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Abstract: This study attempts to investigate a method for creating an index from mobility data that 
not only correlates with the number of people who relocate to a place but also has causal influence 
on the number of such individuals. By creating an index based on human mobility data, it becomes 
possible to predict the influence of urban development on future residential movements. In this paper, 
we propose a method called the travel cost method for multiple places (TCM4MP) by extending 
the conventional travel cost method (TCM). We assume that the opportunity cost of travel time on 
non-working days reflects the convenience and amenities of a neighborhood. However, conventional 
TCM does not assume that the opportunity cost of travel time varies according to the departure place. 
In this paper, TCM4MP is proposed to estimate the opportunity cost of travel time with respect to the 
departure place. We consider such estimation as possible due to the use of massive mobility data. We 
assume that the opportunity cost of travel time on non-working days reflects the convenience and 
amenities of the neighborhood. Therefore, we consider that the opportunity cost of travel time has a 
causal influence on future residential mobility. In this paper, the validity of the proposed method is 
tested using the smart card data of public transportation in Western Japan. Our proposed method 
is beneficial for urban planners in estimating the effects of urban development and detecting the 
shrinkage and growth of a population.

Keywords: human mobility; residential mobility; smart card; public transportation; opportunity cost 
of travel time18

1. Introduction19

Urban planners are making efforts to make cities livable for residents; they are also making efforts20

to predict future population change. Therefore, it is highly important to detect the shrinkage or growth21

of a population and to estimate the effects of urban development on future populations. However, it is22

difficult immediately following urban development to estimate the effects of urban development on23

future residential mobility.24

Previous studies have revealed that urban form influences both non-work travel behavior [1–4]25

and residential mobility [5,6]. The amenities of residential neighborhoods reduce the needs for26

non-work travel to distant places and increase the number in-migrants. For example, if shopping27

centers and parks are located in a neighborhood, residents do not have to go to shopping centers and28

parks located far away. Such convenience also contributes to an increase in residential movements to29

such a location.30
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Figure 1. Hypothesis on the causal relationship between urban form, non-work human mobility, and
residential mobility. The objective of our paper is to create an index based on non-work travel behavior
that not only correlates with the number of people who relocate to each place but also has causal
influence on the number of residential movements.

We consider that the analysis of non-work travel contributes to the prediction of future residential31

mobility. Figure 1 shows our hypothesis on the causal relationship between urban form, non-work32

human mobility, and residential mobility. Changes in urban form (e.g., the amenities of a neighborhood)33

could be a cause of changes in non-work human mobility (e.g., average travel time and diversity of34

destinations), and changes in non-work human mobility could be a cause of changes in residential35

mobility (e.g., the number of people who relocate to each place). Therefore, we consider it possible to36

create an index based on mobility data to estimate the influence of urban development on residential37

mobility. Since human mobility changes immediately according to urban changes, such as the opening38

of a shopping center, we consider that mobility data enable us to immediately predict the outcome of39

urban development. Therefore, predicting the causal influence of changes in urban form on future40

residential movements does not take a long time. On the other hand, opportunities for analyzing41

massive real-time mobility data are increasing due to the automatic collection of mobility data such as42

smart card data of public transportation. Therefore, we consider that massive collected mobility data43

can contribute to the prediction of future residential mobility.44

This study attempts to investigate a method for creating an index that not only correlates with45

future residential movements but also has causal influence on future residential movements. By46

creating an index based on human mobility data, it will be possible to predict the influence of urban47

development on future residential movements.48

In this paper, we propose a method called travel cost method for multiple places (TCM4MP) by49

extending the conventional travel cost method (TCM). In previous studies, TCM was used for inferring50

the benefits of a recreational site [7,8] and the opportunity cost of travel time [9,10]. We consider that51

the opportunity cost of travel time on non-working days reflects the convenience and amenities of a52

neighborhood. However, conventional TCM does not assume that the opportunity cost of travel time53

varies according to the departure place. In this paper, TCM4MP is proposed to estimate the opportunity54

cost of travel time that varies according to the departure place. We consider such estimation as possible55

due to the use of massive mobility data. We assume that the opportunity cost of travel time on56

non-working days reflects the convenience and amenities of a neighborhood. Therefore, we consider57

that the opportunity cost of travel time has a causal influence on future residential movements.58

The contributions of this paper are summarized as follows:59

• We propose a method to infer the opportunity cost of travel time on non-working days that60

varies according to the departure place by extending the conventional travel cost method.61

