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ABSTRACT 

We estimate the tradeoff between forest preservation and agricultural production for the Legal 

Amazon region, using census and deforestation data for municipalities in 2006. We use a 

directional distance function to represent the production possibility frontier, then calculate the 

shadow price of reducing deforestation in terms of agricultural income foregone. Results 

indicate that, on average, to preserve one hectare of forest, $797 in annual agricultural GDP 

must be foregone. Using a discount rate of 10% and average forest carbon density of 132 tons 

per hectare, these results imply an average shadow price of $16 per ton of CO2 permanently 

sequestered. 

 

Key words: Amazon Forest, Agriculture, CO2 emissions, Deforestation, Trade-off. 

JEL: Q51, Q54, C61. 
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INTRODUCTION 

Agricultural expansion and deforestation are two of the major issues in worldwide climate 

change discussions due to their impacts on atmospheric CO2. Brazil encompasses the majority of 

the Amazon forest, and that portion constitutes 12% of the world’s forest area and 59% of 

Brazil’s surface (MacDicken et al., 2016). The Brazilian Amazon has been disappearing at the 

rate of 5 to 8 thousand km2 per year (National Institute for Space Research – INPE, 2018). The 

forest is important not only for carbon sequestration but it also provides benefits from other 

ecological and environmental services. All these considerations have led to the introduction of 

various forest conservation policies by the Brazilian government (Nepstad et. al. 2007).  

The dramatic emissions levels and potential implications have led to a number of studies 

seeking to estimate the costs of reducing global carbon emissions by reducing deforestation in 

the Brazilian Amazon. The cost to the Brazilians of reducing deforestation consists primarily of 

the foregone rents from cattle and crop production and forgone sales of harvested forest products 

on the cleared land. Estimates of agricultural returns that must be foregone to sequester forest 

carbon for 30 years or more, reviewed later in this paper, range from $0.80 to $21.02/t of CO2 

sequestered. Most of these studies proceed inductively, by basing their conclusions on budget 

estimates of the per-hectare returns from one or a combination of agricultural activities at one or 

more representative locations. These budget estimates are then combined in some fashion to 

estimate the foregone returns from any forest land in the region that is preserved rather than 

converted to agriculture. Income is assumed to continue being foregone for 30 years or more, as 

the forest is maintained. There are many sources of potential error in such an approach that might 

lead to inaccurate estimates of the foregone returns: the locations considered may not be 
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representative, the budget estimates for agricultural activities at those locations may be 

inaccurate, and the set of activities may be incomplete or weighted inappropriately.  

Given these potential weaknesses in previous estimates of agricultural income foregone from 

reduced deforestation, we introduce in this study a more deductive approach to complement the 

estimates obtained from these inductive approaches. We observe, across municipalities, how 

agricultural GDP (AGDP) changes when forests are converted, and from an econometric analysis 

of such data we estimate the tradeoffs between AGDP and forest preservation and thus the 

implied tradeoff between AGDP and carbon sequestered. Our approach provides novel and 

plausible estimates of the cost to Brazilian agriculture of reducing CO2 emissions by reducing 

deforestation. Our average estimate of $16/t of CO2 ($12/t median value) maintained in forest 

sequestration is higher than most previous opportunity cost estimates. 

The range in previous estimates is due not only to different estimates of the annual earnings 

from deforested land, but also in part due to different assumptions about the period of years over 

which the income is to be foregone, different discount rates used for this period, and different 

assumptions regarding the average amount of carbon that is sequestered in the forests not 

converted. However, one can make ex-post adjustments to correct for different discount rates and 

length of time, and for different assumptions about carbon density, and we do so in this study for 

comparison purposes.  

 

DEFORESTATION AND AGRICULTURE IN THE BRAZILIAN AMAZON  

The Legal Amazon refers to an area that includes municipalities in the nine northern Brazilian 

states: Acre, Amazônia, Roraima, Rondônia, Amapá, Pará, Mato Grosso, Tocantins and 

Maranhão. This area has lower average GDP per capita than the rest of the country, and is 
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heavily dependent on agriculture and forestry. Brazil participates in REDD+ (Reducing Emission 

from Deforestation and Forest Degradation), a clearing house for payment agreements for 

reducing deforestation established by Parties to the United Nations Framework Convention on 

Climate Change (UNFCCC) with the objective of preserving the forest, ameliorating climate 

change and conserving biodiversity. The Brazilian government uses a price (opportunity cost) of 

$5/t CO2 for negotiating compensation for reducing deforestation through REDD+ assuming that 

a hectare of forest contains, on average, 132.2 tons of carbon1. 

Grain and livestock expansion in this general region was accompanied by high rates of 

deforestation between 1995 and 2006 (Rivero et al., 2009). Several recent studies focus on land 

use change in Brazil in general and on the relationship between agriculture and deforestation in 

particular with the objective of estimating the opportunity cost of deforestation. Among these 

studies we find Reis and Guzmán (1992), Andersen et al. (2002), Mertens (2002), Caviglia-

Harris and Sills (2005), Vera-Diaz and Schwartzman (2005), Nepstad et al. (2007), Araujo et al. 

