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Abstract. We review the current state of research on glasses, discussing the
theoretical background and computational models employed to describe them.
This article focuses on the use of the potential energy landscape (PEL) paradigm
to account for the phenomenology of glassy systems, and the way in which it can be
applied in simulations and the interpretation of their results. This article provides
a broad overview of the rich phenomenology of glasses, followed by a summary
of the theoretical frameworks developed to describe this phenomonology. We
discuss the background of the PEL in detail, the onerous task of how to generate
computer models of glasses, various methods of analysing numerical simulations,
and the literature on the most commonly used model systems. Finally, we tackle
the problem of how to distinguish a good glass former from a good crystal former
from an analysis of the PEL. In summarising the state of the potential energy
landscape picture, we develop the foundations for new theoretical methods that
allow the ab initio prediction of the glass-forming ability of new materials by
analysis of the PEL.
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1. Introduction

1.1. Motivation

One of the biggest challenges in condensed matter
physics is the modelling of amorphous solids, which
lack the long range order characteristic of crystalline
solids. When modelling bulk crystals, it is possible
to exploit the translational symmetry of the system,
allowing the construction of a unit cell subject to
periodic boundary conditions, i.e. the translation of
a basis along lattice points. This method does not
trivially map to amorphous phases which contain no
such symmetries, although a large enough unit cell
will capture to some extent the short and medium
range disorder in spite of the artificial periodic
boundary conditions. This, however, comes at great
computational expense. For example, first principles
calculations in the framework of density functional
theory scale as N3 for a unit cell containing N atoms,
while the scaling of higher level quantum mechanical
methods is even worse. For reasons elucidated below,
interest in glasses is increasing, and with it the need
for a complete theoretical model, which is not currently
available.

One such reason is the new class of materials
called bulk metallic glasses. Metal atoms have
weak orientational constraints in the solid state, and
therefore tend to crystallise easily. Certain alloy
compositions, such as Cug,Zr;g have a much lower
tendency to crystallise, i.e. a good glass-forming ability
[1], while others, such as Nig,Zrs4 tend to form ordered
structures [2]. Bulk metallic glasses are currently
of particular interest due to their unique physical
properties, such as high elastic moduli or plasticity [3]
and the potential for surface smoothness not limited
to crystal facets. They lack an intrinsic length scale
(grain size in the case of crystalline structures, or chain
length in the case of polymer glasses), and can in
principle be shaped at the atomic level [4]. Finding
compositions with good glass forming ability is a time-
intensive task, with one composition taking around a
day to fabricate; this trial-and-error process could be
greatly streamlined using modelling methods [4].

Another reason is the development of physical
vapour deposition as a technique for synthesising
glasses with extraordinary thermodynamic and kinetic
stability [5—8]. Until recently, such ultrastable glasses
were limited to complex molecular and polymer glasses;
more recently however, vapour deposition has allowed
the preparation of ultrastable metallic glasses [9)].
When formed from the liquid phase, the properties
of a glass depend strongly on its thermal history,
i.e. its cooling rate, and it cannot be assumed to
be at equilibrium, since glasses are known to “age”,
or find more thermodynamically favourable states as



time passes. Recent developments in vapour deposition
techniques have allowed the synthesis of ultrastable
glasses occupying equilibrium states equivalent to a
supercooled liquid aged for thousands of years or cooled
at a rate 19 orders of magnitude slower than current
methods allow [10]. Although aging is believed to
allow a glass to find more stable states, experimental
determinations of the enthalpies of ultrastable metallic
glasses formed by vapour deposition suggests that
their stability is not necessarily a result of being
in the lowest thermodynamic state [9]. There are
many empirical measures of glass forming ability (see
section 8), but there is not coherent microscopic
structural explanation that accounts for the differences
between compositions. Furthermore, it is possible to
synthesise stable glasses from compositions with low
phenomenological glass forming ability such as Fe, , C,
using thin film vapour deposition techniques[11]. This
suggests that there is something missing in the various
empirical measures of glass forming ability, and a more
fundamental description is required.

An example of a good glass former is B,O4. A
B,05 melt does not crystallise even when seeded with
a crystallite of the stable phase, as a result of the
low driving force and slow kinetics; its crystallisation
can only be induced at high pressure, when enthalpic
considerations force the structure to adopt an optimal
packing [12]. This leads to the question of which
parameters define a good glass former. In general,
we describe a material that has a high tendency to
form a glass instead of a crystal when quenched.
There are many empirical measures of glass-forming
ability [13-15], but none are derived from an atomistic
description of a glass or offer a physical insight into
the structure of a glass. What is the driving force in
the glass transition? Is it possible to characterise a
good glass former by the potential energy landscape
alone, or do free energy considerations need to be
taken into account? There is strong evidence that
composition and stoichiometry control glass forming
ability rather than simple physical and topological
considerations [16]. Is there a parameter that can be
used to theoretically distinguish a good glass forming
composition from a crystal forming composition?
Which variable, if any, describes glass forming ability?
In this review, we take a step towards answering
these questions, and in doing so, demonstrate that
the potential energy landscape is a useful paradigm for
predicting the characteristics of amorphous systems.

The potential energy landscape (PEL) is a simple
concept: for a system of N, atoms, the potential
energy is defined for each atomic configuration, i.e.
at each point of the 3N-dimensional configuration
space. The resulting hypersurface contains minima and
saddle points, at which the gradient of the potential
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energy (the forces) are zero. The minima correspond
to stable and metastable atomic configurations, and
the saddle points to transition states between minima.
Common atomistic calculations examine local features
of the landscape, such as a minimum (zero temperature
structure optimisation) or a limited region determined
by the temperature (molecular dynamics), but our aim
is to link collective and statistical features of the PEL
with the properties of amorphous materials and glasses.

This review is organised as follows. In section 1
we introduce the topic of computational modelling of
glasses and the problems therein, setting some basic
defintions. In section 2, we introduce the theoretical
frameworks most commonly used to model glasses,
with an emphasis on the potential energy landscape.
In section 3 we discuss the construction of the potential
energy landscape paradigm in a more rigorous way,
focusing on the statistical mechanics required to
link microscopic computer models to thermodynamic
quantities. In section 4, we summarise the methods
for sampling the potential energy landscape, i.e. how
to generate atomistic models of glasses. In section 5
we describe the methods by which such structural
models can be analysed. Simple empirical models
of glasses are discussed in section 6, followed by
an extension to the use of first principles electronic
structure calculations for higher quality models in
section 7.  Finally, we discuss possible methods
and parameters for distinguishing good crystal-formers
from good glass-formers in section 8 and finish with
some conclusions in section 9.

