
4.6 Elastic Potential Energy and Simple 
Harmonic Motion
Jumping on a trampoline is fun, but is it also work? Each time the student in Figure 1 
moves downward, she has to bend her knees and push hard against the trampoline. 
According to Newton’s third law of motion, the trampoline also exerts an equal force 
in the opposite direction, pushing her upward.

What type of energy does the student jumping on the trampoline have? You know 
that she has gravitational potential energy relative to the ground when she is in the 
air above the trampoline. She also has kinetic energy because she is moving. Does she 
have other types of energy?

As the girl pushes down on the trampoline, she stretches the elastic fabric and 
springs of the trampoline. The downward force of her feet does work on the trampoline, 
transferring energy to it. This energy temporarily becomes stored energy in the fabric 
and the springs. We will explore the nature of this type of stored energy in this section.

Spring Forces
One important type of potential energy is associated with springs and other elastic 
objects. You are probably familiar with a simple spring, such as the tight coil of wire 
shown in Figure 2. In its relaxed state, with no force applied to its end, the spring is at 
rest, as shown in Figure 2(a). Suppose you pull on the spring with a force Fpull, causing 
the spring to stretch to the right, as shown in Figure 2(b). When stretched, the spring 
exerts a force Fspring to the left. Likewise, if you push on the spring with a force Fpush, it 
compresses to the position shown in Figure 2(c). When compressed, the spring exerts 
a force Fspring to the right. In both cases, Fspring is called the restorative force because it 
tends to restore the spring to its natural length.

Figure 1  Jumping on a trampoline 
requires transformations between kinetic 
energy, gravitational potential energy, 
and elastic potential energy.

Figure 2  The force exerted by a spring is always opposite to the displacement of the end of the 
spring. (a) When a spring is unstretched and uncompressed, the force exerted by the spring is zero. 
(b) The spring is stretched by pulling it to the right, so the force exerted by the spring is to the left. 
(c) The spring is compressed, and the force exerted by the spring is to the right.
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The amount of force exerted by a spring is proportional to the spring’s displacement. 
This is Hooke’s law, named after Robert Hooke (1635–1703), who discovered the relation-
ship in 1678. Hooke’s law for the force exerted by the spring is

F
>
x 5 2kDx

>

In this equation, F
>
x is the force exerted by the spring on whatever stretches it, and 

Dx
>
 is the displacement of the spring from its unstretched, equilibrium position. The 

constant of proportionality k is called the spring constant of the spring, and it cor-
responds to the stiffness of the spring. Springs that are stiff have a larger value for 
k and require a larger force to extend or compress them. Springs that stretch easily 
have smaller values of k. An essential feature of Hooke’s law is that the direction of 
the spring force is opposite to the direction of displacement from equilibrium. If Dx

>
 

is upward, then F
>
x is downward. If Dx

>
 is downward, then F

>
x is upward.

Hooke’s law  the amount of force exerted 
by a spring is directly proportional to the 
displacement of the spring

spring constant (k)  the constant of 
variation between the force exerted by an 
ideal spring and the spring’s displacement
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Mini Investigation

In this activity, you will explore the force exerted by a stretched 
spring.

Equipment and Materials: eye protection; support stand with 
desk clamp; extension spring; clamp for extension spring; mass 
set (masses from 50 g to 200 g for a sensitive spring; masses 
from 500 g to 2000 g for a stiff spring); ruler; soft material

 1.  Put on your eye protection. Set up the equipment as shown 
in Figure 3, and place soft material below the spring.

  

support stand

clamp
string

extension
spring

mass

lab
bench

clamp

Figure 3 

 2.  Attach a mass to the spring. Measure the displacement Dx, 
and record your measurement in a data table. 

 Be careful not to let the masses fall on your hands or 
feet. Do not let the springs overstretch.