(2009), Börner et al. (2010), Bowman et al. (2012), Assunção, Gandour and Rocha (2013), 

Nepstad et al. (2014), Sills and Caviglia-Harris (2015) and Filho, Ribera and Horridge (2015). 

Rivero et al. (2009) and Margulis (2004) assert that livestock is the main driver of deforestation 

while Cardille and Foley (2003) suggest that livestock and crop production share the 

responsibility and that their relative contributions are not uniform across states. Nepstad et al. 

(2001) and Quintanilha and Lee Ho (2006) indicate timber harvesting as one of the main drivers.  

More recent analysis indicates that regulations have led to a decrease in deforestation. 

Interventions such as the Soy Moratorium (SoyM) in 2006, and the Cattle Agreement in 2010, 

 
1 The density for this region as averaged across estimates by Woods Hole Research Center (WHRC), NASA and 

Instituto de Pesquisa Ambiental da Amazonia (IPAM), is 131.6 t/ha. 
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constituted obstacles to deforestation despite the fact that neither are enforced, but instead 

involve voluntary compliance (Nesptad et al., 2014; Gibbs et al., 2014). New regulations such as 

the Brazilian Forest Code (FC), the Rural Environmental Registry of private properties (CAR), 

along with surveillance by the Brazilian Institute of the Environment and Renewable Natural 

Resources (IBAMA), have also helped to control deforestation (De Souza Cunha et al. (2016), 

Pfaff et al. (2014, 2015a, 2015b), Gibbs et al. (2014), Soares-Filho et al. (2014), Hargrave and 

Kis-Katos (2013), De Sá et al. (2013), Pfaff and Robalino (2012)). Deforestation in the Brazilian 

Amazon did diminish after 2004, though may be again on the increase2. May, Millikan, and 

Gebara (2011) argue that contradictory policies have detracted from deforestation reduction 

targets.   

Margulis (2004) estimates an opportunity cost of forest preservation of $137.99/ha per year as 

the sum of the foregone revenue from agricultural activities. Vera-Diaz and Schwartzman (2005) 

used budget information from the literature to construct cash flows from deforested land for 

production of soy, timber and cattle and so estimate the cost of sequestering a ton of CO2 in the 

range from $0.80 to $6.10. Nepstad et al. (2007) estimated an average shadow price of $5.65/t of 

carbon sequestered. Their findings are from spatially-explicit simulation models based on 

estimated rents from soybean production, cattle production and timber sales.  

Börner and Wunder (2008) estimated relatively low opportunity costs for forest preservation, 

concluding that a price of $2.32/t of CO2 would be sufficient to compensate for foregone income 

on 40% of the projected deforestation (554,842 hectares) in the state of Mato Grosso and of 93% 

(525,094 hectares) in the state of Amazonas. They further estimate that a price of $12.36 would 

be sufficient to compensate for income foregone from 100% of the projected deforestation.  

 
2 Deforestation in the Amazon region decreased from 27.8 thousand km2 in 2004 to about 4.6 thousand km2 in 2012 

and then increased again to 7.9 km2 in 2016 (http://www.obt.inpe.br/prodes/dashboard/prodes-rates.html).  

http://www.obt.inpe.br/prodes/dashboard/prodes-rates.html
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More recently, Ickowitz, Sills and Sassi (2017) use survey information on household income 

from agriculture (crops and large livestock) of smallholders in five locations in Brazil (in villages 

in the states of Acre, Amapá, Mato Grosso and Pará) during the period of 2010-2012. Their 

opportunity cost estimates range from $142.42 to $1,522.00/ha (using an exchange rate of R$ 

1.76 = US$ 1.00). Their 30-year present value estimates convert to a range of $2.89 to $21.02/t 

of CO2 sequestered.  

To facilitate comparisons, we have adjusted the above estimates to reflect our assumptions of 

132.2 tons of carbon per hectare and forest preservation in perpetuity with a discount rate of 

10%3 as well as a foreign exchange rate of R$ 2.17 = US$ 1.00 used in our analysis. Margulis' 

(2004) opportunity cost translates to $2.84/t of CO2, Vera-Diaz and Schwartzman’s (2005) to at 

most $7.59, Nepstad et al.’s (2007) to $1.08, Börner and Wunder’s (2008) to $3.14 and Ickowitz, 

Sills and Sassi (2017) to a range from $2.42 to $20.68. Table A1 in the Online Appendix 

summarizes these results. 

 

THE MODEL 

The people of the Amazon are being asked to reduce deforestation in order to provide a global 

public good, less CO2 in the atmosphere. Our objective is to estimate the stream of income they 

give up by foregoing deforestation, which in general consists of returns from timber marketing 

and agricultural enterprises to follow. Our approach is to estimate the slope of the municipality-

level production possibilities frontier (PPF) for two outputs, agricultural GDP and deforestation, 

given the resources available to the municipality. We consider deforestation, a proxy for CO2 

emissions, to be an undesirable product that cannot be costlessly disposed of. This PPF slope 

 
3  More details on these calculations are found in the Online Appendix.  
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identifies the tradeoff of interest, the dollars of AGDP sacrificed for each additional hectare of 

deforestation foregone (alternatively, the additional dollars of AGDP gained from each 

additional hectare of deforestation). We convert this potential stream of income into cost per ton 

of CO2 sequestered using an estimate of the average quantity of carbon sequestered per hectare 

of forest. 