1.2. Definition of a glass

A glass is an amorphous material for which, below a
crossover temperature, the timescale of its dynamical
properties suddenly and dramatically increase beyond
the experimental timescale. Below the transition
temperature, all molecular motion ceases, except for
thermal vibrations [17] (this is not strictly true, a
counterexample being long timescale Johari-Goldstein
B-processes [18] — see section 3.1; however, this is not
enough to induce a viscous flow). There are numerous
possible definitions for the crossover temperature,
discussed in section 1.4.

Generally, one can distinguish between two
types of structurally (as opposed to magnetically)
disordered system [19]. The first type is systems
with configurational but not structural disorder, such
as random alloys, in which atomic positions are
topologically fixed by the underlying Bravais lattice,
but the distribution of atoms on the lattice is
random. Crystalline systems containing defects such
as vacancies, interstitial atoms and dislocations also
belong to this category, since removal of these defects
will restore a disordered material to a crystalline



state. Atomic vibrations and local atomic relaxations
result in displacements from the ideal lattice positions,
but they preserve the translational symmetry of the
underlying Bravais lattice “on average,” and the theory
of such systems can be built using the usual formalism
of reciprocal space [20]. The second type is comprised
of structurally or topologically disordered systems,
where atomic positions cannot be associated with any
underlying Bravais lattice. A straight line through a
perfectly amorphous material in an arbitrary direction
will be divided by the atoms into “irregular intervals
of random sequence” [21].

A snapshot of the instantaneous atomic configura-
tion of any amorphous solid is indistinguishable from
that of a liquid. The glass transition is often attributed
to a dynamic heterogeneity [22], since there has been
little evidence of any change in structure as indicated
by the static structure factor S(q) across the glass tran-
sition temperature (although this is not true for some
systems [23]). However, a recent study suggests that
the dynamic heterogeneity may have an origin in Ising-
like criticality in static structural order [24]. A glass
does not flow like a liquid, but its diffusive process are
very different to those that occur in crystals [25]. In-
stead of single-atom hops, atoms in glasses undergo
complicated collective motions of ten or more atoms
[26]. The diffusive processes can be divided into three
types of local excitations: tunneling systems, excess vi-
brations and local relaxations [25]. Within the soft po-
tential model whichis parameterised using experimen-
tal data, these effects are included in collective motions
of 20 or more atoms [27].

The difference between an amorphous solid and
a glass is debatable since the terms are often used
interchangeably in the literature. When a liquid
is cooled below its experimental glass transition
temperature, T,, the timescale of its dynamical
properties of a liquid suddenly and drastically increase.
Its transport properties diverge from the Arrhenius
law, for which the rate of a process is proportional to
e~ Fa/kBT where F, is some activation energy. Below
Ty, the viscosity of the system is above approximately
10'3P, and the system can no longer reach thermal
equilibrium since the relaxation timescale exceeds the
experimental timescale (of the order 100s) [28]. A
glass can therefore be considered to be a special case
of amorphous solid that undergoes the glass transition
when the liquid phase is cooled.

According to Ediger and Harrowell [29], there are
three characteristics of glasses formed from supercooled
liquids (liquids cooled below their melting temperature
without undergoing crystallisation): firstly a huge
increase in shear viscosity, secondly a temperature
dependence of the entropy manifested in the so-
called Kauzmann paradox [30], and thirdly dynamic
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heterogeneity, suggesting some kind of solid-liquid
coexistence, a more recent addition to menagerie of
glass theories [31].

Another definition is the transition from an
ergodic state to a non-ergodic state, i.e. from a
liquid state which will in principle explore the entire
configurational space given enough time, to a glassy
state which is trapped in a single minimum with
insufficient kinetic energy to surmount any activation
barriers. A more phenomenological distinction is the
appearance of a non-zero shear modulus on transition
to a glassy state.

1.3. Strong and fragile liquids

Glasses-forming liquids can broadly be categorised on
a scale, for which the extrema are strong liquids and
fragile liquids. Strong liquids tend to have open
network structures with strong directional bonds which
resist temperature-induced structural change. Fragile
liquids, on the other hand, are characterised by less
directional interactions (for example, Ionic and Van der
Waals) [32]. This delineation is not arbitrary; strong
liquids such as SiO, have small or undetectable changes
in their heat capacity Cp in the temperature range over
which the relaxation timescale crosses the experimental
threshold. In such cases, distortion of the structure
is restricted by strong directional bonds, constraining
the Si atoms in SiO, to be tetrahedrally coordinated,
and resulting in a low density of configurational states.
For a fragile liquid, the degeneracy associated with an
increase in energy is much higher, and the structure is
“smeared” out over a continuous temperature range.
Cp must be proportional to kInW, where W is the
density of states, hence the sharp increase in heat
capacity at the glass transition [33]. Essentially, a
fragile liquid samples more metastable structures.

Qualitatively, the two can be distinguished by
means of an Angell plot (figure 1) of the logarithm
of the viscosity against scaled temperature. The most
widely used metric of fragility is the steepness index
m, or the slope of the Angell plot [34]:

_ dlog(n)
"= Ao/ pr, W

It has recently been shown that the fragility of a
liquid can be predicted using the linear elasticity
of the glass, ‘a purely local property of the
free energy landscape’ [35].  Quantitatively, the
distinction between strong and fragile liquids arises
in the temperature dependence of the single particle
diffusivity D (which can be evaluated from molecular
dynamics simulations) or equivalently the viscosity
7.  For strong glasses such as SiO2, n has an
Arrhenius form, suggesting well-defined energy barriers
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Figure 1. The Angell plot of viscosity (n) against scaled

temperature (adapted from reference [12]). Strong liquids tend
to be close to a straight line, while fragile liquids are represented
by lines that curve towards the bottom-right. Most liquids exist
in the shaded region, between the strongest (silica) and the most
fragile (o-terphenyl).

to diffusion, while weak liquids have a n that increases
at a greater, non-Arrhenius rate. This has been
attributed to a collective rearrangement of groups
of particles in a fragile liquid, compared with small
local rearrangements due to the strong directional
bonding in a strong liquid [36]. This fragile-strong
behaviour is thought to be intimately connected with
the phenomenon of polyamorphism in glasses [37]. A
dynamical crossover temperature T, well above Ty,
was established as the strong-fragile transition for o-
terphenyl recently [38], and it has also been suggested
that a liquid-liquid phase transition may result in the
change in fragility [39].