 3.  Repeat Step 2 for the other masses. Remember to record 
the masses you use.

 4.  For each measurement, calculate and record the force using 
the equation Fg 5 mg.

 5.  Create a graph of Fg versus Dx. Draw a line of best fi t.

 A.  Describe the relationship between Fg and Dx. K/u  T/I

 B.  Calculate the slope of the line of best fi t. What does this 
slope represent? T/I  A

 C.  Write the equation F 5 kDx for the equipment you used in 
this investigation, where k is the slope of the line of best fi t. 
K/u  T/I

Spring Force

Skills: Performing, Observing, Analyzing, Evaluating, Communicating SkILLS
HANDBOOk A5.5

Mini Investigation

A	spring	that	obeys	Hooke’s	law	exactly	is	called	an	ideal spring,	and	no	internal	or	
external	friction	acts	on	it.	Although	we	have	only	discussed	springs	so	far,	Hooke’s	
law	applies	to	many	elastic	devices.	In	Tutorial	1,	you	will	use	Hooke’s	law	to	predict	
the	eff	ect	of	an	applied	force	on	a	spring.

ideal spring any spring that obeys 
Hooke’s law; it does not experience any 
internal or external friction

 

The following Sample Problem examines how to determine the spring constant of a spring 
and how to use the spring constant to predict the stretch of the spring when a mass is 
attached to it.

A spring hangs at rest from a support. If you suspend a 0.46 kg 
mass from the spring, its defl ection is 7.9 cm (Figure 4, next page).

(a) Determine the spring constant.

(b) Calculate the displacement, in centimetres, of the same spring 
when a 0.75 kg mass hangs from it instead.

(c) Suppose the 0.75 kg mass is pushed upward, so that it rises 
past the spring’s unstretched position, compressing the 
spring. Calculate the net force on the mass when the spring 
is compressed 5.3 cm. Include a free-body diagram.

(d) Determine the acceleration of the mass at the position given 
in (c) once it is released.

Sample Problem 1: Determining and Applying the Spring Constant

Tutorial 1 Applying Hooke’s Law
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Solution
(a) Given: m 5 0.46 kg; ∆x 5 7.9 cm 5 0.079 m

Required: k

Figure 4 (a) Mass suspended from a vertical spring (b) FBD

x � 0

∆x � 7.9 cm

(a) (b)

kx

mg

F  0Σ

Analysis: The force of gravity on the mass points down. 
The restorative spring force on the mass points up because 
the spring is stretched down. To calculate the total force, 
subtract the magnitudes:

F
>
g 5 mg 3down 4 5 2mg 3up 4; F>x 5 2kDx

>
5 kDx 3up 4

Since the mass is not accelerating, SF
>
5 0 according to 

Newton’s second law.

Solution: SF
>
5 0

kDx 2 mg 5 0

 k 5
mg
Dx

 5
10.46 kg2 19.8 m/s22

10.079 m2
k 5 57.1 N/m 1one extra digit carried2

Statement: The spring constant is 57 N/m.

(b) Given: m 5 0.75 kg; k 5 57.1 N/m

Required: Dx
>

Analysis: The force of gravity on the mass points down. 
The spring force on the mass points up because the spring 
is displaced down.

F
>
g 5 mg 3down 4 5 2mg 3up 4; F>x 5 2kDx

>
5 kDx 3up 4

Since the mass is not accelerating, SF
>
5 0.

Solution: SF
>
5 0

kDx 2 mg 5 0

 Dx 5
mg
k

 5
10.75 kg2 19.8 m/s22

57.1 N/m
 Dx 5 0.13 m

The displacement is in the downward direction.

Statement: The displacement of the spring is 13 cm [down].

(c) Given: m 5 0.75 kg; k 5 57.1 N/m; Dx 5 5.3 cm 5 0.053 m

Required: F
>
net

Analysis: The free-body diagram for the mass is shown in 
Figure 5.

x � 0

�kx

mg

x � 5.3 cm

Figure 5 

The force of gravity on the mass points down. The spring 
force on the mass points down because the spring is 
compressed upward.

F
>
g 5 mg 3down 4, F>x 5 2kDx

>
5 kDx 3down 4

F
>
net 5 F

>
g 1 F

>
x

Solution: F
>
net 5 F

>
g 1 F

>
x

 5 mg 3down 4 1 kDx 3down 4
 5 10.75 kg2 19.8 m/s22 3down4

 1 157.1 N/m2 10.053 m2  3down4
 F
>
net 5 10.4 N 3down 4

Statement: The net force is 10 N [down] when the spring has 
been compressed by 0.053 m. 