Chung, Färe, and Grosskopf (1997) (CFG, hereafter) developed a theoretical structure to 

characterize technologies with both desirable and undesirable outputs, and used it to identify the 

tradeoffs between paper and pollutants in the pulp and paper industry. This approach has since 

been adapted and used by others, among them by Färe et al. (2005) to estimate tradeoffs between 

electricity production versus air pollution; by Badau, Färe and Gopinath (2016) to estimate 

tradeoffs between country-level GDP and CO2 emissions; and by Majiwa, Lee and Wilson 

(2018) to estimate agricultural productivity in sub-Saharan Africa when greenhouse gas 

emissions are present. 

Our adaptation of the CFG model specifies a municipality-level technology that uses k inputs 

represented by the vector 𝒙 to produce a single desirable output 𝑦 (AGDP) and a single 

undesirable output, 𝑏 (deforestation). Following CFG, we use an output directional distance 

function4 to represent this output possibility set 𝑃(𝒙), 

𝐷⃗⃗ 𝑜(𝒙, 𝑦, 𝑏; 𝑔𝑦, 𝑔𝑏) = max
𝜆

{𝜆: (𝑦 + 𝜆𝑔𝑦, 𝑏 − 𝜆𝑔𝑏) 𝜖 𝑃(𝒙)} , (1) 

where 𝑔𝑦 and 𝑔𝑏 are the directions in the directional vector 𝒈 = (𝑔𝑦, −𝑔𝑏). This function is used 

to describe a multiple input-multiple output production set, just as a production function with 

arguments y and x is used to describe a single output frontier. A directional distance function 

 
4 Non-parametric distance functions were used in Coelli and Rao (2005) and in Trindade and Fulginiti (2015). See 

the Online Appendix for more detail on the distance function.  
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with 𝑔𝑦 = 𝑔𝑏 = 1 is illustrated by the arrow in Figure 1, is used to describe the production 

possibility set for a given input set x. All (y, b) combinations inside the PPF of the output set 

P(x), such as output plan J1, are characterized by their distance  from the PPF, measured in 

multiples of the ray g. All (y, b) combinations on the PPF itself, and only those combinations, are 

characterized by distance  = 0. The directional distance function is non-negative in (y, b), non-

increasing and strongly disposable in y, non-decreasing in b, and concave and jointly weakly 

disposable in (y, b). This last property implies an upward-sloping region of the PPF where 

disposal of the undesirable output is costly in terms of desirable output that must be foregone if 

the undesirable output b is to be reduced. It is this property that makes this approach attractive 

for us to model deforestation, ultimately in our analysis a proxy for CO2 emissions, as 

undesirable output.   

The translation property of the directional distance function, analog to Shepard’s  

multiplicative homogeneity in outputs property, implies that 

𝐷⃗⃗ 𝑜(𝒙, 𝒚 + 𝜆𝑔𝑦, 𝒃 − 𝜆𝑔𝑏; 𝑔𝑦, −𝑔𝑏) = 𝐷⃗⃗ 𝑜(𝒙, 𝒚, 𝒃; 𝑔𝑦 , −𝑔𝑏)  − 𝜆,       𝜆 𝜖 ℜ  (2) 

This states that increasing desirable outputs by 𝜆𝑔𝑦 while decreasing undesirable outputs by 

−𝜆𝑔𝑏 (along the ray from J1 to A in figure 1) is equivalent to subtracting the distance 𝜆 from the 

original directional distance function. We mention it here because we use this property in the 

empirical implementation. 

The slope of a production possibility frontier is the marginal rate of transformation (MRT). 

Under profit maximization, optimal allocation is achieved when the MRT is equal to the ratio of 

output prices (q/p in figure 1). For two desirable outputs under strong disposability the MRT is 

negative. When undesirable outputs are considered, weak disposability is assumed and the MRT 

is positive in the vicinity of the preferred allocation. This scenario, represented at point A in 
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figure 1, is expected to be observed if reducing the undesirable output involves disposal fees or 

requires a reduction in the desirable output. In our case a positive MRT implies that a reduction 

in deforestation can only be achieved by a reduction in agricultural GDP.  

 

 

 

Figure 1. Output set - P(x), and Directional Output Distance Function 

Note: the scalars q and p represent price of undesirable and desirable outputs respectively. 

 

Let 𝑝 and 𝑞 represent the prices of desirable and undesirable outputs. The dual relationship 

between the revenue function and the output distance function implies that the shadow price of 

the undesirable output q is (Färe et al., 2005)  

𝑞 = −𝑝 [
𝜕𝐷⃗⃗ 𝑂(𝒙, 𝑦, 𝑏, 𝒈) 𝜕𝑏⁄

𝜕𝐷⃗⃗ 𝑂(𝒙, 𝑦, 𝑏, 𝒈) 𝜕𝑦⁄
] (3) 

where 𝑝 is the known market price of the desirable output y. Equation (3) is the shadow price, or 

the opportunity cost of decreasing production of an undesirable output, evaluated at a given 

market price of a desirable output. Once the distance function 𝐷⃗⃗ 𝑂 is estimated, equation (3) 

provides a dollar value of the desirable output forgone if the undesirable output is to be reduced 
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by one unit. Expression (3) is non-negative given that the term in brackets is negative due to the 

monotonicity property of the distance function with respect to the desirable and undesirable 

outputs. We use this equation to infer the shadow price of forest preservation, and from that we 

approximate the shadow price of CO2 released by deforestation.  

