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Abstract: 11 

Mutualism is ubiquitous in nature and probably all species in the world are involved in some 12 

form of such ecological interaction. The evolution of mutualisms is often envisioned in a 13 

framework where individual selection leads to reciprocal exploitation that results in net 14 

benefits to all the interacting parties, i.e. in a framework in which individual selection 15 

intrinsically destabilises the mutualistic association. However, mutualisms are stable, and 16 

rarely turn into parasitism. At a macroevolutionary scale, mutualisms have been a source of 17 

major evolutionary innovations and have benefited all the species involved. Indeed, 18 

complementary traits of the partners enable them to colonise new ecological niches. In this 19 

chapter we discuss mutualism as a source of evolutionary innovation, using some insect-plant 20 

associations as examples. Firstly, we dedicate a topic to theoretical aspects and hypotheses on 21 

evolutionary forces stabilizing mutualisms (and their pitfalls). We present some examples of 22 

mutualisms that allowed insects and/or plants to expand their ecological niches. Finally, we 23 

focus on fig tree – animal interactions that, putatively, allowed this plant lineage to diversify in 24 

subtropical and tropical ecosystems and to form a group of keystone species for the 25 

functioning of many forest ecosystems. 26 
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Learning objectives: 28 

After completing this chapter, you should understand the following:  29 

 To understand the evolution of mutualisms we need to look at natural selection 30 

operating at different levels 31 

 The general architecture of mutualistic associations 32 

 Mutualisms are ecologically and evolutionarily stable 33 

 Mutualistic associations may boost species diversification by creating new ecological 34 

opportunities (innovations) for the interacting species 35 

 36 

Key-words: co-diversification, co-evolution, ecological interactions, mutualism conflicts, plant 37 

defences, pollination 38 
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1. Introduction 40 

Mutualisms, defined as interspecific interactions that are beneficial to all the involved 41 

partners, are ubiquitous in nature. Probably all species in the world are involved in some form 42 

of mutualistic interaction (Bronstein et al. 2006). In this chapter we will address direct 43 

mutualisms in which the partners are in physical contact. Direct mutualisms may be further 44 

divided into symbiotic and non-symbiotic mutualisms (Boucher et al. 1982). In symbiotic 45 

mutualisms, individuals are physiologically integrated, whereas in non-symbiotic mutualism, 46 

despite some physiological co-adaptation, individuals of the interacting species are at least at 47 

some stage of their life cycle physiologically independent (Boucher et al. 1982). Many 48 

symbiotic mutualisms involve the exchange of nutritional and energetic services (e.g. 49 

photosynthesis). Mutualisms, and particularly non-symbiotic ones, can also involve protection 50 

and dispersal of gametes or propagules. 51 

Often, individuals benefit directly from their mutualistic behaviour. Many definitions 52 

restrict mutualism to these cases. However, in a number of interactions that constitute 53 

undisputed examples of mutualisms, the individuals performing the act that is beneficial to the 54 

other species do not benefit directly from this act. This is typically the case in gynodioecious 55 

Ficus species (Box 1). Pollinator individuals that ensure pollination by entering functionally 56 

female inflorescences (figs) die without reproducing: their reproductive value is equal to zero 57 

(Kjellberg et al. 2005; Pereira 2014). A definition of mutualism that would exclude half of Ficus 58 

species and many other undisputed cases of mutualisms would be useless. In the case of the 59 

fig pollinating wasp mutualism, the wasps maximise their fitness by trying to reach receptive 60 

figs as fast as possible, i.e. without engaging in the difficult task of avoiding female figs, and 61 

this is beneficial for the fig trees as it results in pollination. In this situation, individual selection 62 

on the fig wasp is beneficial for the host Ficus species, not to a particular individual of that 63 

species. Reciprocally we expect the interaction to be stable because individual selection on fig 64 
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trees results in phenotypes that allow the survival of populations of its associated wasps. 65 

Hence, in many situations, mutualism benefits cannot be defined at the level of individual 66 

interactions. Defining mutualism at the population level could in a number of cases be 67 

operational as the an interaction may vary from mutualistic to parasitic across populations 68 

(Addicott 1986; Thompson 1999; Friberg et al. 2019). However, the structuring of mutualists 69 

into populations and species may be so different that a population level approach is not 70 

operational. For instance, Ficus hirta present gradual genetic variation among populations 71 

while its pollinating wasp in South-East China constitutes a single population (Yu et al. 2019). In 72 

such cases, selective processes do not occur at the same geographic scales for the partners. 73 

Different geographic population structure between mutualists is probably the rule rather than 74 

the exception in non-symbiotic mutualisms (Alvarez et al. 2010). Therefore, in this chapter, we 75 

define mutualisms as interspecific interactions that are beneficial for the species involved and 76 

that result in adaptive innovation. Obligate interactions resulting from infection of a host and 77 

subsequent adaptation of the host to its pathogen do not enter within the limits of this 78 

definition if they do not result in biological innovation. Such interactions can become obligate 79 

when curing the host from its pathogen results in self-poisoning (Dedeine et al. 2001). 80 

Generally, organisms that associate in a mutualism differ radically in biological traits and 81 

life habits. The combination of these traits confers them new biological capacities, allowing 82 

them to colonise new ecological niches. At a macro-evolutionary scale, mutualisms have been 83 

at the source of major biological innovation (Margulis and Nealson 1989; Wheat et al. 2007; 84 

Leigh Jr 2010). A classic example is the endosymbiontic origin of mitochondria and plastids 85 

through the inclusion of prokaryotic organisms into the pre-eukaryotic cell (Gray 2017). This 86 

association improved the energetic machinery of eukaryotes and allowed some of them to 87 

become primary producers (Margulis 1996). Several other symbiotic mutualisms have been the 88 

source of key innovations at the origin of major new modes of life. For instance, 89 

representatives of at least seven phyla (Annelida, Arthropoda, Ciliophora, Mollusca, 90 
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Nematoda, Platyhelminthes and Porifera) are known to associate with chemosynthetic 91 

bacteria (Dubilier et al. 2008). This type of mutualism allows representatives from these 92 

diverse lineages of animals to colonize habitats presenting high concentrations of reduced 93 

energy sources, such as sulphide and methane. These habitats are generally transient but at 94 

different time scales ranging from whale carcasses and sunken wood on the deep-sea floor to 95 

somewhat more stable habitats, such as hydrothermal vents, cold seeps, shallow-water coastal 96 

sediments and continental margins (e.g. mangrove areas) (Dubilier et al. 2008). Herbivores, 97 

including insects of different orders and vertebrates derive their digestive capacities from 98 

bacteria, fungi, protozoa and other microorganisms. The fine mechanisms involved have been 99 

investigated for cockroaches, termites, attine ants, sap-feeding insects and ruminant 100 

vertebrates (Mueller et al. 2001; Nalepa et al. 2001; Aanen et al. 2002; Kamra 2005; Baumann 101 