How does fragility affect glass-forming ability?
The two should not be conflated, since their
relationship is not simple, and the advent of vapour
deposition methods for preparing ultra-stable glasses
has made it even more unclear. Fragile liquids are
better glass formers when cooled from the liquid phase,
and all molecular systems which have been shown to
form stable glasses have intermediate-to-high fragilities
(m), although it has been shown that organic molecules
with low fragilities can form stable glasses via vapour
deposition [8].

1.4. The glass transition

According to Angell, the essential feature of the glass
transition is the appearance of a huge gap between the
vibrational and structural equilibration timescales, of
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up to 17 orders of magnitude [12], but it is difficult
to associate this change with a thermodynamic phase
transition. The glass transition resembles a second
order phase transition in the Ehrenfest sense, with
continuous volume and entropy changes, but it cannot
be defined as a genuine phase transition since crossover
temperature is cooling rate-dependent [17]. It is not
generally thought to be a thermodynamic first order
transition, since no latent heat has been measured.
In the case of metallic glasses, this question is still
open, since the the latent heat may be small and
therefore difficult to measure, and there is evidence
for a first order transition from experiment [40] and
simulation [41]. Some simulations suggest that it may
be a different type of transition, a non-equilibrium
first order transition in trajectory space, controlled by
variables that drive the system out of equilibrium [42].

The transition from a supercooled liquid to a
glass is generally vaguely defined, and it can be
characterised by a number of different temperatures
or temperature regimes. There are three transition
temperatures that commonly appear in the literature,
the experimental glass transition temperature T}, the
Kauzmann temperature Tx (see section 1.5) and
the mode-coupling transition temperature Tyicr (see
section 2.1).

The experimental glass transition temperature 7},
is defined as the temperature at which the liquid, on
cooling, exhibits a sharp decrease in heat capacity
(Cp), to a value approaching that of the crystalline
state. There is no standardised value for the cooling
rate, but Ty, is usually defined as the temperature
at which the onset of the C), increase occurs during
the heating of a glass at a rate of 10Kmin™1.
Despite an apparent lack of consistency, T, is easy
to determine, and there is often good agreement, to
within 2 K between independent groups, when the only
reproduced condition is the cooling rate [43]. This
temperature is, however, insufficient to describe all
aspects of the glass transition. The aforementioned
timescale difference can vary by as much as 10 orders
of magnitude between T, and 1.17, [12]. The heat
capacity peak, and plateau in thermal conductivity are
generally assumed to result from a universally observed
anomaly in the vibrational density of states of glasses,
identified by an excess of low energy states above the
acoustic modes, called the “boson peak.” The boson
peak has been linked to a transverse acoustic van Hove
singularity in the corresponding crystalline phase [44].

In the vicinity of T,, the relaxation behaviour
of a supercooled liquid diverges from the exponential
Arrhenius form, instead conforming to a stretched
exponential of the form exp[—(t/7)?] (often described
using the empirical Vogel-Fulcher-Tamman, or VFT
law; see section 1.5), where the stretching exponent



« lies between 0 and 1 [45]. It has been suggested
that a discontinuity in the relaxation time at the
crossover from the Arrhenius to the VFT regime (as
the temperature decreases below T,) might constitute
the aforementioned phase transition. Measurements
on three good glass formers reveal a sharp crossover
between the two regimes with a width of less that 15 K,
that cannot be accounted for by phenomenological
models [46].

The definition of a laboratory glass transition
remains somewhat vague, since the properties of the
glass formed vary with the cooling rate, with a faster
cooling resulting in a higher T,. An ideal glass
transition can be defined in the limit of an infinite
cooling rate; above the ideal transition temperature,
the behaviour of the system is ergodic, and it has time
to explore every possible metastable structure, until
it ends up in the most thermodynamically favourable
non-crystalline state at the global minimum state of
the potential energy landscape [47]. The character
of this non-crystalline minimum, or ideal-glass state
remains unclear; for example, is there some local degree
of crystallinity, and if so, to what extent are crystalline
inclusions allowed in an amorphous state [48]?

1.5. The Kauzmann paradox

Kauzmann defined an ideal glass transition tempera-
ture, resulting from a paradox [30]. Using thermody-
namic data from a variety of molecular glass-formers,
he demonstrated that the excess entropy of the liquid
(Sez) with respect to the entropy of the crystal (Scryst)
vanishes at some temperature below T, named Ty . In
other words, a graph of Sex/Seryst against temperature
reaches zero at a finite temperature [12] Tk, at which
point the liquid and crystal have equal entropy, as il-
lustrated in figure 2.

Decomposing the total entropy into vibrational
(Svib) and configurational (Scont) components, we have

S = Svib + Sconf7 (2)
and we define the excess entropy as,
Sex = Sliq - Scryst (3)

It is commonly assumed that the vibrational contribu-
tions are similar for liquid and crystalline phases, such
that,

Sex = Sliq,conf - Scryst,conf = ASconf (4)

It seems counterintuitive that a liquid or amorphous
solid can have a lower configurational entropy than a
crystal below Tk, and this is the apparent paradox.
However, there is no general principle constraining
the entropy of a liquid to be greater than that of a
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Figure 2. Illustration of the Kauzmann paradox (adapted

from reference [50]), showing the increase in heat capacity as
a liquid is cooled below its melting temperature T},, and the
crossing of the absolute entropy curves for the liquid and the
crystal at the Kauzmann temperature Tx. The shaded region
is experimentally inaccessible for a glass due to the slowing of
dynamics below Tj.

crystal [49]; indeed, Kauzmann notes that it is possible
to conceive a situation at lower temperatures, where
tighter binding of a molecules in a highly strained
liquid structure would result in high vibrational
frequencies and a lower density of vibrational states.
It turns out that Tk correlates impressively well
with the divergence temperature T of the phenomeno-
logical Vogel-Fulcher-Tammann (VFT) law. It intro-
duces a different measure of fragility in the form of the
parameter D, which quantifies the deviation from the

Arrhenius law [51],
DT, ) (5)

T-T

n=noexp(

where 7 is the viscosity. The correlation is reflected
in the excellent agreement between T, /T and T, /Tp
[43], and the fact that Tx ~ Ty for a wide range of
molecular and covalent glass formers [52]. However,
this relationship is not universal, and breaks down
for many glass formers. Here, there is instead a
positive correlation between Tk /Ty and D [53]. This
relationship is attributed to short range ordering in the
case of strong liquids, modelled by the formation of the
glass from superatomic rather than atomic units.