 

DATA AND ESTIMATION 

For total AGDP and inputs at the municipality level for 590 municipalities, we use data from the 

Agricultural Census of 2006 (IBGE) for nine states; Amapá, Acre, Amazonas, Mato Grosso, 

Maranhão, Tocantins, Pará, Rondônia, and Roraima. This is the most recent reliable source of 

data for agricultural outputs and inputs. Deforestation was obtained from satellite data provided 

by the National Institute for Space Research (INPE). Descriptive statistics are in table 1. The 

Online Appendix presents more information on these variables. 

 

Table 1. Descriptive Statistics for Agricultural Production, Inputs and Deforestation in 590 

Municipalities in the Legal Amazon, Brazil, 2006. 

 

Variable Description Mean Std. Dev. Min Max 

𝑏1 
Av. deforestation 

2004-06 (ha) 
3438.90 7917.37 0.00 108406.70 

𝑦1 Ag. GDP ($1000) 8862.21 11224.85 410.47 119599.20 

𝑥1 Capital (sum of equip.a) 1637.64 1374.53 49.00 11283.00 

𝑥2 Labor (sum of employees) 3870.83 3776.78 126.00 39883.00 

𝑥3 Irrigation (ha) 415.08 1381.82 0.00 12850 

𝑥4 Credit ($1000) 2449.30 12485.24 0.00 263341 

𝑧1 Share of family owned farms 0.86 0.13 0.03 1.00 
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𝑧2 
Total forest area in 2006 

(km2) 
5190.67 13459.67 0.10 144093.00 

𝑧3 
Total hydrological area in 

2005 (km2) 
184.07 480.06 0.00 4499.90 

Note: a Capital is measured as the sum of equipment and the number of landowners in the 

municipality, see the text.  

 

Margulis (2004) suggests that deforestation of a given plot might occur over three years, and 

yet be detected only in the third year of the process, depending on the process of deforestation 

used. It is possible that agricultural activities would be occurring during this period, with revenue 

from both agriculture and timber sales. This leads us to measure deforestation in 2006 as the 

average of that measured by INPE during the previous three years (2004-2006). The states of 

Roraima, Mato Grosso, Pará and Maranhão have higher absolute and per area measures of 

deforestation. Over three years, Mato Grosso and Pará each accounted for more than 30% of the 

total deforested area, jointly contributing 69% of what was deforested in this period.  

Municipalities in the state of Mato Grosso had the largest average agricultural production in 

2006, with an average AGDP of $15,992 thousand dollars. This state was responsible for 39% of 

AGDP in the 590 municipalities considered in this research. Table A2 and figure A1 display the 

geographical distributions of 2006 AGDP and average deforestation during the three years from 

2004 to 2006. 

Inputs considered are labor, capital, land irrigated and credit. We are not able to develop a 

traditional index of capital because of data limitations in the agricultural census. As a proxy for 

capital, we follow Bragagnolo, Spolador and Barros (2010) and use the sum of the numbers of 

pieces of equipment reported and the number of landowners in the municipality. Also aiming to 

measure other inputs we include land irrigated in hectares and total credit used in the 

municipality. The currency adopted in this paper is dollars (US$) shown in the text as $. 
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Monetary values in Brazilian currency (R$ - Reais) are converted to U.S. dollars using an 

exchange rate of US$ 1.00 = R$ 2.17.  

 

Estimation 

We approximate the distance function (Eq. 1) using a quadratic functional form, with the 

subscript 𝑖 = (1, 2, … , 590) for municipalities and 𝑘 = (1, 2, 3, 4) for inputs 

𝐷⃗⃗ 𝑜𝑖
(𝒙𝒊, 𝑦𝑖, 𝑏𝑖; 1, −1) =  𝛼0 + ∑ 𝛼𝑘𝑥𝑘𝑖

4

𝑘=1

+
1

2
∑ ∑𝛼𝑘𝑙𝑥𝑘𝑖𝑥𝑙𝑖

4

𝑙=1

4

𝑘=1

+ 𝛽1𝑦𝑖 

       + 
1

2
𝛽11𝑦𝑖𝑦𝑖 + 𝜃1𝑏𝑖 +

1

2
𝜃11𝑏𝑖𝑏𝑖 + 𝜇11𝑦𝑖𝑏𝑖 + ∑ 𝛿𝑘𝑚𝑥𝑘𝑖𝑦𝑖

4

𝑘=1

+ ∑ 𝜑𝑘𝑟𝑥𝑘𝑖𝑏𝑖

4

𝑘=1

  

(4) 

where 𝑥𝑘𝑖 are labor, capital, irrigation and credit, 𝑦𝑖 is agricultural GDP, 𝑏𝑖 is deforestation, and 

’s, ’s, ’s, ’s, ’s and ’s are parameters to be estimated. Following Färe et al. (2005) and 

others, we use the directional vector 𝒈 = (𝑔𝑦, −𝑔𝑏) = (1,−1), representing a simultaneous 

expansion of one dollar of AGDP and a contraction of one hectare of deforestation. This 

directional vector choice projects the unit J1, in figure 1, to a section of the frontier where the 

MRT is positive. 