(d) Given: F
>
net 5 10.4 N [down]; m 5 0.75 kg

Required: a
>

Analysis: F
>
net 5 ma

>

Solution: F
>
net 5 ma

>

 a
>
5

F
>
net

m

5
10.4 N
0.75 kg

 3down 4

 a
>
5 14 m/s2 3down 4

Statement: The acceleration is 14 m/s2 [down] when the 
spring is compressed 0.053 m. If the mass is moving 
upward, the downward acceleration means that it is 
slowing down due to the force of gravity and the elastic 
force of the spring.
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Elastic Potential Energy
The student jumping on the trampoline in Figure 1 does work on the trampoline 
every time she pushes down on it. As the student comes down from a jump and 
hits the trampoline surface, she has kinetic energy. As the trampoline fabric and 
springs stretch, she transfers her kinetic energy into potential energy stored in the 
trampoline. Energy that is stored in objects that are compressed or stretched is called 	
elastic potential energy. This stored energy in the trampoline can be transferred back to 
the student, giving her the kinetic energy she needs for her next upward jump.

Unlike gravitational potential energy, elastic potential energy does not depend on 
an object’s elevation. Instead, it depends on the amount of compression or stretching. 
To determine the potential energy, we can calculate the change in kinetic energy of 
a mass attached to a spring as the spring is compressed or stretched. The change in 
kinetic energy equals the work done by the spring force. The work done by the spring 
force can be determined from a graph of applied force versus displacement.

The area under a force–displacement graph for an ideal spring has the shape of a 
triangle. The area of this triangle equals the work done on the spring by the applied 
force. This applied force is equal but opposite to the spring force on an attached 
object. Therefore, the work done on the spring to displace it will equal the negative of 
the work done by the spring on the object as it is displaced.

Figure 6 shows a graph of the spring force on a mass attached to a spring as the 
spring is stretched or compressed. The slope of the line equals 2k, following Hooke’s 
law: the direction of the spring force is always opposite to the displacement. We can 
interpret the area between the F versus x line and the x-axis for a given x value as the 
total work done on the spring as the spring stretches or compresses by ∆x. This work 
is the negative of the total work done by the spring.

 

Practice
	 1. 	 (a) 	�A 0.65 kg mass hangs at rest from a spring. The spring is stretched 0.44 m from its 

equilibrium position. Determine the spring constant. [ans: 14 N/m]

(b) 	�You remove the mass from the spring and attach a new mass to the spring. The new mass  
stretches the spring 0.74 m from its equilibrium position. Determine the new mass.  T/I  [ans: 1.1 kg]

	 2. 	A 5.3 kg mass hangs vertically from a spring with spring constant 720 N/m. The mass is lifted 
upward and released. Calculate the force and acceleration on the mass when the spring is 
compressed by 0.36 m.  T/I  [ans: 310 N [down]; 59 m/s2 [down]]

elastic potential energy  the potential 
energy due to the stretching or 
compressing of an elastic material

Fc � �kxc

Fs � �kxs

x

area �    xsFs2
1

area �    xcFc2
1

xs

maximum
force when
stretched

maximum
force when
compressed

Fspring

xc

Figure 6  The work done by a variable force is equal to the area under the force–displacement 
graph. This figure shows the force exerted by a spring for a given displacement, which is the 
negative of the force applied to the spring to stretch it. For a spring, this area is a triangle. When the 
spring is stretched, x 5 xs and W is the area of the triangle at the lower right. When the spring is 
compressed, x 5 xc and W is the area of the triangle at the upper left. The work done by the spring 
is negative, so the change in potential energy of an attached object is positive.
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Since the area of a triangle equals one-half the base length times the height, the 
work, W, done on a spring with a spring constant k is

W 5
1
2

 Dx 1kDx2

W 5
1
2

 k 1Dx2 2

The work done by the spring force is the negative of this amount, and is also the negative 	
of the change in potential energy. This means that the work done stretching or compressing 
the spring is transformed into elastic potential energy. Remember that work is a scalar 
quantity and thus directions can be ignored. We can equivalently write the equation as

Ee 5
1
2

k 1Dx 2 2

where Ee is the elastic potential energy.
As with all types of energy, elastic potential energy can be transformed to kinetic 

energy, or to other types of potential energy. When the student jumps on the 
trampoline, some of the energy transforms into kinetic energy and gravitational 
potential energy. Some also transforms into the vibrational energy of the trampo-
line, sound energy, and thermal energy. The following Tutorial examines elastic 
potential energy.