When modelling glasses, it should be noted that
neither the vibrational nor configurational entropy is
proportional to the excess entropy (as demonstrated
for liquid Se), and that the anharmonic contribution
to the vibrational entropy cannot be ignored [54, 55].

In practice, Tk is an experimentally inaccessible
quantity because the glass transition intervenes before
the excess entropy can reach zero, but its value can be
inferred from the VFT equation. For the same reason,
the Kauzmann temperature has not been directly
observed in dynamical simulations, and its existence
has only been inferred from the extrapolation of high
temperature data [56].

The existence of the Kauzmann entropy crisis
is supported by the Adam-Gibbs equation which
relates the relaxation timescale to the configurational
contribution to the excess configurational entropy Sconf

[36]:
7 o exp <TSCnf(T)> (6)

This expression is based on the concept of weakly
interacting subsystems within the glass, expressing
the cooperative motion of distinct spatial regions in
addition to individual atoms. Although it has been
argued that the underlying arguments are weak, it
demonstrates a divergence in relaxation time as the
excess configurational entropy tends to zero, and
has also been shown to be in good agreement with
experiment.

The Kauzmann paradox can be viewed as evidence
that the glass transition is essentially a thermodynamic
phenomenon masked by slow kinetics [12], and implies
that it may be possible to predict glass forming ability
via the potential energy landscape rather than the free
energy landscape.

2. Models of the glasses and the glass
transition

In this section, we discuss the most important
theoretical frameworks used to describe glasses and the
glass transition. We mention mode-coupling theory
and random first-order transition theory only briefly
though, since they are beyond the scope of this review,
and are discussed in detail elsewhere [57-60].

2.1. Mode-coupling theory (MCT)

The mode-coupling theory, developed independently
by Leutheusser [61] and Bengtzelius et al.  [62]
characterises the dynamics of the glass transition using
the kinetics of a simple hard sphere model.

Starting from the density of particles p in a liquid
[59],

plr.t) = 3 8(r = ri(1). ™

which has the Fourier transform,

i (t) = Z / dre®m5(r —ri(t) =Y T (8)

%

The correlation function of interest is the dynamic
structure factor F'(k,t):

F(k,t) = %Wfk(o)pk(t)} = %Z<€_ik""i(0)eik~1‘j(t)>.

ij
(9)
The MCT equation (derived in detail in reference [59])
is the non-linear equation of motion of this time and
wave vector dependent correlation function.

d’F(q,t) ¢*ksT _0

dt? mS(q) -

(10)

Recasting this using ®(t) ~ F(k,t) neglecting the
coupling wave vectors results in the expression,

t
F(q,t)+/ dTK(q,t—T)LF(q’t)
0 87—

92 (t) +Q(2)<I>(t)+/\/t qu)g(t_T)&q)(r) —0. (11)

8t2 0 87—

At t =0, F'(k,t) is identical to the static structure
factor S(k) of a liquid, which can be measured
experimentally. At high temperatures, above the
melting point, ®(¢) decays exponentially with time,
but for supercooled liquids, it undergoes a multi-
step relaxation (figure 3). At short times, free and
collisional events result in the rapid decay in region
I, referred to as a-relaxation. The plateau of region
IT is a result of the trapping of particles in cages
formed by their nearest neighbours, and the subsequent
decaying regime corresponds to cage-breaking events,
is known as the g-relaxation regime. At long times, the
[B-relaxation takes a stretched exponential form.The
solution for the case of a glass is sketched in figure 3.
MCT is characterised by a sharp transition from
an ergodic regime to a non-ergodic regime as the
temperature is decreased below the mode-coupling
temperature Tyicr. This behaviour is not system
dependent, and applies to both metallic and non-
metallic glasses [25].

MCT makes some very detailed predictions that
have been experimentally verified (particularly with
respect to « and [-relaxation), and is generally valid
in the vicinity of the glass transition. The MCT
singularity is nmot equivalent to the laboratory glass
transition described in section 1, since it occurs 30-50 K
higher than Ty, and it appears to work considerably
better for fragile liquids than for strong liquids [28].
Moreover, its most obvious failing is the prediction
of a sharp transition, contrary to what is observed
in experiments. It has been successfully tested
against molecular dynamics simulations for a variety of
systems, including binary Lennard-Jones soft spheres
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Figure 3. Wave vector-independent solutions to MCT equation
(11) for three cases (adapted from reference [59]). A simple
liquid is characterised by exponential decay in the correlation
function. A supercooled liquid has three distinct regimes:
I. short timescale decay from free and collisional events; II.
intermediate plateau, particles are trapped in cage comprised
of nearest neighbours (SB-relaxation); III. long timescale non-
Arrhenius (stretched exponential) decay. The decay in the
transitions to and from regime II (Ila and IIb) obey power laws
with respect to time. The glass has a singularity in the solution
of the MCT equation at TyicT; this results in the “freezing” of
the structure in the non-ergodic regime.

(63, 64], binary hard spheres [65] and liquid silica [66].
In the latter, MCT calculations are performed using
only structure factor data from molecular dynamics,
and while there are discrepancies (in particular for
the crossover temperature), a remarkable degree of
quantitative agreement is shown for this ab initio
theory. A more complete summary of the current state
of MCT is available in references [58, 59].

2.2. Random first-order transition theory (RFOT)

RFOT 1is characterised by two distinct transition
temperatures: a dynamical transition corresponding
to ergodicity-breaking which can be formally identified
with the mode-coupling temperature, and a second
transition at a lower temperature corresponding to
a thermodynamic phase transition to a glassy phase
characterised by a discontinuity in an order parameter,
but no latent heat [67]. When a liquid is cooled below
its glass-transition temperature, it can be considered
to undergo a phase transition analogous to the first
order crystallisation transition. Particle motion is a
superposition of translations to a new position and
vibrations about a mean position; above the transition,
the motion is dominated by translations, and below it is
dominated by vibrations, with only occasional moves.
Below the glass transition temperature, the particle
is essentially trapped in a cage formed by its nearest
neighbours and is unable to move due to the high
vacancy formation energy. Crystals have a periodic
density profile p(7), but this can be generalised to the
following for non-periodic structures [68].