2005; Koike and Kobayashi 2009; Douglas 2009; Caldera et al. 2009). While taxonomically and 102 

biologically highly heterogeneous, these digestive mutualisms are all based on the capacity of 103 

the animal to collect carbon rich resources that they cannot digest by themselves. The 104 

associated microorganisms provide the metabolic capacities to degrade theses carbon rich 105 

resources, such as cellulose, hemicelluloses and lignin, to detoxify secondary plant compounds 106 

and to convert nitrogen into available amino acids. The association of plants with mycorrhizal 107 

fungi (e.g. fungi belonging to the Phylum Glomeromycota and forming arbuscular mycorrhiza) 108 

is most often mutualistic, improving water and nutrient uptake by the plant, especially the 109 

uptake of phosphate and nitrogen (Brundrett 2004). Plant fine roots are constrained in how 110 

thin they can become because of the size of their genome which results in large nuclei. Fungi 111 

have much smaller genomes allowing smaller nuclei and hence allowing fungal filaments to be 112 

much thinner than plant fine roots. Therefore, mycelia explore the soil at a much finer scale 113 

and at lower constitutive costs than plant roots. Mycorrhizal fungi are associated with roots of 114 

70 – 90% of land plant species, representing one of the most extensive terrestrial symbioses 115 

(Parniske 2008). It may have played a central role in the colonisation of terrestrial habitats by 116 
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enabling plants to exploit mineral soils. The association between plants and nitrogen-fixing 117 

bacteria is another example of mutualism allowing ecological innovation. The bacteria 118 

metabolise inert N2 present in the atmosphere into the utilizable form ammonia (NH3) through 119 

the action of nitrogenases. This mutualism is present in a diversity of plant lineages including 120 

ferns, gymnosperms, mono- and eudicots. The plants host the endophytic bacteria in their 121 

roots. Among them, the root nodule symbiosis is particularly sophisticated and complex. The 122 

root nodules house high bacteria densities in a structure that provides an anaerobic 123 

microenvironment favourable for nitrogenase activity (Markmann and Parniske 2009; Soto et 124 

al. 2009). The mutualisms exemplified above are just a few examples of known mutualisms 125 

that represent biological innovations central to the colonisation of earth and the functioning of 126 

extant ecosystems. There are many other examples, as for instance lichens associating fungi 127 

and algae/cyanobacteria (Nascimbene and Nimis 2006), or sessile/slow-moving marine animals 128 

and algae/cyanobacteria (Venn et al. 2008).  129 

In the following, we first present some theoretical considerations on mutualisms. 130 

Indeed, developing a comprehensive theory of mutualisms is still an open endeavour. We 131 

propose a framework within which a theory may emerge. Then we develop some examples of 132 

insect-plant and insect-fungi mutualisms that are at the origin of major evolutionary 133 

innovation. Finally, we focus on the fig tree – associated animal interactions that allowed this 134 

plant lineage to diversify in subtropical and tropical ecosystems and to become keystone 135 

species for the functioning of some forest ecosystems. 136 

 137 

Box 1. Pollination by deceit in fig trees. 138 

An intriguing example is pollination by deceit in gynodioecious Ficus species (Kjellberg et 139 

al. 1987; Figure 1). Functionally “male” trees produce pollinating wasps (pollen vectors) and 140 

pollen, and female trees produce seeds but neither pollen nor wasps. Female trees bear figs in 141 
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which all the styles of pistillate flowers are too long to allow wasp oviposition. Wasps entering 142 

figs of female trees pollinate but die without reproducing. Functionally male trees bear figs in 143 

which all pistillate flowers have short styles. These flowers may receive an egg and produce a 144 

wasp, but they rarely produce seeds. As a result, although male figs present both male and 145 

female flowers, they are functionally male. This is a case of pollination by deceit and figs on 146 

female trees constitute a lethal trap for the wasps. Considering the difference in generation 147 

time between fig trees (counted in years) and fig wasps (counted in months) and the huge 148 

difference in population sizes (ranging from 10th of thousands to millions of times larger insect 149 

population sizes), a simple prediction is that the capacity to recognise female trees and avoid 150 

them will evolve rapidly. Nevertheless, approximately half of the 800 Ficus species are 151 

functionally dioecious and they correspond to a limited set of monophyletic lineages. Why is it 152 

so? The pollinating fig wasps are attracted to the fig tree by volatile compounds released by 153 

the receptive inflorescences. For the compounds that are perceived by the pollinators, the 154 

inflorescences of female and “male” trees emit exactly the same relative proportions 155 

(Hossaert-McKey et al. 2016; Proffit et al. 2020). Hence, a first answer is male-female mimicry. 156 

However, a better formulation is probably, male-female mimicry makes distinguishing 157 

between male and female trees complicated. Then the question becomes, could it be 158 

worthwhile to take the time and efforts to distinguish male and female trees, can being choosy 159 

be selected? In some Ficus species, there is hardly any selection for avoiding female trees 160 

because figs on female and “male” trees are not receptive at the same time of the year, so that 161 

the wasps never get a chance to choose between sexes. Most pollinators emerge from figs on 162 

“male” trees at a time when there are no receptive male figs. They will fail to reproduce 163 

irrespective of whether they avoid female trees or not (Kjellberg et al. 1987). In Ficus species in 164 

which “male” and female trees are receptive at the same time, the race to enter receptive figs 165 

(Conchou et al. 2014) selects against taking the time required to distinguish highly similar 166 

phenotypes. 167 

 168 
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 169 

Figure 1. Reproductive systems in fig trees. A – in monoecious species seeds and pollen-loaded 170 

wasps are produced in the same fig. B – in gynodioecious (functionally dioecious) species, 171 

functionally male trees produce pollen-loaded wasps and female trees produce seeds. 172 

 173 

  174 
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2. Theoretical remarks 175 

The main pitfall of a vision in which adaptive innovation drives the evolution of mutualistic 176 

associations is formulations suggesting that a species acts for the sole benefit of another one 177 

and reciprocally. Such formulations cannot be defended. There is no way escaping that 178 

individuals are selected to maximize their fitness. In a mutualism this may, or may not, be at 179 

the expense of the partner species. In this context, the evolution of mutualisms is often 180 

envisioned in a framework where individual selection leads to reciprocal exploitation that 181 

results in net benefits to all the interacting parties, i.e. in a framework in which individual 182 

selection intrinsically destabilises the mutualistic association (Axelrold and Hamilton 1981; 183 

Herre and West 1997). Therefore, it has been proposed that host sanction against non-184 

cooperative partners may be important for mutualism stability. Host sanctions would be any 185 

traits evolved specifically to reduce the fitness of a partner that becomes non-cooperative. 186 

Lists of mechanisms limiting non-cooperative behaviour or partner overexploitation and 187 

derived from intraspecific cooperation theory have been proposed (Herre et al. 1999; Yu 2001; 188 

Sachs et al. 2004; Doebeli and Hauert 2005; West et al. 2007; Bergmüller et al. 2007). While 189 

cooperation models have stimulated theoretical studies on mutualism, they do not find 190 

consistent empirical support to explain the stability of a range of mutualistic associations. For 191 

example, models based on retaliation (sanctions or refusing future interactions) are probably 192 

only of importance for animals with developed cognition capacity, as they require the ability to 193 

remember past interactions and behave accordingly. Sanction has been invoked to explain 194 

cooperation reinforcement in some mutualistic association, such as legume plants – N2-fixing 195 

bacteria, fig trees– pollinating fig wasps and yucca – pollinating yucca moths (Pellmyr and Huth 196 

