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Abstract.
A new method is presented for job assignment to and

reassignment between machines in a computing cluster.
Our method is based on a theoretical framework that
has been experimentally tested and shown to be useful
in practice. This “opportunity cost” method converts the
usage of several heterogeneous resources in a machine
to a single homogeneous “cost”. Assignment and
reassignment is then performed based on that cost. This
is in contrast to previous methods for job assignment
and reassignment, which treat each resource as an
independent entity with its own constraints. These
previous methods were intrinsically ad hoc, as there
was no clean way to balance one resource against
another.

1. INTRODUCTION

The more powerful a cluster of workstations is, the
more important it is to use its resources wisely. A poor
job assignment strategy can result in heavily
unbalanced loads and thrashing machines, which
cripples the cluster’s computational power. Resources
can be used more efficiently if the cluster can migrate
jobs – moving them transparently from one machine to
another. However, even systems that can reassign jobs
can still benefit from a carefully-chosen assignment
strategy.

Job migration is attractive because the arrival rate
and resource demands of incoming jobs are
unpredictable. In light of this unpredictability, jobs will
sometimes be assigned to a non-optimal machine, and
migration gives the system a second (or third, etc.)
chance to fix such a mistake. It is intuitively clear that
the ability to migrate jobs could lead to better
performance – that is, faster completion times for the
average job. Unless it is known where a job should be
at any given time, however, the reassignment strategy
could also make mistakes. The Mosix [1, 2] system, for
example, allows this kind of transparent job migration
in the Unix environment.

Determining the optimal location for a job is a
complicated problem. The most important complication
is that the resources available on a cluster of
workstations are heterogeneous. In effect, the costs for
memory, CPU, process communication and so forth are
incomparable. They are not even measured in the same
units: communication resources are measured in terms
of bandwidth, memory in terms of space, and CPU in
terms of cycles. The natural greedy strategy, balancing
the resources across all of the machines, is not even
well defined.

In this paper, we present a new job assignment
strategy based on “economic” principles and
competitive analysis. This strategy enables us to
manage heterogeneous resources in a near-optimal
fashion. The key idea of this strategy is to convert the
total usage of several heterogeneous resources, such as
memory and CPU, into a single homogeneous “cost.”
Jobs are then assigned to the machine where they have
the lowest cost.

This economic strategy provides a unified
algorithmic framework for allocation of computation,
communication, memory and I/O resources. It allows
the development of near-optimal online algorithms for
allocating and sharing these resources.

Our strategy guarantees near-optimal end-to-end
performance for the overall system on each single
instance of job generation and resource availability.
This is accomplished using online algorithms that know
nothing about the future, assume no correlation between
past and future, and are only aware of the state. In spite
of this, one can rigorously prove that their performance
will always be comparable to that of the optimal
prescient strategy.

This work shows that the unified opportunity cost
approach offers good performance in practice. First, we
performed tests using a simulated cluster and a
“typical” series of incoming jobs. Our method, with and
without reassignments, was compared against the
methods of PVM, a dominant static job assignment



strategy, and Mosix, one of the more successful system
that support transparent process migration. Each
method was given an identical stream of jobs. Over
3,000 executions of this Java-based simulation were
performed, each representing at least 10,000 simulated
seconds. When no reassignments were allowed, our
method was shown to be a dramatic improvement over
PVM. When reassignments were allowed, our method
was substantially better than that of the highly tuned,
but ad hoc, Mosix strategy.

A second series of tests was performed on a real
system, to validate this simulation. This system
consisted of a collection of Pentium 133, Pentium Pro
200 and Pentium II machines with different memory
capacity, connected by Fast Ethernet, running BSD/OS
[3]. The physical cluster and the simulated cluster were
slightly different, but the proportional performance of
the various strategies was very close to that of the Java
simulation. This indicates that the simulation
appropriately reflects events on a real system.

In Section 2, we will discuss the model we used and
our assumptions. In Sections 3 and 4, we will describe
our algorithm and the theoretical guarantees that come
with it. In Section 5, we will show our experimental
evidence that this strategy is useful in practice. Section
6 concludes the paper. For additional information about
this research, consult the following web site:
http://www.cnds.jhu.edu/projects/metacomputing.