 

Tutorial 2  Calculating and Applying Elastic Potential Energy

The following Sample Problem shows how elastic potential energy can be calculated and applied 
in simple situations.

A 42 kg teenager balances briefly on a pogo stick, causing the 
spring in the stick to compress downward by 0.18 m. Determine 
the elastic potential energy of the teenager.

Given: m 5 42 kg; Dx 5 0.18 m

Required: Ee

Analysis: The force of gravity on the teenager points down. 
The spring force on the teenager points up because the  
spring is compressed down.

 F
>
g 5 mg 3down 4

 F
>
x 5 2kDx

>

 F
>
x 5 kDx 3up 4

Since the teenager is not accelerating, SF
>
5 0.

Solution: Determine the spring constant:

SF
>
5 0

 kDx 3up 4 2 mg 3down 4 5 0

 k 5
mg
Dx

 5
142 kg2 19.8 m/s22

10.18 m2
 k 5 2.29 3 103 N/m

Use the spring constant to determine the elastic potential energy:

Ee 5
1
2

k 1Dx2 2

5
1
2
12.29 3 103 N/m2 10.18 m2 2

Ee 5 37 J

Statement: The teenager on the pogo stick has 37 J of elastic 
potential energy.

Sample Problem 1: Calculate Elastic Potential Energy

Practice

	 1. 	The teenager from Sample Problem 1 has a brother twice her mass. Calculate the ratio of his 
elastic potential energy when balancing on the pogo stick to his sister’s.  T/I  [ans: 4:1]

	 2. 	A spring-loaded toy uses a compressed spring to fire a marble out of a tube. A force of 220 N 
compresses the spring by 0.14 m. Calculate the elastic potential energy of the toy.  T/I  [ans: 15 J]
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Periodic Motion
A person usually jumps more than one time on a trampoline or a pogo stick. Often a 
person will jump up and down, over and over again. The motion usually changes slightly 
with each jump, but suppose a jumper has regular motion so that the height and time for 
each jump are always the same. Motion that repeats in this way is called periodic motion.

Simple Harmonic Motion
Suppose a block is connected to a spring and both are resting on a frictionless surface. 
The block is at equilibrium when it is resting at its initial position, x 5 0, as shown in 
Figure 7(a). In Figure 7(b), the spring is stretched to its maximum limit, or amplitude, A; 
displacement, x 5 1A, is maximized and the block stops momentarily. The block’s 
motion is then reversed as the spring pulls it back toward the equilibrium point 
(Figure 7(c)). The block continues to move past the equilibrium point and stops when 
the spring is fully compressed and negative displacement, x 5 2A, is maximized 
(Figure 7(d)). The restorative force of the spring moves the system toward equilib-
rium, and the cycle continues.

Notice that the force exerted by the spring is not constant. As the spring approaches 
its equilibrium point, the displacement, ∆x, decreases. Since Fx is proportional to the 
magnitude of this displacement, Fx also decreases during this time.

The mass in Figure 7 will continue to move right and left between A and –A if both 
the spring and surface are frictionless. This back-and-forth motion is an example of 
simple harmonic motion. Simple harmonic motion (SHM) is back-and-forth, or peri-
odic, motion in which the moving object experiences a force that is proportional and 
opposite to the displacement. An object undergoing SHM is often referred to as a 
simple harmonic oscillator.  WEB LINK

You can visualize back-and-forth motion that is similar to SHM by thinking about 
a tennis ball hit from one side of the net to the other, over and over again. If the 
players stand still in the same positions, and if they apply the same force to the ball 
with each hit, the ball will continually have the same back-and-forth motion.