The symmetry and the translation properties in outputs are imposed before estimation, 

requiring the following restrictions  

𝛽1 − 𝜃1 = −1, 𝛽11 − 𝜇11 = 0,       𝜃11 − 𝜇11 = 0, 𝛿𝑘1 − 𝜑𝑘1 = 0 (4i) 

where 𝑘 = (1,2, … , 4)  are inputs. Monotonicity and concavity were checked after estimation. 

We estimated equation (4) after imposing (4i) as 
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−𝜆𝑖 = 𝐷⃗⃗ 𝑜𝑖
(𝑥𝑖, 𝑦𝑖

+ λ𝑖 , 𝑏𝑖 − λ𝑖; 1, −1) +  𝜖𝑖 ,   (5) 

where 𝜆𝑖 is the translation factor; in our case, 𝜆𝑖 = 𝑏𝑖 and 𝜖𝑖 is a composite error term.  The 

quadratic functional form with symmetry and translation properties imposed is thus estimated as 

−𝑏𝑖  = 𝛼0 + ∑ 𝛼𝑘𝑥𝑘𝑖

4

𝑘=1

+
1

2
∑ ∑𝛼𝑘𝑙𝑥𝑘𝑖𝑥𝑙𝑖

4

𝑙=1

4

𝑘=1

+ 𝛽1𝑦′𝑖 +
1

2
𝛽11𝑦′𝑖𝑦′𝑖 + 𝜃1𝑏′𝑖

+
1

2
𝜃11𝑏′𝑖𝑏′𝑖 + 𝜇11𝑦𝑖𝑏′𝑖 + ∑ 𝛿𝑘𝑚𝑥𝑘𝑖𝑦′𝑖

4

𝑘=1

+ ∑ 𝜑𝑘1𝑥𝑘𝑖𝑏′𝑖

4

𝑘=1

+ 𝜖𝑖 

(6) 

where the prime (’) represents a variable normalized with respect to 𝜆𝑖 that captures the 

translation property, 𝑦′𝑖 = (𝑦𝑖 + λ𝑖) and 𝑏′𝑖 = (𝑏𝑖 − λ𝑖), λ𝑖 = 𝑏𝑖. Desirable output 𝑦′𝑖 is 

normalized agricultural GDP, 𝑏′i is normalized deforestation, and inputs 𝒙𝑘𝑖 are capital, labor, 

irrigation and credit. To estimate the parameters of equation (6) we use corrected ordinary least 

squares (COLS) and maximum likelihood (MLE) approaches and use the properties in (4i) to 

recover parameters dropped in estimation due to these properties. Following Färe et al. (2005), 

all variables in Equation (6) are normalized by their means5. Distances are thus measured in 

proportions of the mean output bundle.  

Using equation (3) and given prices for the desirable output, 𝑝 , the shadow price of an 

undesirable output in each municipality i is: 

𝑞𝑏𝑖,𝑦𝑖
= −𝑝 𝑖 [

𝜃1 + 𝜃11𝑏𝑖 + ∑ 𝜑𝑘1𝑥𝑘𝑖 + 𝜇11𝑦𝑖
4
𝑘=1

𝛽1 + 𝛽11𝑦𝑖 + ∑ 𝛿𝑘𝑚𝑥𝑘𝑖
4
𝑘=1 + 𝜇11𝑏𝑖

]. (7) 

 
5 For a hypothetical municipality that uses mean inputs and produces mean outputs, the input and output variables 

would be (𝑥, 𝑦, 𝑏) = (1,1, −1). This implies that figure 1 is in normalized values. Thus observation J1 (illustrated in 

figure 1) is expanded by 𝜆∗𝑦̅, and contracted by λ∗𝑏̅ simultaneously.    
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where there are 𝑘 =  1, . . . , 4 inputs. Equation (7) is used in this study to estimate the shadow 

price in municipality i of reducing deforestation by one hectare, expressed in terms of 

agricultural GDP foregone. Given that agricultural GDP is a monetary value, 𝑝 𝑖 = 1. 