(67

por) = plr, (rih) = Y0 (2)F e ag)

™

Here, {r;} is the set of coordinates of a generic
aperiodic lattice of average lattice spacing a and
density n = 1/a®. «a is a variational parameter
describing the localisation of a particle in a cage formed
of its neighbours, for which a completely delocalised
liquid has a = 0, and an (meta)stable structure has
a = op. The quantity 1/ /og is the vibrational
amplitude of the metastable structure and is directly
comparable to the Lindemann length d,

(13)

The Lindemann ratio dy/a is approximately 0.1 for
crystals, and roughly defines the point at which the
vibrational motion becomes comparable to the nearest-
neighbour distance, resulting in melting. It turns out
to be universal, and only weakly dependent on the
nature of the bonding [69]. A liquid-crystal transition
is first order, and similarly a liquid-glass transition is
first order in «; however, in contrast with a single
distinct crystal structure, a glass can be considered to
be an ensemble of metastable structures with a random
distribution of free energies (hence the name RFOT).
This results in a multiplicity of distinct structural
states with an infinite lifetime, thus there is no latent
heat, but instead a heat capacity discontinuity.
RFOT is built on the density-functional theory
of freezing (a static treatment of mean-field theory),



and turns out to be formally equivalent to mode-
coupling theory (a perturbative treatment of mean-
field theory; see section 2.1) [70]. In the RFOT, glassy
states correspond to the minima of the free energy
F as a functional of inhomogeneous number density
n(x), corresponding to a non-uniform density field.
Starting from a random close packed structure, a trial
density field, containing a parameter that describes
both uniform and non-uniform states, is constructed.
It is possible to calculate the free energy as a function of
this parameter, such that it is possible to find the point
at which an non-periodic solution becomes possible.
The free energy functional can be approximated to [71],

Fine)] =
= /dwn(w)[lnn(a}) —1]

_ %/dm/dm’n(:c)O(:c — 2 )n(x') + Funi,
(16)

o[n] + Fin[n] (14)

(15)

in which Fy is the ideal gas free energy functional,
Fi,¢ is the lowest order term in the expansion of
interaction part of the free energy and Fy, is a
constant term contributing to the free energy of the
liquid. Cf(x) is the liquid-state direct correlation
function, a renormalised form of the bare interaction
potential [69]; its Fourier transform C(q) is related to
the measurable static structure factor S(q) (the Fourier
transform of the radial distribution function) by
Clg)=1— —

nC(q)=1— —
S(q)
A dynamical RFOT can also be derived, and the
resulting dynamical equation is,

(17)

0F,
Stz D) kBT[lnnS(w,t)—/dmlc’(w—azl)n(wl,t)—i—.
(18)
Glassy states are non-periodic solutions of
dF[n]
= 1
n(x) 0. (19)

An alternative description of the glassy state arises
naturally from RFOT, the “mosaic scenario.” Mode-
coupling theory is based on the concept of dynamic
heterogeneity, and the glassy state is described by
dynamical correlation functions; however, the mosaic
scenario defines a static correlation length in an
ensemble of inequivalent states below the mode-
coupling temperature [72]. Bouchaud and Biroli [67]
construct a model starting with a non-periodic system
consisting of a spherical region of Lennard-Jones
particles of radius R in a metastable configuration
«a, with hard boundary conditions, i.e. the particles
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surrounding the sphere are frozen. The free energy cost
of rearranging this configuration to another state, 3,
then consists of two opposing contributions: a surface
tension component due to the change at the boundary,
and an entropic contribution from the change in the
configuration. The glassy state can be described by the
length scale &nos: if R < &nos, then the configuration
may “flip” from « to 3, but the pinning field of the
frozen boundary will force it to flip back. For R > &0s,
a change in state is thermodynamically favoured, but
takes a longer time due to the higher degeneracy, so
&mos becomes the size of the cooperative region [72].
Therefore, large clusters are thermodynamically in a
liquid state, while a glass is formed of a “mosaic” of
mesoscopic, locally metastable domains, separated by
strained but mobile walls. The relaxation within a
mosaic domain is an activated process driven by the
configurational entropy [51, 67]. These domains have
been shown in simulations to change from sphere-like
at low temperatures to string-like or “fractal” at Tyicr
[73].

There is some controversy over the validity of the
mosaic scenario, with some studies suggesting a possi-
bly contradictory one-state scenario [72, 74|, and oth-
ers producing evidence in its favour [75]. Interestingly,
these domains have been directly observed [76] and
their size is consistent with predictions, around 90—
200 molecules [69, 73]. Bhattacharyya et al. have at-
tempted to unify RFOT and MCT to describe the dy-
namics at low temperatures as well as around Tyicr,
and have thus been able to predict the fragility parame-
ter D and the stretching exponent in the non-Arrhenius
regime [77].

2.3. The potential energy landscape (PEL)

The static structure, or state of a system of N particles

..] can be described as a point in a 3N-dimensional

configuration space; its dynamics can then be viewed
as as the motion of a state point r at an elevation of
potential energy ¢(r) above a 3N-dimensional energy
landscape at zero temperature. This landscape is
characterised by local minima for which d¢/dr =
0; these generally represent metastable states of the
system, and there exists a global minimum, which
is the thermodynamically stable state of the system
at absolute zero. The local minima, or basins, may
be separated by barriers which represent the energy
cost of breaking and making bonds to move from
one (meta)stable state to another. A one-dimensional
illustration is given in figure 4.

If we are not interested in the kinetics of the
system, it is helpful to consider only the basins of
the system. Stillinger et al. argued first empirically
and later more rigorously that the number of minima
Q(N) in an monatomic N-atom system follows the
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Figure 4. Schematic representation of the potential energy

landscape (adapted from reference [78]). The horizontal axis
represents the configurational degree of freedom, i.e. 3N spatial
coordinates. This landscape is more reminiscent of a glass
former, since a randomly chosen coordinate on the x-axis is more
likely to correspond to a metastable amorphous state.

relationship [79, 80],

Q(N) o Nle*N, (20)
where « is a positive constant in the large-N limit.
In nature, configurations are found in their lowest
energy states because these have the largest Boltzmann
weights in the canonical ensemble, which mitigates the
timescale required for ergodicity. It is obvious that
even for small finite systems, exhaustively sampling the
basins in configuration space via computer simulation
is impossible, necessitating a limited sampling. How to
achieve this is a question that has yet to be answered
fully, although some possible routes are suggested in
section 2. Some small systems have been studied to the
extent that their PEL is essentially well characterised,
primarily in terms of the local minima. One such
example is the thirteen-atom Morse potential (Mjs3)
cluster [81]. Such studies have elucidated general
features of the PEL, for example the existence of
“funnels” in systems with a tendency to crystallise:
these are collections of mutually accessible deep basins,
possibly around the global minimum, and act as traps
as the temperature is lowered.