• We examine the extent to which the opportunity cost of travel time contributes to the prediction62

of future residential movements.63

We compare the contribution of opportunity cost to predict the number of people who relocate64

to each place with other types of indices derived from smart card data of public transportation. It65

is insufficient to examine the contribution of the opportunity cost of travel time to the prediction of66

future residential movements only through the correlation to the number of people who relocate to67

each place. We infer a causal relation between the number of residential moves, the opportunity cost68
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Figure 2. A flow-chart of the processes involved in this paper.

of travel time, and other indices that highly correlate with the number of residential moves. Thus, the69

research questions that we address in this paper are summarized as follows:70

• RQ1: Does the opportunity cost of travel time calculated by an extended travel cost method71

contribute to the prediction of the number of people who relocate to each place compared to the72

current population and other indices?73

• RQ2: Does the opportunity cost of travel time have a causal influence on the number of people74

who relocate to each place compared to the current population and other indices?75

Figure 2 is a flow chart of this study. We extract human mobility data on non-working days and76

residential mobility data from smart card data of public transportation. Using human mobility data77

on non-working days, indices for the prediction of residential movements are created. We create a78

regression model for each index. Then, we perform the evaluation of causality between the number of79

people who relocate to each place and the created indices.80

The remainder of this paper is organized as follows: Section 2 reviews previous studies. Section 381

describes the proposed method. Section 4 explains the baselines and evaluation method. Section 582

explains the data that we use. Section 6 describes the data preprocessing method. Section 7 reports83

on the results. Section 8 discusses the implications and limitations of our study. Section 9 draws our84

conclusions.85

2. Related works86

2.1. Travel cost method and opportunity cost of travel time87

Travel is considered as a demand derived from the desire to engage in activities at destinations [11].88

According to Becker’s theory of the allocation of time [12], people allocate their limited time to activities89

to maximize utility. Since travel time is considered wasteful or unproductive, it is interpreted as a90

necessary evil to obtain benefits from activities at destinations. The travel cost method (TCM) is widely91

used for measuring the benefit of recreational sites [7,8] and for measuring the opportunity cost of92

travel time [9,10]. The method assumes that the ratio or the number of visits to a site and the cost93
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of travel, including time and money, presents a demand curve. Regression analysis is performed for94

measuring the benefits of destinations and the opportunity cost of travel time. On the other hand, some95

studies [13–15] discuss that people spend time on productive or enjoyable activities while traveling96

using rapidly growing information and communications technologies (ICTs) such as smart phones,97

laptop computers, portable music players, and gaming devices. Therefore, the opportunity cost of98

travel time may differ based on such activities during traveling.99

In our research, we measure the opportunity cost of travel time for multiple departure places100

using the smart card data of public transportation. Such measurement has never been performed in101

previous studies, and it requires an extension of the conventional TCM. In addition, we measure the102

opportunity cost of travel time for different demographic groups using gender and age data. The103

influence of the development of ICTs could be reflected in the difference in the opportunity cost of104

travel time among different demographic groups.105

2.2. Interaction between urban form and travel behavior106

In regard to the interaction between urban form and travel behavior, previous studies argue that107

urban form affects non-work travel behavior [1–4]. According to these studies, the ratio of people108

who walk on non-working days is strongly related to land use diversity, intersection density, and the109

number of destinations within walking distance. On the other hand, while other studies [16–20] also110

acknowledge that urban form influences non-work travel behavior, they argue that attitudes toward111

travel behavior and preferences toward residential location are more strongly associated with travel112

than are land use characteristics. These studies suggest that such preferences could affect residential113

choice. For example, people who prefer to drive may choose to live in suburban areas and travel114

by car, and people who prefer to walk may choose to live in areas with mixed land use and higher115

neighborhood accessibility. Mokhtarian and Cao [21] note the difficulty in finding causality between116

attitudinal factors, residential locations, and non-work travel behavior. They recommend the usage of117

longitudinal structural equations modeling for causal analysis. Krizek [22] performs analysis of the118

travel behavior of the same households in a longitudinal manner for causal analysis between urban119

form and travel behavior. The findings of the study suggest that households change travel behavior120

when exposed to differing urban forms. In particular, locating to areas with higher neighborhood121

accessibility decreases vehicle miles traveled (VMT) and person miles traveled (PMT). In addition,122

Handy et al. [23] acknowledge that residential self-selection plays an important role in influencing123

individuals’ travel decisions, but they also suggest that mixed land uses tend to discourage auto travel.124