1994; Kiers et al. 2006; Kiers and Denison 2008; Jandér and Herre 2010; Leigh Jr 2010; Jandér 197 

et al. 2012). In these examples, when the Rhizobium bacteria do not provide nitrogen, or when 198 

the fig wasps/yucca moths do not pollinate, the non-cooperating partner pays a cost, as the O2 199 
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flux to the radicular modules where bacteria are housed stops or the flower ovaries or 200 

inflorescences where fig/yucca pollinators laid their eggs provide less nutrients or abort. 201 

However, there is no demonstration that these host traits that have been selected to respond 202 

to non-cooperative partners, i.e. that they qualify as sanctions (Frederickson 2013). Further no 203 

theoretical framework has been proposed within which sanction could evolve. Indeed, there is 204 

an intrinsic problem with the strong differences in generation time and populations sizes 205 

between the interacting species (see Box 1). Individuals of the slow-reproduction small 206 

population size species interact with many individuals and many generations of their 207 

associated species. Such asymmetry is constitutive of most mutualistic associations. As a 208 

consequence, in visions of mutualism stability based on an evolutionary race between species, 209 

the partner with larger population sizes and the shorter generation time should win the race 210 

and reap the highest profits possible from the association. In the process, it would overcome 211 

any adaptation of the other species to limit overexploitation. 212 

Contrary to the predictions based on ideas stemming from within species cooperation 213 

theory, mutualistic associations are robust to the presence of non-cooperative partners. 214 

Indeed, phylogenetic evidences from a range of biological systems evidences that mutualisms 215 

rarely evolve into parasitic interactions in nature (Frederickson 2017). A striking example of 216 

this robustness is provided by the diffuse mutualism involving seed dispersion by vertebrates. 217 

Seed dispersion networks are structured into complex mosaics of frugivorous guilds associated 218 

with plant guilds and involve plant traits such as seed size, fruit colour, fruit flesh nutrient 219 

content, etc, with few specialist species (Shanahan et al. 2001; Albert et al. 2013; Sarmento et 220 

al. 2014). Poor dispersers and seed predators are frequent among members of the frugivorous 221 

guilds (Howe 1986; Compton et al. 1996; Shanahan et al. 2001). Nevertheless, even with this 222 

widespread occurrence of non-cooperating partners, about 70-90% of tropical trees present 223 

adaptions favouring animal seed dispersion (Howe and Smallwood 1982). Thinking about the 224 

stability of mutualisms and their role in biological innovation obliges to envision their evolution 225 
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from two different perspectives. The individual selection perspective is a truism: only genes 226 

that increase in frequency in a population become fixed. Genes that decrease in frequency will 227 

disappear. Therefore, individual selection may lead to population size decrease and to species 228 

extinction by increasing the relative frequency of a gene that reduces population size. On the 229 

other hand, one of the defining characters of life is that living organisms have a history. 230 

Indeed, life on earth has survived for over 3 billion years. Species that have survived and given 231 

rise to new ones are those in which short-term individual selection was compatible with, or 232 

even favored, long-term species survival. Consequently, extant species derive from species in 233 

which some intrinsic biological traits resulted in lack of short-term selection favoring genes 234 

that would lead to species extinction. Only lineages in which there was no such destructive 235 

short-term selection have survived. If a lineage loses these biological traits, it will go extinct. 236 

This intrinsic property of life is illustrated by sexual reproduction. Most species on earth 237 

engage in some form of sex. Nevertheless, asexual lineages regularly appear. In the 238 

phylogenies, there are no asexual lineages but only isolated asexual species at the end of 239 

phylogenetic branches. This means that asexual species are evolutionary dead ends (Maynard-240 

Smith 1978). Why is loss of sex so rare that it does not drive life on earth to extinction? Simply 241 

because extant lineages derive from species in which some intrinsic trait resulted in short term 242 

selection for sex and most often species inherit this trait from their ancestors (Gouyon 1999). 243 

As a result, loss of sex remains exceptional. We can apply the same line of thinking to 244 

mutualisms. Only mutualisms in which there is no short-term selection against the mutualism, 245 

or mutualisms in which no mutation that destabilizes the mutualism can arise, survive over 246 

evolutionary times. This explains why mutualisms are intrinsically stable (Frederickson 2017) 247 

and, hence, why we do not expect to find adaptations specifically evolved to punish cheating 248 

mutualists (i.e. that would take the benefits from the mutualism without reciprocating). 249 

Therefore, sanctions do not explain mutualism stability (Frederickson 2013). 250 
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The mutualism between Yucca and Yucca-moths provides an example of the pitfalls 251 

associated with thinking in terms of sanctions. Yuccas are pollinated by Tegeticula moths that 252 

lay eggs in the flowers. The moth collects pollen with its modified labial palps and deposits 253 

some of it on the flower stigma after oviposition. The moth larva feeds on the developing 254 

young seeds. If the larva eats too many developing seeds in the ovary, the flower aborts 255 

leading to the death of the larva. From these observations, it is tempting to suggest that Yucca 256 

plants have developed a mechanism to limit oviposition by its mutualistic pollinator. If the 257 

pollinator turns into a parasite eating too many seeds, it is punished. However, Tegeticula 258 

belong to a group of moths that do limited damages in the ovaries. Lack of host 259 

overexploitation predates the mutualism (Yoder et al. 2010). Similarly, Yucca belong to a 260 

lineage of plants in which there is abundant early abortion of developing fruits. Abortion rates 261 

of fruits containing few developing seeds and of damaged flowers are high. Hence, the 262 

mechanisms limiting over-exploitation predated the evolution of the mutualism and do not 263 

qualify as sanctions. We propose that the evolution of the mutualism was made possible by 264 

pre-existing traits of the associates (Frederickson 2013). This is further demonstrated that one 265 

Tegeticula pollinated species, Hesperoyucca whipplei, is not a Yucca. The moth has jumped 266 

host, and has become the active pollinator of a new lineage (Pellmyr 2003). This lineage did 267 

not have a history of co-adaptation with the moth and therefore could not have developed 268 

adaptations against overexploitation by mutualist Tegeticula moths. Despite this, the 269 

association has thrived demonstrating that the adaptations limiting exploitation pre-existed to 270 

the mutualism. Successful host switching has occurred in several active pollination mutualisms. 271 

It has also been shown that Epicephala moths have colonised and pollinate actively four 272 

different lineages of plants within Phyllanthaceae converting pollinated lineages pollinated by 273 

generalist insects into lineages engaged in active pollination mutualisms (Kawakita 2010). 274 