How can one visualise such a high dimensional
space? Qualitative schematic diagrams of one and
two-dimensional surface are common as illustrations,
but do not represent real PELs. Becker and
Karplus introduced the use of disconnectivity graphs
to map the partitioning of the PEL into local minima
grouped into superstructures [82] (see figure 6). Each

10

M |

'E./Ecryst
© ¢
&
|

-0.90-

minimum 3

Figure 5. Heuer’s scheme for projecting the PEL for a model
system, a 32 atom binary Lennard-Jones glass (reprinted with
permission from Phys. Rev. Lett. 78, 4051 (©1997 American
Physical Society [83]). Minima are grouped together along the
horizontal axis based on their maximum potential energy, and
barriers are indicated between minima. Note that adjacent
minima on the diagram may be separated by large distances
in configuration space.

“leaf” represents a distinct local minimum, while the
branching structure describes how these local minima
coalesce to form basins of basins (metabasins), and
how these merge to form higher levels of structure.
The effect of moving vertically up the disconnectivity
graph is equivalent to increasing the temperature. As
the kinetic energy in the system becomes large relative
to the potential energy differences between the basins,
the system does not “see” low energy basins with small
barriers between them, but only the larger metabasin.
If the temperature is raised enough, the system is free
to explore the whole configuration space, and only sees
one superbasin.

Angell explicitly proposes a connection between
the topology of the PEL (namely the density
of configurational states) and the fragility of the
associated liquid [33, 43]. The PEL topology presents
the resolution of the Kauzmann paradox: fragile liquids
have a PEL with a statistically insignificant number (of
order N) of deep minima, which contribute minimally
to the density of structural states, i.e. the probability of
finding a configuration of a specific energy on the PEL.
This low degeneracy results in a low configurational
entropy, comparable to that of a crystalline solid.
Crystal structure prediction methods offer an insight
into the character of the PEL for crystal formers: it
is expected to consist of a super-basin, or “funnel,”
containing the global minimum crystalline state, which
itself occupies a disproportionately large hypervolume
of configuration space [84]. The strong liquid is
somewhere in between, except the “ideal glass” state
is expected to occupy a region with a low density of
states (i.e. occupying a large volume of phase space).
In the case of both glass-forming liquids, the crystalline
minima occupy statistically insignificant portions of
configuration space.

A comparison between the PELs of two cluster



systems at the extrema of the glass forming scale gives
us some clues about the differences between crystal-
forming systems and glass-forming systems. (KCl)s,
tends to form rock salt-like crystals, and the Arq
system, which is rare gas-like, tends to form amorphous
phases in spite of the existence of a double-icosahedral
structure which is proposed to be the global minimum
[85]. The (KCl)4, PEL can be described as “step-like,”
whereas the Ar;y topology is “sawtooth-like.” (KCl)5,
has a global minimum (rock salt) with basin energies
increasing with distance from the global minimum,
resulting in a funnel configuration. It crystallised even
under rapid cooling of 10'2Ks~!. In contrast, the
energies of the minima of the Ar,y system differed
only slightly apart from the global minimum; this
system failed to find the global minimum even after
slow cooling at a rate of 109 Ks™!.

The sawtooth /step dichotomy is a slightly simplis-
tic scheme, but De et al. propose the distance-energy
(DE) plot as a tool for distinguishing glassy clusters
from non-glassy clusters on a similar basis [86]; the
Euclidean root-mean-square distance (RMSD) in con-
figuration space can be used as a “fingerprint” to deter-
mine the similarity of two phases, and as a parameter
to define a 1D PEL [87]. In particular, the density of
states in configuration space near the global minimum
is much higher for glassy systems: fragility seems to
be associated with a higher density of inherent states,
lower activation barriers and higher vibrational fre-
quencies [88]. A mathematical treatment of the density
of states demonstrates that there is a strong correlation
between ground state degeneracy and the roughness of
the PEL [89], which fits well with the general picture
that good glass-formers have a rough, highly degener-
ate PEL with no easily accessible ground state.

Doye and Wales [90] draw similarities between
the potential energy surfaces and the free energy
surface model used by Wolynes et al. to describe
protein folding [91, 92]. The protein folding studies
define temperatures Ty at which the “native structure”
(global minimum) becomes thermodynamically stable,
and T, at which the protein is in a glassy state.
A large ratio Ty/T, then ensures that the system
becomes trapped in the native state rather than a
local minimum. They demonstrate that increasing the
barrier height in their simulations of Lennard-Jones
clusters corresponds to increasing T, without changing
T, thus reducing the rate of relaxation to the global
minimum. Using this notation, Ar;q has a low ratio
and (KCl),, has a high ratio.

Abraham and Harrowell make the interesting
observation that inherent structures on the PEL of
amorphous solids have non-zero shear stresses [93].
Considering the normal modes, they find that the only
wave vector with a non-zero shear stress is k& = 0,
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Figure 6. Disconnectivity graphs for the glassy binary Lennard-
Jones 55-atom cluster and the crystalline 45-atom cluster
(reprinted with permission from Phys. Rev. Lett. 112, 083401
(©2014 American Physical Society [86]). The glassy cluster
has a multitude of near-degenerate states organised in many
metabasins, while the crystalline cluster has one large metabasin
and a distinct global minimum which is much lower in energy
than the next lowest state.

i.e. fluctuations that span the simulation cell; this
would be eliminated if the shape of the cell was allowed
to change. Thus we arrive at the seemingly trivial
conclusion that the inherent shear stress results from
boundary conditions, and on a macroscopic level, the
residual stress will exist in any extended aperiodic
solid. One important conclusion to draw from this is
that the inherent structures all correspond to rigid solid
states since these must be able to support a stress by
definition.