Regarding our research, public transportation is the dominant measure for moving in the area125

where data that we use are collected. We assume that the opportunity cost of travel time increases when126

amenities and convenience in the neighborhood are high. In addition, we assume that convenience and127

amenities in the neighborhood contribute to an increase in the number of people who relocate to the128

place. Our study does not assume that preferences for residential locations and travel behavior differ129

among people. The limitation of our study is that it does not incorporate automobile travel, nor does it130

incorporate the difference in preferences for travel behavior and residential location. Therefore, it is131

necessary to further develop our method if applied to areas where people have varying preferences for132

travel behavior.133

2.3. Influential factors on residential mobility134

Influential factors on residential mobility and residential demand have long been studied [5,6]. By135

applying hedonic modeling, the influence of crime [24], consumption amenities [25–27], neighborhood136

parks [28], social capital [29], walkability [30], and air quality [31] have been discussed. By modeling137

individual or household choices regarding residential location, the relations between lifestyles,138

neighborhood characteristics, and the choice of residential location have been studied [32–34].139

We consider that the opportunity cost of travel time reflects consumption amenities, neighborhood140

parks, and walkability. However, crime rate and air quality are not reflected in mobility data. We141
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consider that the benefit of our method is that it only requires mobility data for predicting residential142

mobility and that it does not require additional secondary data such as information about crime rates.143

However, data on other factors, such as crime rate, can also be incorporated into our method to obtain144

better predictions of residential mobility.145

2.4. Gap in the literature146

In previous studies, data are collected through survey. It is costly and time consuming to collect147

survey data. The availability of massive mobility data collected from mobile phones and smart card of148

public transportation has been rapidly increasing.149

Recent studies create indices for estimating urban characteristics using automatically collected150

mobility data. For example, Smith et al. [35] create an index for estimating community well-being151

by calculating the diversity of destinations people visit based on the smart card data of public152

transportation. Zhong et al. [36] create indices of the centrality of mobility for each station using a153

network science approach from the smart card data of public transportation. Yabe et al. [37] measure154

the fragility of people flows to appropriately plan future investments in infrastructure based on155

locational data collected from mobile phones. The benefit of such indices is as follows: First, we can156

detect urban changes without surveys that cost time and money. Second, we can evaluate the result157

of investments in urban development and predict future outcomes. Third, we can obtain knowledge158

about the nature of urban systems using those indices.159

To the best of our knowledge, no method has been proposed to create an index based on mobility160

data to predict future residential movements. We propose a method called TCM4MP (travel cost161

method for multiple places) to infer the opportunity cost of travel time that varies according to the162

given place as an index for predicting the number of people who relocate to each place.163

Our study is motivated by previous studies in the domain of transportation engineering and164

urban economics; however, the aim of our study is practical use. The final objective of our study is to165

contribute to the detection and prediction of changes in the trends of residential mobility. We consider166

that the current population of each place also correlates with the number of people who relocate to167

each place. However, this changes slowly compared to changes in travel behavior; therefore, it cannot168

contribute to the early detection and prediction of changes in the trends of residential mobility. We169

compare our proposed method with other indices derived from smart card data in terms of correlation170

and causality to the number of people who relocate to each place.171

3. Method172

3.1. Measurement of opportunity cost of travel time173

Conventional studies using TCM do not assume that the opportunity cost of travel time varies
according to the departure place. In addition, these studies usually calculate the benefit of one
recreational site. Equation 1 is the equation of a demand curve defined in a conventional travel cost
method.

vi = C− Bti (i ∈ D) (1)

In this equation, vi denotes the visitation rate to a recreational site per person who lives in place i, C174

denotes the benefit one can obtain by visiting the recreational site, ti denotes the time it takes to travel175

from place i to the recreational site. B denotes the opportunity cost of travel time per unit time, and D176

denotes the set of departure places.177

We propose a method called TCM4MP by extending Equation 1 to measure the values of the
opportunity cost that differ according to the departure place. Equation 2 is derived by assuming that
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the opportunity cost of travel time differs according to the departure place and by incorporating the
values of the benefits of multiple arrival places.

vi,j = Cj − Biti,j (i ∈ D, j ∈ A) (2)

In this equation, Bi is a parameter that represents the opportunity cost of people who live in departure178

place i. Cj is a parameter that represents the benefit that one can obtain by visiting arrival place j. vi,j179

denotes the average number of movements from departure place i to arrival place j per person, and180

A denotes the set of arrival places.181

It is impossible to determine the values of Bi by simply applying linear regression analysis. We182

assume that the parameters Bi (i ∈ D) and Cj (j ∈ A) follow normal distributions as in Equations 3183

and 4.184

Bi ∼ Normal(µB, σ2
B) (i ∈ D) (3)

Cj ∼ Normal(µC, σ2
C) (j ∈ A) (4)