2. THE MODEL

The goal of this work is to improve performance in a
cluster of n machines, where machine i has a CPU
resource of speed rc(i) and a memory resource of size
rm(i). We will abstract out all other resources associated
with a machine, although our framework can be
extended to handle additional resources.

There is a sequence of arriving jobs that must be
assigned to these machines. Each job is defined by three
parameters:

• Its arrival time, a(j),

• The number of CPU seconds it requires, t(j), and

• The amount of memory it requires, m(j).

We assume that m(j) is known when a job arrives, but
t(j) is not. A job must be assigned to a machine
immediately upon its arrival, and may or may not be
able to move to another machine later.

Let J(t,i) be the set of jobs in machine i at time t.
Then the CPU load and the memory load of machine i
at time t are defined by:

lc(t,i) = |J(t,i)| ,

and

lm(t,i) = ∑
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We will assume that when a machine runs out of main
memory, it is slowed down by a multiplicative factor of τ,
due to disk paging. The effective CPU load of machine i
at time t, L(t,i), is therefore:

lc(t,i) if lm(t,i) ≤ rm(i),
and lc(t,i) * τ otherwise.

For simplicity, we will also assume that all machines
schedule jobs fairly. That is, at time t, each job on
machine i will receive 1/L(t,i) of the CPU resource. A
job’s completion time, c(j), therefore satisfies the
following equation:
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Our goal in this paper is to develop a method for job
assignment and/or reassignment that will minimize the
average slowdown over all jobs.

3. THEORETICAL BACKGROUND

We will evaluate the effectiveness of our (online)
algorithms by their competitive ratio, measured against
the performance of an optimal offline algorithm. An
online algorithm ALG is c-competitive if for any input
sequence I, ALG(I) ≤ c OPT(I) + α, where OPT is the
optimal offline algorithm and α is a constant.

3.1 INTRODUCTION AND DEFINITIONS
The theoretical part of this paper will focus on how to

minimize the maximum usage of the various resources
on a system – in other words, the best way to balance a
system’s load. One such algorithm, described in [4],
proves useful in practice even when our goal is to
minimize the average slowdown instead, which
corresponds to minimizing the sum of the squares of the
loads.

In preparation for a discussion of this algorithm,
Assign-U, we will examine this minimization problem
with three different machine models and two different
kinds of jobs. The three machine models are:

1. Identical Machines. All of the machines are
identical, and the speed of a job on a given
machine is determined only by the machine’s
load.

2. Related Machines. The machines are identical
except that some of them have different speeds –
in the model above, they have different rc values,



and the memory associated with these machines
is ignored.

3. Unrelated Machines. Many different factors can
influence the effective load of the machine and
the completion times of jobs running there.
These factors are known.

The two possible kinds of jobs are:

1. Permanent Jobs. Once a job arrives, it executes
forever without leaving the system.

2. Temporary Jobs. Each job leaves the system
when it has received a certain amount of CPU
time.

We will also examine a related problem, called the
online routing problem.

3.2 IDENTICAL AND RELATED
MACHINES

For now, we will assume that no reassignments are
possible, and that the only resource is CPU time. Our
goal, therefore, is to minimize the maximum CPU load.

When the machines are identical, and no other
resources are relevant, the greedy algorithm performs
well. This algorithm assigns the next job to the machine
with the minimum current CPU load. The greedy
algorithm has a competitive ratio of 2 – 1/n (see [5]).
When the machines are related, the greedy algorithm
has a competitive ratio of log n.

3.3 UNRELATED MACHINES
ASSIGN-U is an algorithm for unrelated machines and

permanent job assignments, based on an exponential
function for the ‘cost’ of a machine with a given load
[6]. This algorithm then assigns each job to a machine
to minimize the total cost of all of the machines in the
cluster. More precisely, let:

• a be a constant, 1 < a < 2,

• li(j) be the load of machine i before assigning job
j, and

• pi(j) be the load job j will add to machine i.