When describing SHM mathematically, picture a reference circle, like the CD shown 
in Figure 8 on the next page. The mass attached to the spring in the figure vibrates 
left and right with SHM. At the same time, the point shown on the CD rotates with 
uniform circular motion. Suppose that the amplitude of the SHM equals the reference 
point’s radius of revolution. What if the period of vibration for the SHM exactly equals 
the period of rotation for the CD? Then, the x-coordinates of the mass and the point 
on the CD will remain equal at all times. This means that the acceleration of the mass 
is the same as the acceleration of the x-coordinate of the reference point at all times.

Figure 7  A mass–spring system undergoing simple harmonic motion

v  0

x  A
x

(d)

k

x

v � �vmax

(c)

v  0

x
x  A

(b)

k
v � vmax

x � 0

(equilibrium position)

x

(a)

simple harmonic motion  periodic motion 
in which the acceleration of the moving 
object is proportional to its displacement

amplitude (A)  the maximum displacement 
of a wave
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When the reference point and the mass are at the point of maximum stretch in the 
spring, the centripetal acceleration of the reference point ac is directed toward nega-
tive x. The acceleration of the x-coordinate at this moment is ac, so the acceleration 
of the mass at this moment is also ac. This fact will allow us to calculate the period of 
motion of the mass.

For an object with radius r in uniform circular motion with period T, the centrip-
etal acceleration is

ac 5
4p2r
T 2

We can rewrite this equation to solve for T:

T 2 5
4p2r

ac
  or  T 5 2pÅ

r
ac

Applying this result to SHM, let r 5 A (amplitude) for the reference circle. We then have

T 5 2pÅ
A
ac

Next, we can use Hooke’s law and Newton’s second law to calculate the acceleration 
of the mass. The equation

F
>
x 5 2kDx

>
5 ma

>
x

means that

a
>
x 5 2

kDx
>

m
The ratio of the magnitude of the displacement to the magnitude of the acceleration is

Dx
ax

5
m
k

At the point of maximum stretch,

Dx
ax

5
A
ac

which means

m
k

5
A
ac

x

direction of
acceleration at
instant shown

direction of
rotation

rotating CD

�x

A

r

mass

reference
point

Figure 8  The CD’s rotation period is the same as the mass’s oscillation period. The mass and the 
reference point on the CD have the same x-coordinate at all times. The acceleration of the mass 
and the acceleration in the x-direction of the reference point are also the same at all times.
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If you substitute this result into the equation for the period, we obtain the equation 
of the period of a mass on a spring:

T 5 2pÅ
m
k

The period, T, of SHM is the amount of time for one cycle of motion. Period is mea-
sured in seconds. The inverse of T equals the number of cycles per second, or the 
frequency, f. The units of frequency are called hertz, and 1 Hz 5 1 cycle/s.  WEB LINK

In Tutorial 3, you will use the equations for simple harmonic motion, period, and 
frequency to solve problems.

 

The following Sample Problem shows how to calculate the period and frequency of a diver 
standing on a diving board.

When a diving board bends, the restoring force due to the 
board’s elastic properties obeys Hooke’s law for an elastic 
material. Suppose a diver of mass 85 kg stands on a diving 
board with spring constant 8.1 3 103 N/m. The mass of the 
board is much smaller than the diver’s mass. Calculate the 
period and frequency at which the board vibrates.

Given: m 5 85 kg; k 5 8.1 3 103 N/m

Required: f, T

Analysis: Use the equations for simple harmonic motion period 
and frequency: 

T 5 2pÅ
m
k

 and f 5
1
T

Solution: T 5 2pÅ
m
k

  
5 2pÅ

85 kg

8.1 3 103 N/m

T 5 0.64 s

f 5
1
T

 5
1

0.64 s

f 5 1.6  Hz

Statement: The diving board will vibrate with a period of 0.64 s 
and a frequency of 1.6 Hz.

Sample Problem 1: Calculating Period and Frequency

Practice
	 1. 	A 105 kg swimmer stands on a diving board with a spring constant of 7.6 3 103 N/m. 

Determine the period and frequency of the board vibrations.  T/I  [ans: 0.74 s; 1.4 Hz]

	 2. 	A car mounted on the springs in its suspension acts like a mass on a spring. How will the 
frequency of oscillations change if passengers are added to the car? Will the frequency 
increase, decrease, or stay the same? Explain your answer.  K/U T/I  A

Notice that the calculations in Tutorial 3 did not require you to identify how far the 
diving board bent. The period and frequency depend only on the mass that exerts the 
force and the spring constant of the elastic material.