In these equations, µB, σB, µC, and σC are hyperparameters. All the parameters and hyperparameters185

are inferred by applying the hierarchical Bayesian inference method to Equations 2, 3, and 4 using186

mobility data on non-working days. In this study, we use statistical software, Stan [38], for Bayesian187

inference, which is based on No-U-Turn sampler (NUTS) [39], an extension of Hamiltonian Monte188

Carlo (HMC) [40]. Thus, the values of the opportunity cost of travel time Bi are obtained.189

The opportunity cost Bi can be obtained separately according to people’s demographic190

information. Our method divides mobility data according to demographic information about their191

gender and age, and we calculate Bi for each demographic group. We let k denote a demographic192

group, and Bi,k denotes the opportunity cost of people living in place i in demographic group k.193

3.2. Decision of prediction model194

We assume that the opportunity cost of travel time reflects the convenience of the place. We also195

consider that the number of people who relocate to a place correlates with the convenience of the196

place. In addition, we consider that the convenience of a place varies depending on gender and age.197

Therefore, we use the opportunity cost of the travel time to a place for the prediction of the number of198

people who relocate to that place.199

We create a power regression model ϕO for opportunity cost (O) to predict the amount of future
residential mobility by Equation 5.

mi,k = ϕO(k, i) = βkBαk
i,k (5)

Note that mi,k denotes the number of people in demographic group k who relocate to place i. The200

parameters αk and βk are unconditioned to place i. We consider that power regression is suitable201

because of the assumption that the number of residential movements are proportional to the product202

of the population of two areas (a gravity model [41]) and the assumption that the distribution of203

a population follows the power law (Zipf’s law [42]). The parameters are calculated using the204

Levenberg-Marquardt algorithm [43].205
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4. Baselines and evaluation methods206

4.1. Baselines207

We evaluate how much the predictor using the opportunity cost (ϕO) contributes to the prediction208

of residential mobility by comparing it with other indices. We compare it with predictors using the209

following three indices:210

• Population (P): This index is simply the number of current residents in place i. We let Pi,k denote211

the number of residents of demographic group k living in place i.212

• Average travel time (A): This index is a simplification of the opportunity cost of travel time. We213

let Ti,k denote the multiplicative inverse of travel time per person.214

• Diversity (D): According to Smith et al. [35], the diversity of places people visit reflects the
well-being of the community. The index is as follows:

diversity(u) =
−∑j∈Su wu,j log(wu,j)

|Su|
(6)

Hi =
1
|Mi| ∑

u∈Mi

diversity(u) (7)

In Equation 6, Su is the set of places user u visited, and wu,j is the proportion of all u’s visits to215

place j. The numerator in this equation is the Shannon entropy. In Equation 7, Mi is the set of216

users who live in place i. We let Hi,k denote the diversity of places users in demographic group k217

living in place i visit.218

As with Equation 5, prediction models ϕP, ϕA, and ϕD are determined by power regression.219

4.2. Evaluation of correlation and causal relation between the number of relocations and the predictors220

First, we evaluate the correlation between a predictor and the number of people who relocate to221

each place. If we found predictors that highly correlate with the number of people who relocate to222

each place, we perform causal inference between the predictors and the number of residential moves.223

We apply linear non-Gaussian acyclic model (LiNGAM) [44] for the causal inference. By applying
LiNGAM, causal relations between variables are obtained as described in Equation 8.

xi = ∑ bi,jxj + ei (8)

In this equation, xi is an observed variable. The variable ei is an exogenous variable (random variable)224

having a non-Gaussian distribution, and bi,j is the strength of the causal connection from xj to xi. The225

objective of causal inference is to determine bi,j.226

The key difference between LiNGAM and earlier works on causal inference is that LiNGAM227

assumes that exogenous variables are non-Gaussian. Under this assumption, it is possible to estimate228

a causal ordering of variables using passive observational data alone without any prior information on229

a causal ordering of the variables.230

In our study, xi denotes either the number of residential moves or the value of a predictor for231

predicting the number of residential moves. By applying LiNGAM, we obtain the causal networks232

between the number of residential moves and predictors that highly correlate with the number of233

residential moves. We use causal networks obtained using LiNGAM for the evaluation of the causal234

influence of each predictor on the number of residential moves.235

5. Data236

We use the smart card data of public transportation in the Kansai Area of Japan. The data are from237

March to April 2016 and from March to April 2017. There are two types of smart cards in this area. One238
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Figure 3. The locations of the 1024 railway stations used in this paper.

type of smart card requires applicants to submit their personal information when applying to obtain239

the card. We use data collected from that type of smart card. The data include information about the240

user’s ID, user’s age, user’s gender, the postal code of the location of user’s residence, boarding station,241

boarding time, alighting station, and alighting time. The data were completely anonymized before the242

data are provided to us by the railway companies.243

The data include 1,024 stations held by 14 railway companies and 3 agencies of city governments.244