Doye et al. use disconnectivity graphs to map the
PELSs of various Lennard-Jones clusters, showing that
certain cluster sizes have significantly different PELs
(notably 31 atom cluster LJ31)), with a multitude of
metastable states not much higher in energy than the
global minimum, a sign of a good glass former [94].
Disconnectivity graphs for 45 and 55 atom Lennard-
Jones clusters are shown in figure 6 [86], demonstrating
the high degeneracy of states near the global minimum
for the glass former (BLJ 55). Heuer describes a



method of projecting a multidimensional configuration
space onto a one-dimensional potential [83], illustrated
in figure 5. The energies of inherent structures were
computed using extensive stochastic quenches (see
section 2), and the distances between these minima k in
configuration space, calculated as a FEuclidean distance

d(kl,/{2)l

N

[d(]ﬁ? kQ)]2 = Z (rihkl

i1=1

- r[iz(i1),k2])2 (21)

Here the difference in position of particle i; between
basins k; and ko is computed, and summed over
all particles. The notation is(i1) in equation (21)
expresses the fact that there there is no obvious
mapping from particle é; in basin k; to the same
particle in basin ko. Note that in a rigorous
treatment, particle mappings between configurations
and symmetries are taken into account. Reaction
barriers between the inherent structures are estimated
using a quartic polynomial model. This information
is encoded in the transfer matrix V(ki,ks), which
contains the saddle point energies for the path from
basin ki to k. It is then possible to construct a
1D potential with an identical transfer matrix. Using
this potential and a judicious grouping of the inherent
structures along the distance axis, a schematic of the
PEL can be constructed. The model system in question
was a 32 atom binary Lennard-Jones minimum, and
the numerical predictions extracted from the projected
PEL were accurate to within an order of magnitude.

2.4. The free energy landscape

In the potential energy landscape picture, we can
indirectly recover the vibrational free energy of an
inherent state by computing the local phonon density
of states; however, we neglect the configurational
entropy, which can be expected to have a larger
contribution at low temperatures. If we want to
consider higher temperatures, we must look at the
free energy landscape, which includes an ensemble
configurational entropy contribution at each state
point, or configuration.

Although a purely thermodynamic description of
glasses with the PEL can get us a long way, it is
not a complete description at finite temperatures.
This can be illustrated with the example of the 38-
atom Lennard-Jones cluster (LJsg) [95]. It is well-
characterised and has a double-funnel structure; the
global minimum is a face-centred cubic truncated
octahedron at the bottom of one funnel, and the next-
lowest state is an incomplete Mackay icosahedron.
Although the global minimum is thermodynamically
favoured, the incomplete icosahedron has a lower free
energy at approximately two-thirds of the melting
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temperature because the entropy is higher. Moreover,
quenches from the liquid phase almost invariably end
up in the icosahedron funnel since the icosahedron
is closer to the polytetrahedral liquid structure. In
the PEL picture, it can be said that the octahedron
funnel is narrow, whereas the icosahedron funnel is
broader, with a flatter basin. Close to melting, the
icosahedral phase has a lower free energy. Upon
entering the icosahedral funnel, the system will become
trapped there even when the free energy of the global
minimum phase is lower, indicating a high barrier.
This is an example of a system that is pathologically
difficult to globally optimise, and it gives us a great
deal of insight into the differences between the PELs
of crystals and glasses. Wales and Bogdan directly
compare the free energy landscapes of the LJ55 system,
a “structure-seeker” (i.e. crystal former) with the
frustrated LJsg system [96], from which it is possible
to establish a connection between glass-forming ability
and the efficiency of structure prediction algorithms.
In addition to highlighting the double-funnel nature of
the LJsg system (figure 7), a feature on the free energy
landscape points to a solid-solid phase transition from
the octahedral global potential energy minimum to the
icosahedral structure.

It seems, then, that glasses are governed by
a complicated free energy landscape with many
local minima from which the system cannot escape.
Calculations on a hard sphere model suggest that
at a characteristic density (which is equivalent to
a characteristic temperature in the context of this
model), a large number of glassy minima appear
in the free energy landscape [97]. Experiments on
colloidal glasses have provided the first direct evidence
backing up this assertion: since the waiting time of the
studied system in intermediate states varies, it can be
deduced that there is a complex underlying free energy
landscape, through which the system can take a variety
of routes to reach an equilibrium state [98].

The cooperative rearrangements described by
Adam and Gibbs arises naturally in the free energy
landscape picture. A rearrangement represents a
transition from one basin to another, via a free energy
barrier. Crucially, the path through the barrier in
phase space can be described as a “simultaneously
rearranged region”, or an excited state, which involves
more atoms than in the equilibrium states [99]. This
is visible in a glassy two-dimensional system of soft
discs [100, 101], and in a hard sphere model, in which
a “string-like” or looping movement of atoms appears
to provide a favourable path [102].

2.5. Discussion

We have described some different approaches to solving
the problem of glasses and the glass transition that
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Figure 7. Disconnectivity graph (where V is the potential
energy), and heat capacity (Cy) of the LJ3g cluster (reprinted
with permission from J. Phys. Chem. B 110, 20765 (©2006
American Chemical Society [96]). Insets show interesting parts
of the free energy surface, as a function of potential energy and
Q4, a bond-orientation order parameter. The horizontal axis of
the disconnectivity graph In(Gig) is the logarithm of the density
of states, which is directly related to the configurational entropy.
At a low temperature (T = 0.26), there is a single free energy
minimum, corresponding to the Mackay icosahedron, while at
the melting temperature temperature (T = 0.28), there is a
double funnel structure separating the liquid-like and solid-like
structures, and at a high temperature (T = 0.3) there is one
liquid-like structure.

have different starting points, but are nonetheless
closely related. RFOT is a framework that unifies
three seemingly incongruous approaches: Adam-Gibbs
theory, mode-coupling theory and spin-glass theory
[49]. In particular, RFOT takes a similar approach to
the cooperatively rearranging regions of Adam-Gibbs
theory, and MCT and RFOT have identical solutions
in the limit of an infinite dimensional system[70].
Although RFOT does not explicitly use the PEL
formalism in its derivation, the two are closely related,
since in the formulation of RFOT a large number of
distinct metastable states is assumed in the glass phase,
a feature that arises from analysis of the PEL of glassy
systems. Moreover, the dynamic transition (analogous
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to the mode-coupling temperature) signifies the loss
of ergodicity, as the system no longer has the kinetic
energy to hop between the degenerate glassy states in
the PEL picture.

One might ask whether there is a place for a
seemingly qualitative approach like the PEL when
there are sophisticated first-principles approaches such
as MCT and RFOT available. In the words of Das [58],

‘...the competition of crystallization with
formation of the glassy state has not been
studied from such a microscopic approach.
A unified description of the amorphous and
crystalline state is justified from the existing
conservation laws, which hold irrespective of
the nature of the thermodynamic phase.’

The “competition” between the crystalline and glass
phases is one aspect that the PEL may be well suited
to describing, as discussed in section 8. The PEL
can be mapped for many model and real systems
by calculating energies and interatomic forces using
classical or quantum mechanical methods such as pair
potentials or density functional theory respectively.
Statisical analysis of the PEL as discussed in section 5
then allows a more quantitative analysis.