Equation (6) was estimated using COLS and MLE with the COLS parameters were used as 

starting point for the MLE estimation. In the estimation of Equation (6) the composite error term 

is 𝜖𝑖 = 𝑣𝑖 − 𝑢𝑖, where 𝑣𝑖 represents a typical random error term and 𝑢𝑖 represents the distance 

from the frontier, also referred in the literature as inefficiency. We assume a half-normal 

distribution (𝑢𝑖~𝑁+(0, 𝜎𝑢
2)) for the inefficiency term for the MLE, as described in Kumbhakar, 

Wang, and Horncastle (2015). The distribution of the efficiency term, specifically 𝜎𝑢
2, is assumed 

to be a linear function of exogenous variables (𝑧𝑖). In this estimation the 𝑧𝑖′𝑠 are forest area in 

2006, hydrological area in 2005, and share of farms that are family owned. This error component 

represents factors associated with each municipality, beyond the inputs (x) and outputs (y, b) 

explicitly accounted for in the main structure of equation (6), that might lead to input-output 

combinations that deviate from those of the municipalities that are on the frontier. It reflects, in 

part, the heterogeneity in resource quality and other factors that affect production and 

deforestation across municipalities that are not explicitly modelled. The estimation was done 

using Stata 14 following the command sfmodel suggested by Kumbhakar, Wang, and Horncastle 

(2015) and sfcross suggested by Belotti et al. (2013).  

 

RESULTS AND DISCUSSION 

Parameters estimated in equation (6) are listed in the Online Appendix table A3. The COLS 

estimation resulted in eleven statistically significant parameters out of twenty one (excluding 

state dummies), while there are thirteen significant MLE parameters. The properties of 
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monotonicity6, and concavity7 were checked at each data point after estimation with the MLE 

estimates presenting fewer violations. A Likelihood Ratio test indicates that MLE estimates with 

a half-normal distribution for the one-sided error term are superior to the COLS estimates at the 

1% level of significance. The analysis that follows is based on the MLE estimates. 

An estimate of the distance of each municipality from the frontier is obtained from equation 

(6), and is interpreted as a measure of inefficiency. The average distance estimated for the region 

was 0.087. This means that, on average, agricultural GDP could be expanded by 8.7% (an 

average of $771,000) while simultaneously decreasing deforestation by 8.7% (an average of 299 

hectares)8. Because resources for any one municipality are not in fact identical to those of the 

others, the inefficiency estimates are at least in part an indicator of resource heterogeneity across 

these municipalities not captured by the variables included in our model. 

Using equation (7) and the estimated parameters we calculate the estimated shadow price for 

each municipality. On average across municipalities, the MLE estimates indicate that in 2006, 

$797 in agricultural GDP must be foregone to preserve one hectare of forest at the margin (i.e., 

to decrease deforestation by one hectare)9. The geographic and frequency distributions of these 

estimates are displayed in figure A3.  

 
6 Only 6 out of 590 observations did not satisfy monotonicity on desirable output for both MLE and COLS while 3 

out of 590 observations did not satisfy monotonicity in undesirable output for the MLE and four for COLS. 
7 The estimated directional distance satisfies the necessary condition for concavity in (𝑦, 𝑏) given that 𝛽11 = 𝜃11 =
𝜇11 associated with the variable 𝑦2 in the estimation is negative (table A3).  
8 Coefficients of the z variables in Online Appendix Table A3 indicate that a larger forested area and a larger 

hydrological area were each associated with a smaller inefficiency estimate, while a larger share of family-owned 

farms was associated with a larger inefficiency estimate.  
9 As robustness check, we performed alternative estimations. First we used different proxies for capital in the MLE 

estimation, and second, we used a different econometric approach, the Generalized Method of Moments (GMM). 

The median shadow price obtained ranges from $538 in the GMM estimation, to $664 in the MLE estimation with 

alternative capital proxies, compared to $578 in our preferred model. We prefer the MLE model, because it allows 

additional heterogeneity through the efficiency component of the error term. Shadow prices obtained from these 

alternative estimations are in the Online Appendix Table A4. 
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The median shadow price is $ 578/ha, as compared to the simple average of $797/ha. We 

calculate that about 88% of the area that was deforested had an opportunity cost less than the 

simple average. The median present value of net revenue foregone to preserve a hectare of forest 

in perpetuity, using a discount rate of 10%, is $5,778/ha. Margulis (2004), using a more standard 

inductive approach and a 10% discount rate, estimates an average present value of $1,380 per 

hectare preserved, Vera-Diaz and Schwartzman (2005), for a 30-year period at 10%, estimate a 

range of $449 to $3,465/ha, while the more recent estimates of Ickowitz, Sills and Sassi (2017) 

range from $1,424 to $15,220/ha.  

Table 2 indicates that municipalities in Mato Grosso, Roraima, Maranhão  and Pará have 

higher shadow prices than municipalities in other states. These municipalities are located along 

the lower geographical boundary of the “arc of deforestation” region, where agriculture has been 

fast developing during the last decades, reflecting high returns from deforestation. 

 

Table 2. Average Shadow Prices for Forest Preservation in Terms of Agricultural GDP 

Foregone ($/ha), by State in the Legal Amazon, Brazil, 2006. 