The locations of the stations are shown in Figure 3.245

The demographic composition of the card holders is given in Table 1. The number of male card246

holders and that of female card holders exceed one million in both 2016 and 2017.247

We compare the demographic composition of the smart card data and that of the data published248

by the government of Osaka City. We categorize the smart card data by gender and ages in groups of249

10 years. Osaka City has 24 wards. We therefore further divide the smart card data according to the250

ward in which each card holder’s residence is located. We compare the number of residents by ward251

for each demographic group. Table 2 shows the correlation coefficients between the number of each252

demographic group of the smart card data and that of the governmental data. We assume that smart253

card data reflect real demographic compositions.254

In this paper, we use smart card data collected from March to May 2016 for obtaining predictors255

for the amount of future residential mobility. We recognize residential moves between 2016 and 2017256

by the changes in stations at which card holders most frequently board for the first time on a day.257

We do not use data on individuals younger than 20 or older than 79 because we assume that258

most of these people do not relocate to other areas by their own will. In the following, we divide card259

holders into demographic groups by gender and in age groups of 10 years.260
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Table 1. Demographic composition of card holders

2016 2017

Age Male Female Male Female

0-9 11,331 12,274 12,252 13,308
10-19 127,968 141,913 133,691 147,673
20-29 146,365 215,936 148,487 217,400
30-39 198,082 251,226 193,508 248,822
40-49 275,129 310,716 279,966 322,486
50-59 219,646 225,320 230,026 242,502
60-69 143,823 151,027 157,696 169,407
70-79 133,427 182,992 130,555 180,812
80-89 40,429 53,125 43,489 58,318
90-99 1,557 1,840 1,786 2,083

Total 1,297,757 1,546,369 1,331,456 1,602,811

Table 2. Correlation coefficients of the comparison of 24 wards in Osaka City between the population
of smart card holders and the information about the demographic composition published by the
government of Osaka City.

Age 2016 2017

0-9 0.787010 0.823162
10-19 0.937348 0.948269
20-29 0.958899 0.969244
30-39 0.935792 0.946171
40-49 0.925023 0.942998
50-59 0.927487 0.941806
60-69 0.897694 0.927388
70-79 0.950722 0.950101
80-89 0.948302 0.941291
90-99 0.882572 0.904075

6. Data pre-processing261

This section explains the data pre-processing procedure for the smart card data that we used. Some262

thresholds used in this section are arbitrarily set, and we do not investigate a method to automatically263

find suitable such thresholds in this paper. Further research is needed to investigate a method to264

automatically find suitable thresholds.265

6.1. Decision of travel time between two stations266

We determine the time it takes to travel from departure station d1 to arrival station a1 by t(d1, a1)

defined in Equation 9.
t(d1, a1) = Med(H(d1, a1)) (9)

In this equation, H(d1, a1) denotes a set of all the values of durations for traveling from departure267

station d1 to arrival station a1. Med(H(d1, a1)) denotes the median of H(d1, a1).268
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6.2. Grouping departure stations, arrival stations, and smart card holders269

We group departure stations by the physical proximity between stations and similarity of
boardings by smart card holders. Departure station d1 and departure station d2 are grouped together
when Equation 10 or Equation 11 is satisfied.

l(d1, d2) < 300 (10)(
|V(d1) ∩V(d2)| > 0.1 · |V(d1)|

)
∧
(
|V(d1) ∩V(d2)| > 0.1 · |V(d2)|

)
(11)

In Equation 10, l(d1, d2) denotes the distance between departure station d1 and departure station d2270

in meters. In Equation 11, V(d1) denotes a set of smart card holders who had boarded at departure271

station d1 for the first time on a day during the period from March to May 2016 (we assume that a272

station that a user boards at for the first time on a day is located near the user’s residential location).273

Equation 10 means that the distance between departure station d1 and departure station d2 is less274

than 300 meters. Equation 11 means that the number of smart card users who have boarded at both275

departure station d1 and departure station d2 is greater than 10% of the number of smart card holders276

who had boarded at departure station d1 and that of smart card users who had boarded at departure277

station d2.278

We group arrival stations by the physical proximity and walkability between stations. Arrival279

station a1 and arrival station a2 are grouped together when Equation 12 or Equation 13 is satisfied.280

l(a1, a2) < 300 (12)

min W(a1, a2) < 30 (13)

In Equation 13, W(a1, a2) denotes the set of all the values of the duration between a user alighting at281

station a1 and the time they consequently board at station a2. Equation 13 means that the minimum282

period between when users alight at station a1 and when the users consequently board at station a2 is283

less than 30 minutes. We assume that this means that people can walk from station a1 to station a2284

within 30 minutes.285

Finally, 599 groups of departure stations and 541 groups of arrival stations are obtained. In the286

following, the group of departure stations is simply referred to as the departure place, and the group287

of arrival stations is simply referred to as the arrival place.288

We determine the time it takes to travel from departure place i to arrival place place j by
Equation 14.