You can identify numerous examples of SHM in everyday life (if you ignore fric-
tion). A child on a playground swing may swing back and forth at a regular rate. 
Strings on guitars and violins vibrate when plucked. The planets move in periodic 
orbits around the Sun. Automobiles use springs to provide a cushioning effect. 
However, you do not experience long periods of SHM when riding in a car because 
shock absorbers provide friction on the springs. We will explore the behaviour of 
shock absorbers further in Section 4.7.

Tutorial 3  Application of Period and Frequency
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Questions

	 1. 	 Spring A has a spring constant of 70 N/m, and 
spring B has a spring constant of 50 N/m. Explain 
which spring is more difficult to stretch.  K/U

	 2.	 A force of 5 N is applied to a block attached to the 
free end of a spring stretched from its relaxed length 
by 10 mm. Determine the spring constant.  T/I

	 3. 	 Is the elastic potential energy stored in a spring greater 
when the spring is stretched by 1.5 cm or when it is 
compressed by 1.5 cm? Explain your answer.  K/U  C

	 4. 	 Calculate the elastic potential energy stored in a spring 
with a spring constant of 5.5 3 103 N/m when it
(a)	 stretches 2.0 cm
(b)	 compresses 3.0 cm  K/U T/I

	 5. 	 A 0.63 kg mass rests on top of a vertical spring with 
spring constant 65 N/m.  T/I

(a)	 When the mass sits at rest, determine the 
distance that the spring is compressed from its 
equilibrium position.

(b)	 The mass is held at the unstretched position 
of the spring and released. Calculate the 
acceleration of the mass after it falls 4.1 cm.

	 6. 	 A 5.2 kg mass hung from a spring vibrates with a 
period of 1.2 s. Calculate the spring constant.  T/I

	 7. 	 A spring has a spring constant of 1.5 3 103 N/m. 
Determine the length that the spring should be 
stretched to store 80.0 J of energy.  T/I

	 8. 	 Calculate the work done by a spring force acting 
on a spring attached to a box, stretched from its 
relaxed length by 15 mm. The spring constant of 	
the spring is 400.0 N/m.  T/I

	 9. 	 A mass–spring system undergoes SHM. The elastic 
potential energy at maximum stretch is 7.50 J, the 
mass is 0.20 kg, and the spring constant is 240 N/m.	
Calculate the frequency and amplitude of oscillation. T/I

	10. 	 The springs in the suspension of a car with worn-out 	
shock absorbers will undergo SHM after hitting a 
bump in the road. Suppose that a car with worn-out 
shock absorbers has two identical rear axle springs 
that each support 5.5 3 102 kg. After hitting a large 
pothole, the rear end of the car vibrates through 
six cycles in 4.4 s. Calculate the spring constant of 
either spring.  T/I  A

	11. 	 Pyon pyon “flying shoes” were invented by Yoshiro 
Nakamatsu of Japan (Figure 9). Research this 
unique invention. Draw a diagram showing the 
forces at work when the wearer takes a step. How 
do you think the shoe’s designer incorporated 
Hooke’s law into the shoe design?    K/U  A

	 	 Figure 9 

Summary

•	 Hooke’s law states that the force exerted by a spring (or, equivalently, the force 
applied to a spring) is directly proportional to the spring’s displacement from 
its rest equilibrium position, F

>
5 2kDx

>
.

•	 The force exerted by a spring is a restorative force. It acts in the opposite 
direction of the displacement to return the spring to its natural length.

•	 The constant of proportionality in Hooke’s law is the spring constant, k. The 
spring constant is large when a spring is stiff and small when a spring is loose. 
The spring constant is measured in newtons per metre.

•	 The energy stored in an object that is stretched, compressed, twisted, or bent 

is called elastic potential energy, Ee 5
1
2

k 1Dx2 2.
•	 Simple harmonic motion (SHM) is periodic motion in which an object moves in 

response to a force that is directly proportional and opposite to its displacement.

Review4.6

WEB LINK
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