 

 𝑺𝒉𝒂𝒅𝒐𝒘𝑷𝒓𝒊𝒄𝒆𝒅𝒆𝒇,𝒈𝒅𝒑 ($ per ha) 

 
Mean 

Standard 

Deviation 
Minimum Maximum 

Acre  553 57 436 690 

Amazonas  603 117 309 932 

Amapá  555 58 505 711 

Maranhão  744 905 318 9951 

Mato Grosso  1253 2312 127 17064 

Pará  669 341 22 2749 

Rondônia  616 264 197 2212 
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Roraima  975 1420 490 6088 

Tocantins  689 654 492 5664 

Legal Amazon  797 1207 22 17064 

 

 

The shadow price of carbon dioxide (CO2) sequestration 

We use the estimates above to approximate the shadow price of reducing CO2 emissions by 

reducing deforestation in the Legal Amazon. This is very relevant information for REDD+ 

contracts and if global markets for CO2 become more developed. We then compare our results 

with others in the literature (Vera-Diaz and Schwartzman (2005), Nepstad et al. (2007), Börner 

and Wunder (2008) and Ickowitz, Sills and Sassi (2017)) and with the CO2 price estimates used 

by the Brazilian Ministry of the Environment (MMA)10. 

The Brazilian government estimates that on average, one hectare of Brazilian forest sequesters 

132.2 tons of carbon (MMA, 2012; Amazon Fund, 201511). One ton of carbon is equivalent to 

3.67 tons of CO2, therefore one average hectare of Brazilian forest sequesters 485.17 tons of 

CO2. Using this carbon intensity coefficient, our results imply an average shadow price of $1.64 

per ton of CO2 sequestered for one year (a median shadow price of $1.19/t). To sequester a ton of 

CO2 indefinitely, an average loss of $1.64 in agricultural GDP must be foregone every year, 

 
10 Technical note No 40, Departamento de Politicas Para o Combate ao Desmatamento, Ministerio do Meio 

Ambiente (MMA/DPCD), 2012. This document discusses how much should be raised for the “Fundo Amazonia” to 

preserve the forest. With data from PRODES/INPE they estimate that US$ 2.5 billion has to be raised in 2012 at 

US$ 5.00 per ton of CO2 to decrease deforestation to zero.  
11 The Amazon Fund (2015) raises funds to preserve the forest using this carbon content based on estimates from the 

Technical Committee of the Amazon Fund (CTFA), but states that it is a conservative estimate considering that the 

carbon content in the Amazon Forest ranges from 130 tons of Carbon/ha to 320 tons of Carbon/ha. This report can 

be found at https://web.bndes.gov.br/bib/jspui/handle/1408/8503. 

https://web.bndes.gov.br/bib/jspui/handle/1408/8503
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which at the discount rate of 10%, results in an average shadow price of $16.42/t of CO2 

sequestered in perpetuity12. At a 5% discount rate, this present value would rise to $32/t of CO2.    

 

 

Figure 2. Supply of Carbon Sequestration (in million tons): Opportunity Cost of Carbon 

Sequestered in Forest that was Deforested in 2004/2006 (in 1000 hectares). 
Note: The opportunity cost displayed in the vertical axis is in 2006 dollars. It is the present value of the cost of 

sequestering CO2 indefinitely, using a discount rate of 10% and a carbon content of 132.2 tons of carbon/ha of 

forest. The bottom horizontal axis was calculated using the top horizontal axis values and this carbon content. The 

top 5% of the sample was dropped to simplify the figure.  

 

Our estimates can also be used to obtain a supply of carbon sequestration, as shown in figure 2. It 

indicates that at the price of $5.00, used by the Amazon Fund to raise funds to preserve the 

forest, only about 10% of the CO2 emissions reductions would be compensated at or above their 

opportunity cost. A three-fold higher price ($15/ton) would achieve adequate compensation for 

more than 70% of deforested lands. In contrast, Börner and Wunder (2008), estimate that a price 

 
12 Following a reviewer’s suggestion we have recalculated this shadow price using the carbon stocks per state 

reported by the Instituto de Pesquisa Ambiental da Amazônia (IPAM) Calculadora de Carbono | Brazil 

http://www.carboncal.org.br/view/brasil/, accessed July 20 2018). Results are very similar. See the Online Appendix 

for more details. 
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of $3.88/t would be sufficient to compensate opportunity costs for projected deforestation of 

1,414,000 hectares just in the states of Mato Grosso and Amazonia, whereas our estimates are 

that this price ($3.88/ton) would adequately compensate less than 200,000 hectares in the larger 

region considered in this paper. Given the skewed distribution of our estimates across 

municipalities, we estimate that 86% of the municipalities have average shadow prices lower 

than the overall average of $16.42/t of CO2. These municipalities represent 88% of the average 

deforestation that occurred during 2004-2006. 

Our average estimated cost of $16.42 per ton of CO2 sequestered ($11.91/t median value) is 

much higher than the shadow price of $5.00/t used by the Brazilian government to raise funds to 

preserve the forest through REDD+ (MMA, 2012; Amazon Fund, 2015). Our estimate is also 

higher than other estimates reported in the literature, for example the $0.80 to $6.10/ton estimate 

of Vera-Diaz and Schwartzman (2005) ($1.53 to $7.59 when adjusted to our assumptions for 

carbon content, discount rate and length of the period). Our figure is also much higher than the 

$1.54/ton estimate of Nepstad et al. (2007) ($1.08 when adjusted to our assumptions), even 

though the spatial distribution of their estimates (their figure 7) appears similar to what we 

present in figure A2. They find higher prices in the southeastern region of the Amazon Forest 

that include Mato Grosso, Roraima, Rondônia and Pará, up to $27.2/t of CO2, consistent with our 

high estimates of $25.86, $20.10, $12.71 and $13.81/t of CO2, respectively for the same states. 