T(i, j) = min
d∈FD(i), a∈FA(j)

t(d, a) (14)

In this equation, FD(i) denotes the set of all stations in departure place i, and FA(j) denotes the set of289

all stations in arrival place j.290

We also group smart card holders. Smart card holders are grouped by the stations at which they291

most frequently board for the first time on a day.292

argmax
k

n(u, k) = i ⇔ u ∈ U(i) (15)

In this equation, n(u, k) denotes the number of days user u boards at place k. This equation means293

that user u is grouped into set U(i) when the number of days user u boards at departure place i is the294

highest among all the departure places.295

In addition, we exclude the data of user u ∈ U(i) if place i is far from the location of his/her296

residence estimated by his/her postal code. In this study, we set the threshold to 5,000 meters.297
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6.3. Removing records of arrival stations each user frequently visits298

We apply the travel cost method to the data of non-work travel. Therefore, we apply the method
to data collected on holidays and weekends. However, some people commute to work on holidays
or weekends. To remove such records, we count the number of days each user has alighted at each
station. We ignore the records of the stations at which a user frequently alighted. The records of arrival
place j of user u that satisfy Equation 16 are ignored.

g(u, j)
s
≥ 2

7
(16)

In this equation, g(u, j) denotes the number of days (including weekdays) user u has alighted at arrival299

station j. s denotes the number of all the days in the period of data.300

Table 3 shows the number of valid users obtained after data preprocessing.301

Table 3. Valid card holders

Age Male Female

20-29 115,926 176,803
30-39 153,922 206,359
40-49 217,804 266,191
50-59 171,413 192,379
60-69 117,933 130,967
70-79 114,981 160,849

7. Results302

7.1. Results of regression of the predictors to the number of residential moves.303

Table 4 shows the results of the regression analyses between the number of residential movements304

mi,k and predictors ϕO, ϕP, ϕA, and ϕD. The predictor using opportunity cost (O) is superior to other305

baselines for the data of male individuals of all ages and female individuals less than 60 years old. On306

the other hand, the predictor using population (P) scores the highest for the data of female individuals307

who are 60 or older.308

The coefficients of determination of the predictors using opportunity cost (O) and population (P)309

are higher than 0.6, but the other predictors are lower than 0.6.310

7.2. Causal influences on the number of residential moves311

We measure causal influences from the two predictors using opportunity cost (O) and population312

(P) on the number of residential moves using linear non-Gaussian acyclic model (LiNGAM) [44].313

LiNGAM assumes that exogenous variables are non-Gaussian. We test whether the predictors and314

the number of residential moves satisfy this assumption. It is impossible to test the distributions of315

exogenous variables. Therefore, we test the distributions of observed variables instead.316

The Shapiro-Wilk test [45] is used to test normality. The Shapiro-Wilk test tests the null hypothesis317

that a sample came from a normal distribution. The null hypothesis of this test is that the population318

of the data is normally distributed. If the p-value is less than the chosen alpha level, then the null319

hypothesis is rejected, and there is evidence that the data tested are not from a normally distributed320

population. Table 5 shows the results of the Shapiro-Wilk test. Every p-value listed in Table 5 is small321

enough to conclude that the predictors O and P and the number of residential moves to each place (M)322

do not follow a normal distribution.323

In addition to non-Gaussianity, LiNGAM assumes that relations between variables are linear. The324

linearity between the number of residential moves (mi,k) and the predictor O (ϕO) and the linearity325
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between the number of residential moves (mi,k) and the predictor P (ϕP) have already been confirmed,326

as shown in Table 4. In regard to the relation between the two predictors (ϕO and ϕP), the correlation327

coefficient is shown in Table 6. It is high enough to assume that the relation between the two predictors328

is linear. Therefore, we consider that the values satisfy the assumption of LiNGAM.329

Figure 4 shows the results of the application of LiNGAM. The directions of the obtained causal330

networks are the same for every demographic group. The number of people who relocate to each place331