The online algorithm will assign j to the machine i
that minimizes the marginal cost
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This algorithm is O(log n) competitive for unrelated
machines and permanent jobs. The work presented in
[7] extends this algorithm and competitive ratio to
temporary jobs, using up to O(log n) reassignments per

job. A reassignment moves a job from its previously
assigned machine to a new machine. In the presence of
reassignments, let

• hi(j) be the load of machine i just before j was
last assigned to i.

When any job is terminated, the algorithm of [7]
checks a ‘stability condition’ for each job j and each
machine M. This stability condition, with i denoting the
machine on which j currently resides, is:
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If this stability condition is not satisfied by some job
j, the algorithm reassigns j to machine M that minimizes
HM(j).

For unrelated machines and temporary jobs, without
job reassignment, there is no known algorithm with a
competitive ratio better than n.

3.4 ONLINE ROUTING OF VIRTUAL
CIRCUITS

The ASSIGN-U algorithm above minimizes the
maximum usage of a single resource. In order to extend
this algorithm to several resources, we examine the
related problem of online routing of virtual circuits. The
reason this problem is applicable will be discussed
shortly. In this problem, we are given:

• A graph G(V,E), with a capacity u(e) on each
edge e,

• A maximum load mx, and

• A sequence of independent requests (sj , tj ,
p:E→[0,mx]) arriving at arbitrary times. sj and tj

are the source and destination nodes, and p(j) is
the required bandwidth. A request that is
assigned to some path P from a source to a
destination increases the load le on each edge

Pe ∈  by the amount pe(j) = p(j)/u(e).

Our goal is to minimize the maximum link
congestion, which is the ratio between the bandwidth
allocated on a link and its capacity.

Minimizing the maximum usage of CPU and
memory, where memory usage is measured in the
fraction of memory consumed, can be reduced to the
online routine problem. This reduction works as
follows: create two nodes, {s, t} and n non-overlapping
two-edge paths from s to t. Machine I is represented by
on e of these paths, with a memory edge with capacity
rm(i) and a CPU edge with capacity rc(i). Each job j is a
request with s as the source, t as the sink, and p a
function that maps memory edges to the memory
requirements of the job and CPU edges to 1. The



maximum link congestion is the larger of the maximum
CPU load and the maximum memory (over)usage.

ASSIGN-U is extended further in [6] to address the
online routing problem. The algorithm computes the
marginal cost for each possible path P from sj to tj as
follows:

∑ −= + eee ljpl
P aajH )()( ,

and assigns request j to a path P that yields a
minimum marginal cost.

This algorithm is O(log n) competitive [6]. By
reduction, it produces an algorithm for managing
heterogeneous resources that is O(log n) competitive in
its maximum usage of each resource.

4. FROM THEORY TO PRACTICE

For each machine in a cluster of n machines, with
resources r1 … rk, we define that machine’s cost to be:
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where f is some function. In practice, using ASSIGN-
U, we will choose f so that this sum is equal to:
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The marginal cost of assigning a job to a given
machine is the amount by which this sum increases
when the job is assigned there. An “opportunity cost”
approach to resource allocation assigns jobs to
machines in a way that minimizes this marginal cost.
ASSIGN-U uses an opportunity cost approach.

In this paper, we are interested in only two resources,
CPU and memory, and we will ignore other
considerations. Hence, the above theory implies that
given logarithmically more memory than an optimal
offline algorithm, ASSIGN-U will achieve a maximum
slowdown within O(log n) of the optimal algorithm’s
maximum slowdown.

This does not guarantee that an algorithm based on
ASSIGN-U will be competitive in its average slowdown
over all processes. It also does not guarantee that such
an algorithm will improve over existing techniques. Our
next step was to verify that such an algorithm does, in
fact, improve over existing techniques in practice.

The memory resource easily translates into ASSIGN-
U’s resource model. The cost for a certain amount of
memory usage on a machine is nu, where u is the
proportional memory utilization (used memory / total
memory.) For the CPU resource, we must know the
maximum possible load. Drawing on the theory, we

will assume that L, the smallest integer power of two
greater than the largest load we have seen at any given
time, is the maximum possible load. This assumption,
while inaccurate, does not change the competitive ratio
of ASSIGN-U.

The cost for a given machine’s CPU and memory
load, using our method, is:

L

loadCPU
memorytotal

memoryused

nn + .