Further, some chalcid fig-wasp lineages that do not belong to the Agaonidae have become fig-275 

pollinators despite 70 Ma year co-diversification of the mutualistic association between Ficus 276 
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and Agaonidae (Jousselin et al. 2001). Hence, we have numerous examples of new associations 277 

that became mutualisms because of pre-exiting traits of one or both partners involved in the 278 

new mutualism. 279 

The complementarity of species traits in mutualisms are generally stricking. In both 280 

symbiotic and non-symbiotic mutualism, in general, there is a combination of a structural 281 

component, representing goods provided by a long-lived partner (e.g., 3D structure, sheltering 282 

or food), and a service supplied by a short-lived partner (e.g., gamete transport, resource 283 

transport from the surroundings, protection against natural enemies or biosynthetic 284 

capacities) (Leigh Jr 2010). In addition, mutualisms involve members of distant taxonomic 285 

groups, as exemplified by marine invertebrates – bacteria, mammals/insects – gut 286 

microorganisms, plant – root bacteria/fungi, fungi – algae/cyanobacteria, and plant – insect 287 

associations. Large phylogenetic distance between the partners is probably important for 288 

mutualism stability, as it enhances the combination of contrasting abilities, and decreases 289 

niche overlap. As a consequence, the potential for selective conflicts between partners is 290 

reduced, and the potential for overcoming them is enhanced. Indeed, the larger organism 291 

generally controls the arena in which the life of the smaller, shorter-lived organism is plaid out. 292 

Controlling the arena may canalise selective forces acting on the smaller partner. In this topic 293 

we argue that mechanisms to reinforce cooperation, acting exclusively at individual (or gene) 294 

level are not sufficient to stabilize mutualistic associations, although these mechanisms play a 295 

role in reducing conflicts between partners. One example of such mechanism is the vertical 296 

transmission of the symbiont that occurs in sap-sucking insects – gut bacteria (Baumann 2005) 297 

and ant/beetle – cultivated fungi (Aanen et al. 2002; Mueller et al. 2005), which increases the 298 

symbiont endogamy, limiting the selection of non-cooperative traits via kin selection. In other 299 

types of mutualism, specially the non-symbiotic ones, it is necessary to consider spatio-300 

temporal dynamics at community level and the multilevel selection to accommodate an 301 

evolutionary framework of mutualisms (Gomulkiewicz et al. 2003; Wilson and Wilson 2008; 302 
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O’Gorman et al. 2008; Nowak et al. 2010). Mutualism as source of evolutionary innovation that 303 

expands the partners capacities appears as a general aspect of + / + interactions. Such 304 

emergent attribute can sometimes transcend pure genetic determinism if one considers 305 

cultural evolution in animals with developed cognitive capacities, as for example corvids and 306 

primates, that have allowed them to better explore the ecosystem, and eventually use new 307 

niches (Wimsatt 1999; Castro and Toro 2004; Marzluff and Angell 2005; Vale et al. 2017). 308 

 309 

3. Some examples of mutualisms involving insects and plants 310 

Most seed plants are sessile during their sporophytic phase, i.e. during most of their life cycle. 311 

Hence, many of their responses to ecological challenges, such as defence against herbivores, 312 

gamete transfer and seed dispersal, may rely on mutualistic associations with mobile animals 313 

(see previous topics). On the other hand, animals may expand their ability to use plant 314 

resources thanks to mutualistic interactions with microorganisms (Douglas 2009) or by tending 315 

phytophagous insects (Heil and McKey 2003). Those mutualisms can be classified according to 316 

the services provided by one of the partners, usually the one smaller in size and with shorter 317 

generation time (Table 1). In the following, we present some examples of insect-plant 318 

mutualisms involving defence against herbivores, digestion of plant products, and pollination 319 

by insects (Figure 2). 320 
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 321 

Figure 2. Examples of mutualisms involving insects and plants. Protection mutualism: A – 322 

Ectatomma tuberculatum ant probing an extrafloral nectary in Leguminosae. Digestive 323 

mutualisms: B – Aconophora sp. (Auchenorrhyncha: Membracidae), associated with 324 

Baumannia (γ-proteobacteria) and Sulcia (Bacteroidetes); C – Atta laevigatta carring a floral 325 

bud. Pollination mutualisms: D - Editha magnifica wasp visiting Vernonia flowers; non-326 

specialized insects may eventually act as pollinators. E – immature seeds and fig wasps in the 327 

monoecious F. maxima; note that seeds (s) are produced in flowers closer to the fig wall, while 328 

wasps (w) are produced closer to the fig cavity. F – fig wasps collecting pollen (arrows) in the 329 

monoecious F. albert-smithii. Photo credits: A – D (Kleber Del-Claro), E – F (Finn Kjellberg). 330 

 331 
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Table 1. Examples of mutualisms involving insects and plants 332 

Mutualism 
Classes 

Provided services Systems 
Partner 
integrations 

Sub-divisions Some examples References 

Protection 
mutualism 

Protection against herbivores 
Predatory insects 
– plants 

Non-
symbiotic 

Extra-floral nectar, 
domatia and food 
bodies 

Myrmecophilic plants (several of 
flowering plants and ferns) 

Heil & Mckey 
(2003) 

Honey dew from 
phloem-feeding 
hemipterans 
(trophobionts) 

Hemiptera – Formicidae mainly, 
but also Anthribidae, 
Coccinellidae, Apoidea, 
Tachinidae, Syrphidae and 
Neuroptera 

Delabie (2001) 

Digestive 
mutualism 

Degrade carbon rich sources (i.e. 
cellulose, hemicelluloses and lignin), 
detoxify secondary plant compounds 
and convert nitrogen in available 
amino acids 

Insects – 
microorganisms 

Symbiotic 

General feeders 
Blattodea, Coleoptera and 
Psocoptera 

Nalepa et al. 
(2001), Douglas 
(2009) 

Plant sap feeders 

Hemiptera – Baumannia, 
Buchnera, Carsonella, Portiera, 
Sulcia and Tremblaya bactéria, 
and clavicipitacean fungi 

Douglas (2009) 

Fungus – growing 
insects 

Attine ants, Macrotermitinae 
termites and Scolytinae (ambrosia 
beetles) – several fungi 

Mueller et al. 
(2005) 

Pollination 
mutualism 

Gamete transport 
Several insect 
orders – seed 
plants 

Non-
symbiotic 

Nectar, pollen and 
sheltering as reward 

bees, beetles, dipterans, 
lepidopterans, thrips and wasps 

Rech et al. 
(2014) 

Symbiotic Brood-site pollination 

Obligate: fig trees – fig wasps, 
leafflowers – leafflower moths 
and yucca – yucca moths  

Sakai (2002), 
Weiblen (2002) 

senita cactus – senita moths, 
Silene – Hadena/Perizoma, 
Lithophragma – Greya and 
globeflower – globeflower flies 

Kephart et al. 
(2006), Hembry 
& Althoff (2016) 

 333 
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 334 

3.1. Protection mutualisms 335 

Animals and plants can obtain protection against natural enemies from mutualistic 336 

associations. Particularly, two interrelated systems have been extensively studied: ant-plant-337 

herbivore and ant-hemipteran interactions. Insect herbivory is a key factor in plant 338 

communities that effects plant productivity, survival and reproduction (Showalter 2000). 339 

Plants can derive protection against herbivores by associating with predatory ants. As ants are 340 

among the most important predators of arthropods, they can constitute an effective plant 341 

defence. Indeed, while many herbivores have overcome plant chemical defences, few have 342 

evolved efficient adaptations against predatory ants (Heil and McKey 2003). 343 

Plants can attract facultative mutualist ants by providing direct rewards (energy-rich 344 

extrafloral nectar and food bodies), as well as indirect rewards such as carbohydrate-rich 345 

excretions (honeydew) of phloem-feeding hemipterans (trophobionts). In this later tripartite 346 

mutualism, ants defend their trophobionts from predatory and parasitoid insects, resulting in 347 

another nested defensive interaction (Delabie 2001; Heil and McKey 2003; McKey et al. 2005). 348 