(M) is affected by both the predictor using the opportunity cost of travel time (O) and the predictor332

using the current population (P). The strength of causality from O to M is greater from P to M except333

for the demographic group of female individuals between 60 and 69 years of age. In addition, the334

strength of causality from P to O is greater from P to M except for the demographic group of female335

individuals between 60 and 69 years of age.336

We measure the reproducibility of the results. First, we examine the reproducibility of the337

directions of causal networks. We repeat the experiment by making 1000 causal networks for each338

demographic group by randomly taking 400 departure places out of 599 departure places and making339

causal networks using the data of 400 selected departure places. The results are shown in Table 7.340

The first type of network has the same causal directions as the network that we obtain using all the341

departure places. The number of individuals in the first type in network is 1000 for the demographic342

groups of male individuals less than 70 years of age and female individuals less than 60 years of age.343

On the other hand, the number of individuals in the first type of network for the groups of male344

individuals in their 70s is 772. Therefore, there might be missing causal factors for the demographic345

group; thus, it is necessary to seek other causal factors to incorporate.346

Next, we examine the reproducibility of the order of the strength between the causalities to the347

number of residential moves from the opportunity cost of travel time and current population. We348

conduct the same random sampling until we obtain 1000 networks whose directions of causality are349

the same as the network that we obtain using all the departure places. Figure 5 shows the ranges of the350

strengths of causality. Comparing the medians of the strengths of causality to the number of residential351

moves, the orders are consistent with the results obtained using all the departure places, as shown in352

Figure 4. The ranges of the causalities (O→M and P→M) overlap only in regard to the demographic353

group of female individuals 60 years or older. Therefore, we consider that the reproducibility is354

unstable in regard to the demographic groups, and it is stable in regard to the other demographic355

groups.356
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Table 4. Coefficients of determination (R2) between the number of people who relocate to each place (mi,k) and predicted numbers (ϕO, ϕP, ϕA, ϕD).

Male Female

Predictor 20-29 30-39 40-49 50-59 60-69 70-79 20-29 30-39 40-49 50-59 60-69 70-79

O (ϕO) 0.677131 0.682127 0.702986 0.686997 0.695490 0.677117 0.641250 0.685919 0.685707 0.669508 0.646802 0.621696
P (ϕP) 0.637419 0.625829 0.638509 0.627181 0.632797 0.662053 0.631902 0.654962 0.683051 0.662978 0.680595 0.693258
A (ϕA) 0.476285 0.462466 0.501236 0.484837 0.420105 0.397013 0.517185 0.459414 0.506208 0.459616 0.381638 0.390667
D (ϕD) 0.344690 0.337078 0.398216 0.410906 0.397417 0.230339 0.325484 0.344409 0.389053 0.372604 0.345309 0.227351

Table 5. The result of the Shapiro-Wilk test.

Male Female

Valuable 20-29 30-39 40-49 50-59 60-69 70-79 20-29 30-39 40-49 50-59 60-69 70-79

O (ϕO) 1.18E-25 9.34E-28 5.78E-25 9.99E-23 1.59E-24 9.59E-32 1.04E-25 1.45E-27 9.53E-24 5.21E-24 9.02E-25 2.44E-30
P (ϕP) 7.73E-27 5.09E-28 1.13E-26 6.38E-26 9.00E-27 1.46E-31 5.26E-28 1.93E-28 9.89E-28 5.59E-28 3.06E-29 4.13E-32
M (mi,k) 2.02E-35 2.11E-36 5.82E-34 1.75E-33 9.16E-34 3.88E-37 1.57E-36 4.94E-36 4.03E-34 1.18E-34 4.11E-35 2.78E-37

Table 6. Correlation coefficient (R) between the predictor using opportunity cost (ϕO) and the predictor using current population (ϕP).

Male Female

20-29 30-39 40-49 50-59 60-69 70-79 20-29 30-39 40-49 50-59 60-69 70-79

0.827688 0.794022 0.783471 0.797551 0.805344 0.849521 0.823154 0.835350 0.816704 0.806756 0.813640 0.847267

Table 7. The reproducibility of causal networks obtained using LiNGAM: We repeat the experiment by making 1000 causal networks for each demographic group
by randomly taking 400 departure places out of 599 departure places and making causal networks using the data of 400 departure places.

