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10. Multi-objective least squares

e multi-objective least squares
e regularized data fitting
e control

e estimation and inversion
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Multi-objective least squares

we have several objectives
_ 2 _ 2
Ji=[Ax=bqll7, ..., Jie=|[Ax = byl

e A;is an m; X n matrix, b; is an m;-vector
e we seek one x that makes all k objectives small

e usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes
2 2
AillA1x = b1||” + - - - + Al Agx — Dl

e coefficients Ay, ..., A} are positive weights
e weights A; express relative importance of different objectives

e without loss of generality, we can choose A1 =1
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Solution of weighted least squares

e weighted least squares is equivalent to a standard least squares problem

VAL
VA2A7

minimize

| VAL |

[ VA1by
VA2bo

| VAkbk |

2

e solution is unique if the stacked matrix has linearly independent columns

e cach matrix A; may have linearly dependent columns (or be a wide matrix)

e it the stacked matrix has linearly independent columns, the solution is

1
%= (/llA{Al P AkA{Ak) (/llA{bl P akAibk)
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Example with two objectives

minimize ||[Ajx — b1||2 + A||Arx — 192||2

Aiand Ay are 10 X 5

|| — %)
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A

plot shows weighted least squares solution (1) as function of weight A
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Example with two objectives

minimize ||A1x — b1|> + A||Axx — bol|?

Jo(A)

14|

12 |

Ji(2)

o left figure shows J1(1) = ||A1£(2) — by]|? and J>(2) = [|A2%(2) — by]|?

e right figure shows optimal trade-off curve of J»(A1) versus J;(A)
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Motivation

e consider linear-in-parameters model

A

f(x)=01fi(x)+--- +9pfp(x)

we assume fi(x) is the constant function 1
e we fit the model £(x) to examples (x(1, y(1), .. (x(V) (V)
e large coefficient §; makes model more sensitive to changes in f;(x)
e keeping 6, ..., 6, small helps avoid over-fitting

e this leads to two objectives:
S, k k)\2 SP
J1(0) = D3 (fW)y =y "2 (o) = > 67
k=1 j=2
primary objective J1(0) is sum of squares of prediction errors
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Weighted least squares formulation

minimize  J1(8) + 1J5(6) = Z( F(x®)y - y(k))2+/1292
k=1 =2

e A is positive reqularization parameter

e equivalent to least squares problem: minimize

H[«FAz] ly()d]

With yd — (y(1)7' ° "y(N))5

2

1 HEDY . fp(x(l)) ] 01 0 0
T S LR
1oAY ) (000 - 1]

e stacked matrix has linearly independent columns (for positive A)

e value of A can be chosen by out-of-sample validation or cross-validation

Multi-objective least squares 10.7



Example

elrain
-1} e Test | |

e solid line is signal used to generate synthetic (simulated) data
e 10 blue points are used as training set; 20 red points are used as test set

e we fit a model with five parameters 6y, ..., 05:

4
f(x) =01+ Z O 41 sin(wpx + @) (with given wy, ¢x)
k=1
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Result of regularized least squares fit

RMS error versus A Coefficients versus A
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A A
e minimum test RMS error is for A around 0.08
e increasing A “shrinks” the coefficients 6, ..., 05
e dashed lines show coefficients used to generate the data

e for A near 0.08, estimated coefficients are close to these “true” values
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Control

y=Ax+b

e x is n-vector of actions or inputs
e y is m-vector of results or outputs

e relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y
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Optimal input design

Linear dynamical system
y(t) = hou(t) + hyu(t = 1) + hou(t —2) + - - - + hu(0)

e output y(7) and input u(¢) are scalar
e we assume input u(r) is zero fortr < 0
e coefficients ho, hy, ...are the impulse response coefficients

e output is convolution of input with impulse response

Optimal input design
e optimization variable is the input sequence x = (u(0),u(1),...,u(N))

e goal is to track a desired output using a small and slowly varying input
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Input design objectives
minimize Ji(x) + AyJy(x) + AnIm(x)
e primary objective: track desired output y4.s Over an interval [0, N]:
Y 2
Ji(x) = D (1) = Yaes(1))
=0

e secondary objectives: use a small and slowly varying input signal:

N N-1
In@) =D u(®?  Jyx) = D (u+1) —u()?
=0

=0
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Tracking error

N
Jx) = D00 = yaes(n)
=0

= |lAex = byll?
with
ho 0 0 0 O Ydes(0)
hi ho 0 0 O Ydes(1)
Ag= h} h} h:O ; 9 (_) b= )’des:(z)
hy-1 hy—2 hy-3 -+ ho O Ydes(N = 1)
hy  hn-1 hy—2 -+ hy hy | | Ydes(N)
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Input variation and magnitude