The direct and indirect rewards provided by the plants for the ants are poor in nitrogen and 349 

present highly unbalanced amino acid compositions. Ants may complement this unbalanced 350 

diet by hunting herbivorous insects or by harvesting some of their hemipteran trophobionts 351 

(Del-Claro et al. 2016; Calixto et al. 2018). Some ants, especially species adapted for living in 352 

the canopy, are associated with endosymbiotic microbes that help them to cope with such 353 

nutritional imbalance. The need of supplementation of nitrogen from external sources, seems 354 

to have driven the selection of prey-foraging strategies and physiological adaptations (Heil and 355 

McKey 2003; McKey et al. 2005).  356 

In over 100 genera of tropical angiosperms, plants are involved in more permanent, in 357 

some cases obligatory, mutualisms with protective ants. These plants have specialised 358 
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structures, called domatia, and used as nest by the ants. Domatia can occur in hollow stems 359 

(e.g., Cecropia, Leonardoxa and Macaranga), thorns (Acacia), petioles (Piper), or leaf pouches 360 

(Hirtella, Maieta, Scaphopetalum and Tococa). In addition to domatia, plants may offer food 361 

rewards, such as extrafloral nectar, food bodies or both. Plants benefit from protection 362 

services and, additionally, from nutrients mobilised by the ants. It is estimated that 80% of the 363 

carbon in Azteca ant’s bodies can be derived from their Cecropia host tree, whereas about 90% 364 

of the plant’s nitrogen comes from ants debris (i.e., exuviae, dead larvae, workers, and remains 365 

of arthropod prey) (Heil and McKey 2003). 366 

Defensive mutualisms have evolved many times between insect species. Ants show 367 

trophobiotic relationships with lepidopteran larvae of the familes Lycaenidae, Riodinidae, and 368 

Tortricidae, and heteropteran species of the families Coreidae, Pentatomidae and Plataspidae. 369 

In addition to ants, hemipteran species have trophobiotic relationships with a range of other 370 

insect groups, such as Anthribidae, Coccinellidae, Apoidea (and other aculeate Hymenoptera), 371 

Tachinidae, Syrphidae and Neuroptera (Delabie 2001). However, protection mutualism is more 372 

frequent and better studied in ant-hemipteran interactions. Sap-feeding hemipterans are 373 

particularly vulnerable to predation. Some species are sessile at some life-stages. Even in more 374 

mobile species, to access the phloem, hemipteran insects introduce their stylets deep into 375 

plant tissues; a process that takes minutes to hours. While they are attached to the host plant, 376 

they are not able to remove the mouthparts quickly to escape predators. Moreover, because 377 

of their feeding mode, hemipteran insects excrete large quantities of honeydew. These insects 378 

have one additional problem; they have to get rid of such excretion that can accumulate on 379 

their bodies and serve as substrate for fungus growing. Thus, trophobiosis has this “cleaning” 380 

benefit for sap feeding insects (Delabie 2001). 381 

 382 

3.2. Digestive mutualism 383 
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Mutualism with microorganisms has allowed several groups of animals to feed on plants. 384 

Indeed, plant tissues constitute a source of energy and nutrients rich in cellulose and 385 

allelochemicals, which are primarily inaccessible to animal digestion. Plant feeding insects and 386 

vertebrates derive their digestive capabilities from bacteria, fungi, protozoa and other 387 

microorganisms. The most studied groups include cockroaches, termites, attine ants, plant 388 

sap-feeding insects and ruminants (Mueller et al. 2001; Nalepa et al. 2001; Aanen et al. 2002; 389 

Kamra 2005; Baumann 2005; Koike and Kobayashi 2009; Douglas 2009; Caldera et al. 2009). 390 

Despite their remarkable taxonomic and ecological diversity, digestive mutualisms all share the 391 

attribute of making use of the large metabolic capacities of microorganisms to degrade carbon 392 

rich sources (i.e. cellulose, hemicelluloses and lignin), detoxify secondary plant compounds and 393 

convert nitrogen in available amino acids. 394 

Detritivorous termites and cockroaches are associated with bacteria, fungi and protozoa 395 

that degrade cellulosic material and recycle nitrogen from insect waste (Nalepa et al. 2001; 396 

Douglas 2009). Analogous interactions occur in ruminant vertebrates, allowing them to 397 

assimilate carbon present in cellulosic compounds and metabolise anti-nutritional and toxic 398 

substances of plants. Cattle support an impressively diverse and complex microorganism 399 

community. One millilitre of rumen liquor can enclose as many as 1010–1011 cells of 50 400 

bacterium genera, 104–106 ciliate protozoa from 25 genera, 103–105 zoospores of five 401 

anaerobic fungus genera and 108–109 bacteriophages (Kamra 2005). Nevertheless, the 402 

bacterial diversity is largely underestimated, as many rumen bacteria cannot be cultivated in 403 

the laboratory. Species survey based on DNA sequences suggest that 300-400 species of 404 

bacteria are present in the rumen (Koike and Kobayashi 2009). 405 

Despite of the large metabolic capacity of microorganisms, the amount of vegetal 406 

material that insects can process is ultimately constrained by their gut volume. This limitation 407 

is overcome by insects that cultivate fungi in their nests (Douglas 2009). Fungus cultivation is 408 
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well known in the Neotropical Attini ant tribe and in the Old-World termite subfamily 409 

Macrotermitinae (Mueller et al. 2001; Aanen et al. 2002; Caldera et al. 2009). However, fungus 410 

cultivation is much more widespread and is carried out by siricid woodwasps, cerambycid 411 

beetles and plant-ants (Douglas 2009; Defossez et al. 2009). All the 210 plus attine ant species 412 

rely on cultivation of fungi of the tribe Leucocoprineae as their main food. The majority of 413 

cultivated fungi belong to two genera, Leucoagaricus and Leucocoprinus. Basal attine species 414 

cultivate fungi on dead-plant matter and caterpillar frass, while derived lineages collect fresh 415 

leaves and flowers as substrate for fungi, suggesting that the development of a new mode of 416 

fungi cultivation is an innovation that has allowed ant species diversification. The fungi 417 

cultivated by derived attine ants are also highly specialized on the mutualism. They have 418 

evolved a specialised structure rich in nutrients, the gongylidia, that serves as ant food. This 419 

structure is formed by densely packed clusters of hyphae that are easily harvested by the ants 420 

(Mueller et al. 2001). The mutualism involving fungus-growing termites is analogous with the 421 

attine-fungus association, as it allows termites to make use of a diversity of vegetal food 422 

sources such as wood, dry grass, and leaf litter. This mutualism is restricted to a single termite 423 

subfamily, Macrotermitinae, which is associated with fungi of the genus Termitomyces. In 424 

contrast with fungal symbionts of the attine ants that are usually propagated clonally and 425 

vertically by dispersing queens, Termitomyces reproduce sexually and are most often 426 

horizontally transmitted (Aanen et al. 2002). 427 

A particular mutualism involves sap-feeding insects and intracellular bacteria. This 428 

system is one of the most specialized digestive mutualisms in terms of partner integration. 429 