Our estimate of the average cost of sequestering a ton of CO2 does lie within the price range 

obtained by Ickowitz, Sills and Sassi (2017), for various areas within the Amazon. This range 

becomes $2.42/t to $20.68/t when adjusted to our assumptions. 

What might explain these differences across studies in estimated net revenue streams from 

deforested land?  Both Vera-Diaz and Schwartzman (2005) and Nepstad et al. (2007) considered 
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a limited number of economic activities (grains, timber and ranching), relative to our 

consideration of all activities included in the agricultural GDP figures. Vera-Diaz and 

Schwartzman (2005) use an estimated average of 155 tons of carbon per ha rather than the 132.2 

tons of carbon per ha we have used. At a 10% discount rate and a carbon content of 155 tons of 

carbon per ha as in their study, our estimated shadow price of CO2 would be $14.01/t rather than 

$16.42/t. The latter study also considers estimates of 121 and 397 tons of carbon per ha. Using 

these coefficients our average estimate would range from $5.47/t to $17.95/t. Ickowitz, Sills and 

Sassi (2017) use a 9% discount rate and a carbon content that ranges from 145 to 221. Our 

estimates would range from $10.92/t to $16.64/t under these assumptions.  

The Amazon Fund (2015) notes that we can find in the literature a range of estimates of 

carbon density, from 130 tons of carbon per ha to 320 tons of carbon per ha. They have opted, in 

their contracts, for using 132.2 tons of carbon per ha to simplify their calculations. Using the 

130-320 range of densities just mentioned, our shadow price estimate converts to a range of 

$6.79 to $16.70 per ton of CO2, closer at the lower bound to what others have estimated, but 

because of different assumptions about carbon density, rather than due to different estimates of 

income streams foregone.  

 

CONCLUSIONS 

The preservation of one hectare of the Amazon forest brings many benefits to the global public 

good, including carbon sequestration, habitat preservation, and others13. This article estimates the 

 
13 Ecosystem services from forest preservation include not only the provisioning of food but also of water;  

regulating services such as the control of climate and disease; supporting services, such as nutrient cycles and crop 

pollination; and cultural services, such as spiritual and recreational benefits. Except for those activities included in 

the AGDP, we have made no attempt to quantify the value of these services nor existence and option value. 
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opportunity cost of that preservation, which is borne by Brazilians, in terms of the income stream 

foregone from a hectare of land if it had been preserved instead of deforested. We obtain this 

estimate, an average of $797/ha, as the marginal rate of transformation between agricultural GDP 

and deforestation at the municipality level. We estimated this production possibilities frontier 

using census data for agriculture and satellite image data for deforestation, from 590 

municipalities in 2006, using maximum likelihood estimation of a flexible quadratic 

specification of a directional distance function. This aggregate-level approach, not previously 

used, allows us to obtain estimates of the opportunity cost of preserving one hectare of forest to 

sequester CO2 using readily available aggregate data. It adds to the evidence on the true 

opportunity cost to Brazilians. 

The estimated $797/ha in average foregone annual earnings from forest preservation translates 

to a shadow price of $16/t of CO2 sequestered in perpetuity, using a social discount rate of 10% 

and an average carbon density of 132.2 tons per hectare of forest as in REDD+ contracts. The 

distribution of our estimates across municipalities is skewed, however, such that 70% of the 

estimated municipality shadow prices are lower than this average. The median shadow price is 

$577/ha, or $12/t of CO2. Both the mean and the median estimates are higher than the $5.00/t 

used by the Amazon Fund to raise funds to preserve the forest, and higher than most of the 

estimates reported in the literature except for those in Ickowitz, Sills and Sassi (2017) who 

recently estimated prices that range from $2.42 to $20.68/t of CO2, spanning the mean and 

median of our estimates. 

Previous estimates of opportunity cost differ from ours primarily because of differences in the 

estimates of the income stream earned from deforested land. Those studies have been inductive 

in nature, in which per-hectare revenue streams from timber and specific agricultural enterprises 
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are estimated mostly from budget data for a few locations, which are then assumed to represent 

the social tradeoff at the regional level. In contrast, we directly examine aggregate agricultural 

GDP and deforestation across 590 municipalities in the Amazon to estimate the marginal rate of 

transformation (the "tradeoff") between the two. Agricultural GDP includes revenues from all 

agricultural final products marketed. So conceptually it is an appropriate measure of how 

deforestation and aggregate agricultural income are related, at the margin. It is a more 

encompassing measure of earnings on deforested land than are farm-level earnings for a few 

enterprises, and it does not suffer from errors in constructing enterprise budgets that are intended 

to be representative. Hence our analytical approach provides useful alternative estimates of the 

opportunity cost of sequestering carbon in the Brazilian Amazon, that complement those from 

even recent inductive approaches such as in Ickowitz, Sills and Sassi (2017).   
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