Input variation

N-1
Jy(x) = D (u(t+1) —u(t)* = ||Dx]|?
=0

with D the N X (N + 1) matrix

-1 1 0 --- 0 0 O]
O -1 1 --- 0 00
D:..S e e e
0 0 0 -1 1 0
0O 0 0 0 -1 1

Input magnitude

N
In(x) =D u()® = x|

=0
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Example

0
Ay =0, =

small Ay

-2+

0 100 200 0 100 200

larger Ay 3
larger Am

0 100 200 0 100 200
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Estimation

Linear measurement model
V= AXex +V

e n-vector xex contains parameters that we want to estimate
e m-vector v is unknown measurement error or noise
e m-vector y contains measurements

e m X n matrix A relates measurements and parameters

Least squares estimate: use as estimate of x.x the solution X of

minimize |[|Ax — y||2
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Regularized estimation

add other terms to ||Ax — y||? to include information about parameters

Example: Tikhonov regularization
L 2 2
minimize ||Ax — y||© + A||x||

e goal is to make ||Ax — y|| small with small x

e equivalent to solving
(ATA+ADx = ATy

e solution is unique (if 4 > 0) even when A has linearly dependent columns
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Signal denoising

e observed signal y is n-vector

Y =Xex TV

® Xxqx IS unknown signal

® V iS noise

0 500 1000

Least squares denoising: find estimate X by solving

n—1
minimize ||x — y||2 + A4 Z(xm - xi)2
i=1

goal is to find slowly varying signal X, close to observed signal y
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Matrix formulation

2
minimize ! X — Y
VaD 0
e D is (n— 1) X n finite difference matrix
(-1 1.0 --- 0 0 0]
o -1 1 --- O 0 O
D = : Pl : Pl
o o0 o0 --- -1 1 O
O 0 0 --- 0 -1 1

e equivalent to linear equation

(I+AD'D)x =y
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Trade-off

the two objectives ||X(1) — y|| and |[|[DXx(A4)|| for varying A

10

— 5 -yl
| — D]

IDX(D)|

=10°

1073 109 10° 1010 6 8 10
A |£(1) = ¥l
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Three solutions

A=10""

()
()

0 500 1000 0 500 1000
k k
1.5 1=10
e X(1) > yfora —0 =
S |
e (1) — avg(y)l for A — oo «
e 1~ 10%is good compromise
0.5 -
0 500 1000
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Image deblurring
y = AXex +V

® Xgx IS UNKNown image, y is observed image
e A is (known) blurring matrix, v is (unknown) noise

e images are M X N, stored as M N-vectors

blurred, noisy image y deblurred image £

Multi-objective least squares 10.22



Least squares deblurring

minimize  ||Ax = y||” + A(| Dyx|| + || Dpx|1?)

e 1stterm is “data fidelity” term: ensures AX = y

e 2nd term penalizes differences between values at neighboring pixels

M N-1 M-1 N

2 2 _ X: i1 — X::)? Xiit + — X::)?

| Dpx[|” + || Dvx|| —ZZ( i,j+1 l]) + Z Z( i+1,) l])
i=1 j= i=1 j=1

if X is the M X N image stored in the M N-vector x
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Differencing operations in matrix notation
suppose x is the M X N image X, stored column-wise as M N-vector
x=(Xpm1s Xi:m2s s X1:MN)

e horizontal differencing: (N — 1) X N block matrix with M x M blocks

-7 I 0 --- 0 0 O]
py=| 0 T Y00
0 0 0 -+ 0 -1 I

e vertical differencing: N X N block matrix with (M — 1) X M blocks

D 0 -+ 0 ] [ -1 1 v 0 0]
p=| 0 P Y o= 0 T 0D
' 0 0 -+ D 0 0 0 -+ -1 1
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Deblurred images
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Tomography

V= AXex +V

® Xx.x represents values of some quantity in a region of interest of n voxels (pixels)

e Ax represents measurements of the integral along lines through the region
n
(Ax); = D Aijx;
j=1

A;j is the length of the intersection of the line in measurement i with voxel j

X1 | x2
X6 line for measurement ;
./'//
/
./'J/
@A//
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Tomographic reconstruction

minimize  ||Ax — y||* + A(|| Dyx||* + || Dyx]|?)

Dy and Dy, are defined as in image deblurring example on page 10.23

3 =]
4 =1
5 =]l

Example

e |eft: 4000 lines (100 points, 40 lines per point)
e right: object placed in the square region at the center of the picture on the left

e region of interest is divided in 10000 pixels
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Regularized least squares reconstruction

1=1072 A1=10"1 1=1
=m =
— —_—
=M «=M A=
= = 1 5=
A=5 A=10 A4 =100
=M =W =N
— — | j ——
= ill = 4=n
s=M 5 =1 = i
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