In general, we will assign or reassign jobs so as to
minimize the sum of the costs of all the machines in the
cluster.

To examine the behavior of this “opportunity cost”
approach, we evaluated four different methods for job
assignment:

1. PVM (for “Parallel Virtual Machine”) is a popular
metacomputing environment for systems without
preemptive process migration. Unless the user of
the system specifically intervenes, PVM assigns
jobs to machines using a strict Round-Robin
strategy. It does not reassign jobs once they begin
execution.

2. Enhanced PVM is an opportunity cost-based
strategy that assigns each job to the machine where
the job has the smallest marginal cost. As with
PVM, initial assignments are permanent.

3. Mosix is a set of kernel enhancements to BSD/OS
that allows the system to migrate processes from
one machine to another without interrupting their
work. Mosix uses an improved load-balancing
strategy that also endeavors to keep some memory
free on all machines. Mosix is not omniscient;
when the system is exchanging process information
in preparation for possible process reassignment,
each machine is only in contact with a limited
selection of other machines.

4. Enhanced Mosix is an opportunity cost-based
strategy intended for use on systems (such as
Mosix clusters) that can preemptively migrate
processes. It assigns or reassigns jobs to minimize
the sum of the costs of all of the machines.
Enhanced Mosix has the same limits on its
knowledge as unenhanced Mosix.

5. EXPERIMENTAL RESULTS

Our first test of the ASSIGN-U algorithm was a Java
simulation of the four job (re)assignment methods
above. We based our simulated cluster on the local
cluster of six Pentium machines. Each incoming job
required 2/r seconds of CPU time on the fastest
machine and (1/m)% of the largest machine memory,
where r and m were independently-generated random
numbers between 0 and 1. (This distribution is based on



the observations of real-life processes in [8].) Since
these algorithms are meant for metacomputing clusters,
5% of all jobs instead required 20/r seconds, and are
divided into 1 to 20 parallel components. Jobs arrived at
about one per ten seconds for one thousand simulated
seconds, distributed randomly to provide a variety of
load conditions to each of our methods.

In each execution of the simulation, all four methods
were provided with an identical scenario, where the
same jobs arrived at the same rate.

5.1 SIMULATION RESULTS
The results of the simulations were evaluated in two

different ways:

• An important concern is the overall slowdown
experienced using each of the four methods. The
average slowdown by execution is an unweighted
average of all of the simulation results, regardless of
the number of jobs in each execution. The average
slowdown by job is the average slowdown over all of
the jobs in all of the executions of the simulation.
These results, incorporating 3000 executions, are
given in Table 1.

• The behavior of Enhanced PVM and Enhanced Mosix
is different in lightly-loaded and heavily-loaded
scenarios. This behavior is illustrated in Figures 1 to
4, detailing the first 1000 executions of the
simulation.

Slowdown
by …

PVM Enhanced
PVM

Mosix Enhanced
Mosix

(Job) 15.4044 10.7007 9.4208 8.20262

(Executions) 14.3338 9.79463 8.5567 7.47886

Table 1: Average slowdown in the Java simulation for the
different methods.

Each point in the figures below represents a single
execution of the simulation for the two named methods.
In Figure 1, the X axis is the average slowdown for
PVM, and the Y axis is the average slowdown for
enhanced PVM. Similarly, in Figure 2, the X axis is the
average slowdown for Mosix, and the Y axis is the
average slowdown for enhanced Mosix. The light line
is defined by ‘x = y’. Above this line, the un-enhanced
algorithm does better than the enhanced algorithm.
Below this line, the enhanced algorithm does better
than the un-enhanced algorithm.

Enhanced PVM, as Table 1 has already shown, does
significantly better than straight PVM in almost every
circumstance. More interesting, however, is the
behavior of enhanced Mosix when compared to Mosix.
The larger Mosix’s average slowdown was on a given
execution, the more improvement our enhancement

gave. Intuitively, when an execution was hard for all
four models, Enhanced Mosix did much better than
unenhanced Mosix. If a given execution was relatively
easy, and the system was not heavily loaded, the
enhancement had less of a positive effect.