Intracellular bacteria reside in specialized host cells (bacteriocytes) that constitute an organ 430 

called the bacteriome and are vertically transmitted - the symbionts migrate to the ovaries and 431 

enter the germ cells. This specialised mutualism is restricted to the monophyletic clade 432 

constituted by members of the two hemipteran suborders, Sternorrhyncha (psyllids, 433 

whiteflies, aphids, and mealybugs) and Auchenorrhyncha (sharpshooters)]. This clade 434 
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comprises over 10,000 representatives. Within this clade different insect lineages are 435 

associated with different bacterium genera: Buchnera (aphids), Carsonella (psyllids), Portiera 436 

(whiteflies), Tremblaya (Mealybugs) and Baumannia (sharpshooters). Plant sap is an 437 

unbalanced diet for insects as it is rich in carbohydrates relative to free amino acids and it is 438 

deficient in essential amino acids. The symbiotic bacteria convert non-essential amino acids 439 

into essential ones, allowing sap-feeding insects to circumvent their intrinsic nutritional 440 

limitation. In contrast to other sap-feeders that feed on sap circulating in the phloem, 441 

sharpshooters feed on xylem. The bacteriome in Homalodisca sharpshooters is bilobed, with 442 

one portion hosting Baumannia bacteria that can synthesize vitamins and cofactors, and the 443 

other portion hosting Sulcia bacteria that can synthesize essential amino acids (Baumann 2005; 444 

Moya et al. 2008; Douglas 2009). 445 

 446 

3.3. Pollination mutualism 447 

Gamete transfer in seed plants is strongly constrained by the sessile nature of their 448 

predominant life stage, the sporophyte. Therefore, seed plants must rely on animal and abiotic 449 

pollen vectors (wind and sometimes water) to achieve cross fertilisation. Several groups of 450 

insects including bees, wasps, beetles, dipterans, lepidopterans and thrips, are involved in non-451 

symbiotic and symbiotic pollination mutualisms. Non-symbiotic mutualisms include cases of 452 

diffuse reciprocal adaptation, where independent plant lineages share convergent floral 453 

attributes called pollination syndromes associated with pollinator guilds that present particular 454 

sensory biases and particular pollen transfer attributes (Rech et al. 2014; Dellinger 2020). In 455 

those mutualisms, insects benefit from food (nectar, pollen, oil), shelter (mainly for mate 456 

encounter) as well as other resources used for nest construction or their reproductive 457 

behaviour (oil, resin and floral scent) (Agostini et al. 2014). 458 
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Symbiotic pollination mutualisms are associations in which the plant provide breeding 459 

sites for their pollinators. Most of them qualify as nursery pollination mutualism. Larvae of 460 

pollinators feed on ovules/seeds or other floral parts (Sakai 2002; Dufaÿ and Anstett 2003; 461 

Hembry and Althoff 2016). Among these, brood-site pollination mutualism (sensu Hembry and 462 

Althoff 2016, i.e. association where pollinators feed on developing plant ovules) has evolved 463 

independently in several groups of plants and insects (Dufaÿ and Anstett 2003). It is often 464 

obligate (e.g., fig trees – fig wasps, yucca – yucca moths and leafflowers – leafflower moths, 465 

senita cactus – senita moths), but can also be facultative when the plant is pollinated both by 466 

insects whose offspring develop feeding on seeds and by generalist insect pollinators that visit 467 

flowers to feed on pollen and/or nectar; e.g. Silene – Hadena/Perizoma, Lithophragma – Greya 468 

and globeflower – globeflower flies (Kephart et al. 2006; Hembry and Althoff 2016). In these 469 

cases, the relationship with the seed eating taxa varies locally from mutualism to antagonism 470 

depending on the local pollination efficiency of generalist pollinators. 471 

In brood-site pollination mutualisms the plants are selected to attract pollinators that 472 

will feed on developing seeds. We propose that the pollinating insects are selected to be host 473 

specialists so that they collect pollen from plants of and oviposit in plants of the same species, 474 

thus ensuring successful seed to feed their offspring. In most cases, the plants are selected to 475 

try to kill the developing pollinator larvae as the pollinator offspring will not carry pollen from 476 

their natal plant, and the system remains stable because this selection has not succeeded 477 

(Addicott et al. 1990). For instance, in the fig tree – fig wasp system, about 50% of the plant 478 

ovules are consumed by the pollinator larvae (Kjellberg et al. 2005). However, breeding 479 

pollinators does not come at a cost in Ficus as most consumed ovules produce female 480 

pollinating wasps, that will carry pollen from their natal fig (Jousselin and Kjellberg 2001; 481 

Kjellberg et al. 2001; Jousselin et al. 2003a). 482 

 483 
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4. Brood-site pollination mutualism in fig trees: did it boost species and lifeform 484 

diversifications? 485 

Fifty years ago, William Ramirez and Jacob Galil/Dan Eisikowitch independently discovered 486 

active pollination by some fig wasps (Hymenoptera: Agaonidae). Female actively pollinating 487 

wasps collects pollen into specialised pockets before leaving their natal figs, and later remove 488 

pollen from the pockets and deposit it on the stigmas in another fig containing receptive 489 

pistillate flowers (Galil and Eisikowitch 1969; Ramírez 1969). These observations marked the 490 

modern evolutionary studies of fig trees (Ficus spp) and their associated animals, making it a 491 

model system to investigate the evolution of mutualisms (Borges et al. 2018). The fig trees 492 

belong to Moraceae family, which includes ca. 39 genera. With a pantropical/subtropical 493 

distribution, Ficus encompasses approximately 70% of all 1,100 described Moracea species 494 

(Zerega et al. 2005; Gardner et al. 2017). Wind pollination is ancestral in Moraceae (Gardner et 495 

al. Taxon, accepted). Nevertheless, representatives of a series of genera are involved in 496 

nursery pollination mutualisms. They include representatives of genera Artocarpus (gall 497 

midges), Antiaropsis/Castilla (thrips), Dorstenia (flies) and Mesogyne (bees), and Ficus (chalcid 498 

wasps) (Sakai et al. 2000; Sakai 2001; Zerega et al. 2004; Olotu et al. 2011; Araújo et al. 2017). 499 

Among these, only in Ficus do the wasp larvae feed on developing plant ovules. This is 500 

probably the sole Moraceae genus in which fertilisation female flowers generally directly 501 

benefits the wasp’s offspring. Fig trees stand out for their generalised obligate-specialized 502 

pollination mutualism and their taxonomic diversity. Ficus is about seven times more specious 503 

than the second moracean genus in number of species (i.e., Dortenia with 113 spp, which is 504 

followed by Artocarpus with ca. 70 spp) (Figure 3). Ficus is, in addition, functionally diversified. 505 

The genus presents diverse life-forms (freestanding and hemi-epiphytic trees, shrubs and 506 

climbers), breeding systems (monoecious and gynodioecious), pollination mode (active and 507 

passive), seed dispersion syndromes (birds and volant and non-volant mammals, as well as 508 
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reptiles and fishes)] that allow them to occupy a range of (micro)habitats (Shanahan et al. 509 