Male Female

Direction of causality 20-29 30-39 40-49 50-59 60-69 70-79 20-29 30-39 40-49 50-59 60-69 70-79

1: O to M, P to O, P to M 1000 1000 1000 1000 1000 772 1000 1000 1000 1000 923 975
2: O to M, O to P, P to M 0 0 0 0 0 228 0 0 0 0 77 19
3: O to P, M to O, M to P 0 0 0 0 0 0 0 0 0 0 0 6
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(a) Male: 20-29 (b) Male: 30-39 (c) Male: 40-49

(d) Male: 50-59 (e) Male: 60-69 (f) Male: 70-79

(g) Female: 20-29 (h) Female: 30-39 (i) Female: 40-49

(j) Female: 50-59 (k) Female: 60-69 (l) Female: 70-79

Figure 4. Causal networks between the predictor using the opportunity cost of travel time (O), the
predictor using population (P), and the number of residential moves to each place (M).
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Figure 5. The reproducibility of the strength of causalities: The ranges of the causalities (O→M and
P→M) overlap only in regard to the demographic group of female individuals 60 years or older.
Therefore, we consider that the reproducibility is unstable in regard to the demographic group, and it
is stable in regard to the other demographic groups.
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8. Discussion357

We have observed that the opportunity cost of travel time has strong causality to the number of358

people who relocate to each place. On the other hand, the index is influenced by the current population359

in each place. We assume that this is because a more heavily populated area will be more convenient360

because commercial developers and residential developers focus on such areas. This leads to the361

conclusion that most of the influence from the current population on residential mobility is mediated362

indirectly through the opportunity cost of travel time. The opportunity cost of travel time is calculated363

from non-work travel behavior in a short period of time (3 months), and it directly reflects the effects364

of urban development such as the construction of parks and the development of commercial facilities.365

Therefore, the opportunity cost of travel time is an efficient and effective index for predicting future366

residential mobility.367

We can list many other factors that are not investigated in our paper. Figure 6 includes some368

factors related to residential mobility that were not investigated in this paper. The factors in green are369

not investigated in our paper.370

Human mobility on non-working days is influenced by urban form such as amenities of the371

neighborhood and land use diversity. Urban form is influenced by investment from both industries372

and governments. Industries tend to invest in areas with high population densities. Therefore,373

investment from industries is influenced by the current population. However, governments can374

change the trend of residential movements by investing in urban development.375

There is also causality from the current population to the number of people who relocate to each376

place that is not mediated through non-work human mobility. Residential movement is influenced by377

land prices and the social capital of the local community. Those factors are influenced by the current378

population. We assume that these causalities could be why the causality from O to M is not always379

greater than that from P to M in regard to the demographic group of female individuals 60 years or380

older.381

There are also factors influencing residential mobility not being mediated by human mobility on382

non-working days and the current population. For example, closeness to business areas and air quality383

could have strong causality to residential mobility.384

Figure 6. Detailed hypothesis on the causalities: Factors in green are not investigated in this paper, and
factors in blue are investigated.
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9. Conclusion385

In this work, we have investigated a method for creating an index based on mobility data to386

estimate the effects of urban development on residential movements. The contributions of this work387

are summarized as follows:388

• We have extended the conventional travel cost method to estimate the opportunity cost of travel389

time as a function of the departure place.390

• We have confirmed that both the current population and the opportunity cost of travel time391

contribute to the prediction of the number of relocations.392

• We confirmed that most of the causal influence from the current population to residential mobility393

is mediated indirectly through the opportunity cost of travel time. Therefore, the opportunity394

cost of travel time is more effective at estimating changes in residential mobility caused by urban395

development.396

We note some limitations of our work. First, the opportunity cost of travel time is influenced397

by not only urban form but also other factors such as people’s disposable time and activities using398

ICTs while traveling (e.g., mobile phones and potable gaming devices). Second, residential mobility399

is determined by other factors such as closeness to business areas and air quality. Third, the causal400

networks are not theoretically derived; therefore, it is necessary to analyze the causalities from a401

theoretical perspective.402

Our future work will investigate which factors of urban form influence the opportunity cost of403

travel time. In addition, further research is needed to extend the method to include other types of404

transportation such as automobiles.405

Despite the above limitations, our proposed method is beneficial to urban planners for estimating406

the effects of urban development and detecting the shrinkage and growth of populations.407

Acknowledgments: This study is partly supported by the Leading Graduates Schools Program “Global Leader408

Program for Social Design and Management (GSDM)” run by the Ministry of Education, Culture, Sports, Science409

and Technology, Japan.410

Author Contributions: All authors discussed and designed the experiments as well as contributing to the writing411

of the paper. T. N. Maeda defined the research agenda, implemented the experiments and wrote the manuscript.412

All authors read and approved the final manuscript.413

Conflicts of Interest: The authors declare no conflicts of interest. The funding source had no role in the design of414

the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision415

to publish the results.416

Abbreviations417

The following abbreviations are used in this manuscript:418

419

A average travel time
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O opportunity cost of travel time
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TCM travel cost method
TCM4MP travel cost method for multiple places
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