This can be explained as follows. When a machine
becomes heavily loaded or starts thrashing, it does not
just affect the completion time for jobs already
submitted to the system. If the machine does not
become unloaded before the next set of large jobs is
submitted to the system, it is effectively unavailable to
them, increasing the load on all other machines. If
many machines start thrashing or become heavily
loaded, this effect will build on itself. Every incoming
job will take up system resources for a much longer
span of time, increasing the slowdown experienced by
jobs that arrive while it computes. Because of this
pyramid effect, a ‘wise’ initial assignment of jobs and
careful re-balancing can result (in the extreme cases) in
a significant improvement over standard Mosix, as
shown in some of the executions in Figure 2.

It is particularly interesting to note that, as seen in
Table 1 and Figure 3, the enhanced PVM method,
which makes no reassignments at all, manages to
achieve respectable (though inferior) performance
compared to Mosix. This emphasizes the power of the
opportunity cost approach: its performance on a normal
system is not overwhelmed by the performance of a
much superior system that can correct initial
assignment mistakes.

The importance of migration is demonstrated by
Figure 4. Even when using the opportunity cost
algorithm, it is still very useful to have the migration
ability in the system. In fact, Enhanced Mosix
outperform Enhanced PVM in all of the cases,
sometimes considerably.

5.2 REAL SYSTEM EXECUTIONS
Our algorithms were also tested on a real cluster. The

same model for incoming jobs was used, and jobs were
assigned using the PVM, Enhanced PVM, and Mosix
strategies. Enhanced Mosix has not yet been
implemented on a real system.

Tables 2 and 3 show the slowdowns for 50
executions on this real cluster. Figures 5 and 6 show the
results point-by-point. The results of the real system
executions are as follows:

Slowdown for … PVM Enhanced
PVM

Mosix

(average by job) 19.81842 12.2721 8.474874

(by execution) 18.83488 11.69833 8.683132

Table 2: Average slowdown in the real cluster for 3
(re)assignment methods.
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Figure 1: PVM vs. Enhanced PVM
(Simulation)
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Figure 2: Mosix vs. Enhanced Mosix
(Simulation)
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Figure 3: Mosix vs. Enhanced PVM
(Simulation)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

PVM

E
n

h
an

ce
d

 P
V

M

Figure 5: PVM vs. Enhanced PVM
(Real Executions)
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Figure 4: Enhanced Mosix vs. Enhanced PVM
(Simulation)
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(Real Executions)



The test results in Table 2 imply that the real-life
thrashing constant and various miscellaneous factors
increased the average slowdown. This indicates that we
were too conservative in picking simulation parameters.
Nevertheless, these results do not substantially change
the relative values. Mosix performed substantially
better on a real system, as expected, but Enhanced
PVM also performed better, compared to regular PVM.
We consider this to be a strong validation of our initial
Java simulations and of the merits of this opportunity
cost approach.

Slowdown on Real
System for …

PVM  vs.
Mosix

E.PVM vs.
Mosix

PVM vs.
E.PVM

(average by job) 2.282405 1.413327 1.614917

(by execution) 2.222438 1.380355 1.610048

Slowdown in
Simulation for …

PVM vs.
Mosix

E.PVM vs.
Mosix

PVM vs.
E.PVM

(average by job) 1.635148 1.13859 1.439569

(by execution) 1.675155 1.144674 1.463435

Table 3: Average relative slowdowns for 3 job
(re)assignment methods.

This table shows the ratio of the slowdowns for the
various methods. Thus, the PVM vs. Mosix column
shows the ratio of PVM’s slowdown to Mosix’s
slowdown using the relevant measure. The first method
named provides the numerator.

6. CONCLUSIONS

The opportunity cost approach is a universal
framework for efficient allocation of heterogeneous
resources. The theoretical guarantees are weak: one can
only prove a logarithmic bound on the performance
difference between the algorithm and the optimum
offline schedule. However, the optimum offline
schedule is not really an option; in reality, our
algorithm competes with naive online heuristics.

In practice, this approach yields simple algorithms
that significantly outperform widely used and carefully
optimized methods. We conclude that the theoretical
guarantees of logarithmic optimality is a good
indication that the algorithm will work well in practice.
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