2001; Jousselin et al. 2003b; Harrison 2005; Coelho et al. 2014). 510 

 511 

Figure 3. Phylogeny of Moraceae tribes according to Gardner et al. (Taxon, accepted). Terminal 512 

widths are proportional to the squared root (number of species). 513 

 514 

Each Ficus species is pollinated by one or some species of host species-specific agaonid 515 

wasp (Ramírez 1970; Kjellberg et al. 2005). Approximately half of Ficus species are 516 
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monoecious, bearing urn shaped inflorescences (also called syconium or fig) that enclose both 517 

pistillate and staminate flowers. The other species are structurally gynodioecious (see next 518 

paragraph), but functionally dioecious (Berg 1989). Fertilised pollen-loaded pollinating female 519 

wasps are attracted by a blend of volatile substances released by the receptive figs (Grison-520 

Pigé et al. 2002; Souza et al. 2015). The pollinating wasp enters the fig through the ostiole, a 521 

pore closed by floral involucral bracts and pollinates (actively or passively) the pistillate 522 

flowers. In some of them, the wasp inserts its ovipositor through the style to lay one egg 523 

precisely between the nucellus and the inner integument (Jansen-Gonzalez et al. 2012). 524 

Ovaries that receive a wasp egg turn into galls where the pollinator larvae will develop feeding 525 

on endosperm, and those that have been pollinated and have escaped wasp oviposition will 526 

produce seeds. Approximately four to eight weeks later (up to 9 months later for the pollinator 527 

of the common fig!), depending on the temperature (Pereira et al. 2007), the offspring 528 

complete their development. The males emerge first, locate and copulate with the females still 529 

enclosed in their natal galls. Then, the fertilised females emerge from their galls, actively 530 

collect pollen from staminate flowers at anthesis (in passively pollinated species the pollen 531 

from dehiscing anthers adheres spontaneously to the wasp’s body) and leave the natal fig to 532 

search for another tree bearing receptive figs (Frank 1984). Subsequently the figs ripen and 533 

become attractive to a diversity of vertebrate frugivores that can act as seed dispersers 534 

(Shanahan et al. 2001). The figs that are not consumed by frugivores fall to the ground and 535 

turn into a resource for a diverse range of more or less specialised animals, mainly insects 536 

(Palmieri and Pereira 2018). 537 

Gynodioecius Ficus species present two types of plants – one that produces figs 538 

containing only pistillate flower (i.e., ‘female’ tree). The pollinator attracted to a fig in a female 539 

tree pollinates but cannot lay eggs, as the styles are too long for the wasp ovipositor to reach 540 

the ovary of these flowers (Figure 1B). Thus, the pistillate flowers of female trees are 541 

pollinated by deceit, as the pollinator is attracted by a deceptive resource signalling. Pollen 542 
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production, on the other hand, occurs in the functionally male trees, which have figs that 543 

enclose both pistillate and staminate flowers (Figure 1B). Wasp can oviposit in ‘male’ trees as 544 

the pistilate flowers have short styles. ‘Male’ trees do not produce seeds because either the 545 

wasps deposit pollen precisely on the stigmas of the flowers into which they oviposit (active 546 

pollination) or because of poor germination of pollen in ‘male’ trees (Jousselin and Kjellberg 547 

2001). However, pollen is dispersed by the pollinator offspring in the same way of in 548 

monoecious Ficus species (Figure 1A; Weiblen 2002). 549 

The ancestral mode of pollination of Moraceae and their closest relatives Cannabaceae 550 

and Urticaceae is wind pollination involving an explosive mechanism of pollen dispersal with 551 

stamens inflexed in the flower bud that, when they distend cause a rapid anther movement, 552 

releasing large amounts of pollen (Pedersoli et al. 2019). This pollen release mechanism can 553 

achieve an exceptional initial velocity of Mach 0.7 (232 m.s-1) in mulberry plants (Taylor et al. 554 

2006). This mechanism may be an adaptation to circumvent the wind limitation in the tropical 555 

forest understorey (Bawa and Crisp 1980). In this context, the fig – fig wasp mutualism brings 556 

out a singular innovation in pollen dispersion, by combining initial wind dispersal of the wasps 557 

followed by wasp chemotaxis allowing cross-pollination at amazingly low population densities 558 

(Ware and Compton 1994). This is achieved despite the dispersing wasps only surviving 24-48 559 

hours outside figs (Kjellberg et al. 1988; Jevanandam et al. 2013). Despite this temporal 560 

constraint, agaonid wasps can regularly disperse pollen over remarkably long distances 561 

comparatively to usual insect pollinated plants. It is demonstrated that average pollination 562 

distances by agaonid wasps within a fig population may reach several tens of kilometres 563 

(Compton et al. 1988; Nason et al. 1996; Nazareno and Carvalho 2009; Ahmed et al. 2009). 564 

Long-distance pollen dispersal, at least in monoecious Ficus species, is mediated by wind. 565 

Collection of aerial plankton shows that wasps pollinating monoecious Ficus species are 566 

dispersed by the wind above the forest canopy over long distances (Compton et al. 2000; 567 

Harrison and Rasplus 2006). When a wasp detects the plume of receptive fig scent released 568 
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from a receptive tree, it moves down, out of the main wind current and then flies upwind to 569 

reach the tree (Ware and Compton 1994). 570 

The pollination mutualism seems to have opened other evolutionary opportunities in 571 

Ficus, such as the active pollination that increases the efficiency of pollen transfer from the 572 

plant to the insect. As a consequence, the plants can invest in other aspects of male function 573 

such as producing more male inflorescences or in the case of Ficus, breeding more pollinator 574 

offspring (Sakai 2002; Pellmyr et al. 2020). Active pollination is present in two thirds of the 575 

Ficus species. Agaonid wasps that actively pollinate fig trees transport the pollen clumped into 576 

body containers (i.e., pollen pockets), which apparently shares functional analogies with the 577 

cohesive pollen dispersion in pollinia observed in Asclepiadaceae and Orchidaceae (Ramírez 578 

2007). It is postulated that pollen clumping can improve the pollination success as it decreases 579 

the pollen waste during transport, and increases its probability of being deposited on a 580 

conspecific stigma (Johnson and Edwards 2000). However, this is not ever true in Ficus as 581 

actively pollinating wasps may carry limiting quantities of pollen (Kjellberg et al. 2014). Indeed, 582 

in the fig system as in other actively pollinated systems, the wasps, not the tree decide how 583 

much pollen they load into their pockets. In general, canopy fig tree species produce 584 

synchronous crops within trees but asynchronous among trees, making fig crops available at 585 

population level year-round (Milton et al. 1982; Windsor et al. 1989; Figueiredo and Sazima 586 

