

an+1 − an
(2 + an)(2 + an+1)

.
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Now a1 > 0, and it is readily follows that an > 0 for all n ≥ 2 by induction. Hence the
denominator (2 + an)(2 + an+1) is greater than 4. So we obtain

|an+1 − an+2| <
|an − an+1|

4
for all n ≥ 1.

Since |a1 − a2| = 1/10, we may iterate this inequality to estimate

|a2 − a3| <
1

10 · 4

|a3 − a4| <
1

10 · 42

|an − an+1| <
1

10 · 4n−1
= 2

5(4−n).

The general formula estimating the difference may be verified by induction.
Now it is straightforward to estimate the difference between arbitrary terms am and an for

m < n:

|am − an| =
∣∣(am − am+1) + (am+1 − am+2) + · · ·+ (an−1 − an)

∣∣
≤ |am − am+1|+ |am+1 − am+2|+ · · ·+ |an−1 − an|

< 2
5(4−m + 4−m−1 + · · ·+ 41−n) <

2 · 4−m

5(1− 1
4)

=
8

15
4−m < 4−m.

This tells us that our sequence is Cauchy. Indeed, if ε > 0, choose N such that 4−N < ε. Then

|am − an| < 4−m ≤ 4−N < ε for all m,n ≥ N.

Therefore by the Completeness Theorem 6.5, it follows that (an)∞n=1 converges. Let us
write lim

n→∞
an = L. To calculate L, use the recurrence relation

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

1

2 + an
=

1

2 + L
.

It follows that L2 + 2L − 1 = 0. Solving yields L = ±
√

2 − 1. Since L > 0, we see that
L =

√
2− 1.

We have accumulated four different results for R that distinguish it from Q.

(1) the Least Upper Bound Principle (3.3),
(2) the Monotone Convergence Theorem (4.2),
(3) the Bolzano–Weierstrass Theorem (5.2),
(4) the Completeness Theorem (6.5).

It turns out that they are all equivalent. Indeed, each of the proofs of items (2) to (4) relies
only on the previous item in our list. To show how the Completeness Theorem implies the
Least Upper Bound Principle, go through our proof to obtain an increasing sequence of lower
bounds, yk, and a decreasing sequence of elements xk ∈ S with xk < yk + 10−k. Show that the
sequence x1, y1, x2, y2, . . . is Cauchy. The limit L will be the greatest lower bound. Fill in the
details yourself (Exercise 6.G).
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Exercises for Section 6
A. Let (xn) be Cauchy with a subsequence (xnk

) such that lim
k→∞

xnk
= a. Show that lim

n→∞
xn = a.

B. Give a sequence (an) such that lim
n→∞

|an − an+1| = 0, but the sequence does not converge.

C. Let (an) be a sequence such that lim
N→∞

∑N
n=1 |an − an+1| <∞. Show that (an) is Cauchy.

D. If (xn)
∞
n=1 is Cauchy, show that it has a subsequence (xnk

) such that
∑∞
k=1 |xnk

− xnk+1
| <∞.

E. Suppose that (an) is a sequence such that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n ≥ 0. Show that
this sequence is Cauchy if and only if lim

n→∞
|an − an+1| = 0.

F. Give an example of a sequence (an) such that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n ≥ 0 which
does not converge.

G. Fill in the details of how the Completeness Theorem implies the Least Upper Bound Principle.

H. Let a0 = 0 and set an+1 = cos(an) for n ≥ 0. Try this on your calculator (use radian mode!).
(a) Show that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n ≥ 0.
(b) Use the Mean Value Theorem to find an explicit number r < 1 such that
|an+2 − an+1| ≤ r|an − an+1| for all n ≥ 0. Hence show that this sequence is Cauchy.

(c) Describe the limit geometrically as the intersection point of two curves.

I. Evaluate the continued fraction:

1 +
1

1 +
1

1 +
1

1 + · · ·
.

J. Let x0 = 0 and xn+1 =
√

5− 2xn for n ≥ 0. Show that this sequence converges and compute the
limit. Hint: Show that the even terms increase and the odd terms decrease.

K. Consider an infinite binary expansion (0.e1e2e3 . . . )base 2, where each ei ∈ {0, 1}. Show that an =∑n
i=1 2−iei is Cauchy for every choice of zeros and ones.

L. One base-independent construction of the real numbers uses Cauchy sequences of rational numbers.
This exercise asks for the definitions that go into such a proof.

(a) Find a way to decide when two Cauchy sequences should determine the same real number without
using their limits. Hint: Combine the two sequences into one.

(b) Your definition in (a) should be an equivalence relation. Is it? (See the Appendix in the first
handout.)

(c) How are addition and multiplication defined?
(d) How is the order defined?