1997; Pereira et al. 2007). Trees are selected to produce synchronous crops for wasp attraction 587 

as in some Ficus species producing small figs consumed by local animals (e.g. F. guianensis, F. 588 

caulocarpa, F. subpisocarpa), fig receptivity is synchronised within crop, wasp emergence is 589 

synchronised within crop, but fig ripening is scattered over a longer period of time (Chiang et 590 

al. 2018). Synchronous fig crops lead to year-round fruiting because of strong within fig 591 

protogyny associated with the production of synchronised crops. If receptive figs are 592 

particularly abundant at one period of the year, then there is selection on trees to produce 593 

crops that will pollinate these figs, i.e. that will release wasps at that time. These pollinating 594 
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figs were receptive several weeks earlier, leading to the selection of figs producing crops that 595 

would pollinate them. Hence, there is frequency dependent selection favouring year-round 596 

production of crops due to the strong protogyny of figs and long wasp development time. 597 

Year-round fig production makes figs keystone resources for the year round survival of highly 598 

diversified frugivorous vertebrates, allowing different seed-dispersion mutualism to arise 599 

(Shanahan et al. 2001). Moreover, monoecious fig trees, which are adapted to long-distance 600 

pollen dispersion (Compton et al. 2000; Harrison 2003), usually produce huge fig crops that 601 

consequently result in a massive production of small seeds. Thus, capacity to be pollinated at 602 

very low densities coupled with the massive seed dispersion by canopy frugivores allow fig 603 

trees to colonise highly transient habitats and unlikely (in terms of frequency) habitats. 604 

We postulate that brood-site pollination mutualism has boosted species diversification 605 

in Ficus, by opening new adaptive opportunities. As a matter of comparison the sister group of 606 

Ficus (i.e., tribe Castilleae, represented by 10 genera and approximately 60 species) is nearly 13 607 

times less speciose than Ficus (Gardner et al. 2017). Pollination biology in Castilleae is not well 608 

known, but pollination by thrips is reported for Antiaropsis decipiens and Castilla elastica, and 609 

potential bee/vespid pollination for Mesogyne insignis (Sakai 2001; Zerega et al. 2004; Olotu et 610 

al. 2011). These three genera have 1-3 species each, and there is no evidence that those insect 611 

pollinations parallel the fig – fig wasp mutualism in terms of pollination efficiency. Patterns of 612 

diversification/extinctions in Ficus lineages support a diversification hypothesis based on new 613 

ecological opportunities. Bruun-Lund et al. (2018), based on a dated and comprehensive 614 

phylogenetic hypothesis, demonstrated that fig trees follow the evolutionary model of 615 

‘museum of diversity’, with gradual accumulation of species over time coupled with very low 616 

extinction rates (Figure 4A). They showed that key innovations directly or indirectly associated 617 

with the reproductive biology of fig trees correlated with higher diversification rates in clades 618 

where those features were present. For instance, actively pollinated Ficus species diversify 619 

faster and present lower extinction rates than passively pollinated ones (Figure 4B). Similarly, 620 
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monoecious and hemi-epiphytic species diversified faster than gynodioecious and other life 621 

forms (Figures 4C-D). 622 

 623 

Figure 4. Diversification rate in Ficus (Bruun-Lund et al. 2018). A: lineage-though-time plot 624 

depicted on the dated phylogenetic tree from Cruaud et al. (2012). B-D: net diversification rate 625 

in Ficus lineages, according to pollination modes, reproductive systems and lifeforms. Bruun-626 

Lund et al. (2018) was published under the terms of the Creative Commons Attribution-627 

NonCommercial-No Derivatives License (CC BY NC ND). 628 

 629 

Bruun-Lund et al. (2018) hypothesized the following scenario to describe the success of 630 

fig trees. As the fig – fig wasp mutualism emerged by the late Cretaceous (75-90 Ma) (Cruaud 631 

et al. 2012), fig trees expanded into vacant niches left by the putative massive plant extinctions 632 

at the Cretaceous–Paleogene boundary (∼65 Ma) (Wilf and Johnson 2004), thanks to their 633 

capacity to colonize unlikely suitable habitats, and to cross-pollinate at low population density. 634 

Then, Ficus would have diversified at a constant rate, as fig trees have several attributes of 635 

pioneer plants, such as fast growth, small seeds, high fecundity and flexible rooting habits. 636 
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Those features make the fig – fig wasp association very robust and successful. Indeed, fossil 637 

evidences support that the fig – fig wasp mutualism is stable along its evolutionary history. 638 

Fossil specimens of a pollinating fig wasp from a limestone bed in England (∼34 Ma), and 639 

pollinating and non-pollinating fig wasps from Dominican amber (10-20 Ma), as well as pollen 640 

morphology, display the same set of associated anatomical characters as modern species 641 

(Peñalver et al. 2006; Compton et al. 2010; Farache et al. 2016). 642 

A major challenge in the study of mutualisms is how to go beyond particular examples 643 

and biological models and draw generalisations. We may list some challenges: 644 

“Most fig papers start with the statement that the fig-fig wasp mutualism is a model system. Is 645 

it a model system of anything else than figs?” Richard T. Corlett 646 

“What will matter a lot to whether the paper is accepted (…) is how you frame the results. (…) 647 

They absolutely have to convincingly inform broader concepts in ecology, evolution and/or 648 

behavior that aren't system specific. That's always a little hard with figs.” Judith L. Bronstein 649 

“Fig wasps are wonderful” E. Allen Herre 650 

What we hope to have shown in this chapter is that figs and fig wasps and more 651 

generally brood-site pollination mutualisms, and case studies of mutualisms have something to 652 

tell us, beyond fascinating stories. We have tried to approach generalisation. This is a first 653 

sketch, and as such, we have made a number of provocative statements. The aim was to 654 

suggest alternative perspectives, to stir reflexion. A very important point is that as long as we 655 

do not know enough about a biological model it is very easy to make false inferences. To 656 

understand mutualisms we need strong biological data on the different systems. 657 

 658 

  659 



31 
 

Conclusion 660 

The view that mutualism represents reciprocal exploitation leads to (1) a false assumption of 661 

an inherent conflict of interest between interacting parties, and (2) that the evolution of 662 

strategies that limit non-cooperative behaviours, such as sanctions, is condition for mutualism 663 

stability. However, phylogenetic evidences from a range of mutualistic systems point out that 664 

traits claimed as sanctioning acts were preexisting adaptations. Indeed, mutualisms are stable 665 

at macroevolutionary timescales, and rarely evolve to parasitic associations. In general, 666 

mutualisms involve members of distant taxonomic groups that combines a structural (goods 667 

provided by a long-lived partner) and a service component supplied by a short-lived partner. 668 

Thus, mutualism is a source evolutionary innovations that expand the partners ecological 669 

capacities. The brood-site pollination in the fig tree – fig wasp mutualism resulted in a set of 670 

innovations, such as efficient long-distance pollination and year-round massive seed rain, that 671 

opened new ecological niches and allowed a remarkable net diversification at a 672 

macroevolutionary timescale. 673 

 674 

Key points: 675 

 Cooperation theory 676 

 Mechanisms to limit non-cooperative behaviour 677 

 Mutualism as source of evolutionary innovations 678 

 679 

Questions 680 

 Do the architecture “goods vs. services” occur in other examples of mutualisms? 681 
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 In addition to Ficus, are lineages involved in mutualistic associations in general more 682 

diverse than close-related lineages not engaged in mutualisms? 683 

 What should be the insights resulted from expanding mutualism theory to non-pure 684 

biological interactions (i.e. culture vs. animals)? 685 

 686 
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