3. Theoretical background of the potential
energy landscape framework

3.1. Thermodynamic formalism

Goldstein was the first to make the connection between
the PEL framework and the glass transition in a
somewhat heuristic way, reasoning that the potential
barriers separating basins dominate the dynamical
properties at low temperatures (so-called S-processes)
[103]. Events occur on two timescales; high frequency
vibrations within basins and Arrhenius-type activated
processes corresponding to jumps over barriers between
minima on a long timescale. Stillinger and Weber [79]
made the first steps in a thermodynamic description
of glass-formers using the topology of the PEL and
the concept of the inherent structure, a term we
will use interchangeably with “local minimum” and
“basin”. Wallace expands on this, highlighting the role
of configurational entropy in the slowing of dynamics
in glasses using vibrational-transitional theory [104].
This is also discussed in some depth in other review
articles [105, 106]. Working in the canonical (NVT)
ensemble, with a system of N non-coincident particles
confined to a volume V', a three-dimensional system has
3N spatial coordinates r = {r;...ry}. The potential
energies of the set of configurations 7, ¢(r), defines
the PEL. It is important to note that the PEL is only
dependent on atomic coordinates, and is independent
of temperature.



The crucial step is the discretisation of the
continuous PEL to a set inherent structures. Relaxing
the atomic positions of an arbitrary configuration such
that the forces are minimised using, for example, a
steepest descent or conjugate gradient algorithm, gives
the local potential energy minimum in configuration
space. This allows the mapping of a continuous set
of coordinates  surrounding a minimum to a single
minimum, «. This mapping M can be expressed as
M (r) = a, and is equivalent to an infinitely fast quench
to zero temperature. R(«) is the set of configurations
that quenches to «, and can be described as a basin
in the PEL. These basins are separated by 3N — 1
dimensional hypersurfaces for which the mapping M
is undefined.

The canonical partition function for a N-particle
system, Zy, at temperature T is,

Zn ! / e P dy (22)

= 3NN

1

where § = T and A is the mean thermal de
Broglie wavelength. The configurational integral can
be separated into distinct quench regions or basins
R(«), so that

1
_ —B¢(r)
ZnN = VN Ea /R(a)e dr

However, many inherent structures are identical
after particle permutation, so basins belong to an
equivalence class % The symmetry number o is
unity for a system with hard boundaries, but the use
of periodic boundary conditions imposes translational
symmetry under which the potential is invariant, such
that o = N. Treating members of R(«) as equivalence

classes,we have

1 r1
A _ —Bo(r) 24
N )\3N2a: o(a) /R(a)e dr (24)

The ' here denotes that any configuration with a
significant degree of crystallinity are excluded. Within
any basin, the potential energy can be recast as,

B(r) = da + Aad(7),

where ¢, is the basin minimum and the second term
is the “elevation” from that minimum. Thus,

1 11
Z —_ _ﬂ¢a/
N ABN%: 0@ Ja

The partition function is now separated into two
distinct factors: the discrete sum over e~ #% represents
the distinct temperature-independent configurations,
while the integral over e #2«?(") represents the
thermal excitations of the respective configurations
within their basins.

(23)

(25)

o= BB gy,
(@)

(26)
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3.2. Density of configurational states and entropy

To make use of this formalism, we need to express it
in terms of parameters that can be extracted from
numerical simulations. The density of states G(¢)
counts the number of basins with energy ¢, and can be
computed by sampling the potential energy landscape
using the methods detailed in section 2. It expressed
using a delta function,

G((b) — 2/6(¢ — ¢0¢)’

o (27)

(e}
and the total partition function can be evaluated by
summing over all basins:

AN Z G(0a)ZN,a (28)

From the thermodynamic connection, we can express
the free energy per basin f, in terms of the partition
function per basin, Zn q:

fa=¢a—TS=-BInZy, (29)
Thus the total partition function is,
Zy =Y Gl6a)e (30)
Defining the configurational entropy as Seonf =
kg In G(¢), the partition function becomes,
Zy =Y e P Scont]e) (31)

(o3

As in section 3.1, the energy is essentially decomposed
into two components: one from the configurational
entropy, T'Scont, and a free energy contribution from
vibrations within that basin, f,. The basins can now
be considered as a continuum of levels characterised
by an energy ¢, and degeneracy G(¢,). When
the inherent and vibrational states are in thermal
equilibrium, the average configurational entropy can
be computed from [107],

dScon_f(T) _ l (32)
A, T

Evaluation of the integration constant combined with
an extrapolation to low temperatures would then in
principle allow the Kauzmann temperature Tk to be
computed as the crossover point of the entropies of the
liquid and solid. This can be achieved by exploiting
(29) to obtain the free energy of the liquid:

Jiquia(T) = =BIn Z(T)
= ¢a(T) = TScont ($a) = f (B, ba)

(33)
(34)



Here, ¢o(T) is the mean inherent state energy at
temperature T and the vibrational free energy of
the basins at T, f(53,¢a) can be approximated from
the harmonic eigenfrequency spectrum of the system
calculated using the basin distribution at T. The
configurational entropy can then be calculated as
the difference between the entropy of the liquid,
via thermodynamic integration, and the entropy of
vibrational entropy of the solid as shown below.

3.3. Basin free energy

In condensed matter physics, it is common to assume
that when displaced slightly from their equilibrium
positions, the atoms in a crystal are subject to a
quadratic potential — the harmonic approximation.
The potential energy close to an inherent state can be
expanded quadratically [106],

V(r)~ ¢+ »_ Hiajporiors, (35)
5,08
where H is the Hessian matrix, with elements,
0%V (r)
Hinjg = ———=, 36
9" 37“?87"5 (36)

and 05 denotes a small displacement of atom i in direc-
tion . Solving for 3N eigenvalues, representing curva-
tures, and 3N eigenvectors, representing displacement
vectors, the system is equivalent to a set of 3V inde-
pendent harmonic oscillators with frequency w;. The
partition function of a single basin can then be ex-
pressed,

3N 1
Zo=e P ] 77— 37
) ey BT
Averaging over all basins, this becomes,
ZN — 6_5¢a <€7 ngl ln[ﬁhwj (¢(¥)]>a (38)

Thus the basin free energy f, in the harmonic
approximation can be written,

—Bfa = —Boda — Bfviv
= —Ba — In(e™ Zi%1 nlBhw; (¢a)ly

(39)
(40)

The vibrational free energy fyi, is often approximated

to, .
Bfuin = — <Z 1nwhwj<¢a>]>

Jj=1

(41)
«@
Simulations on a binary Lennard-Jones model glass-
forming system suggest that the harmonic approxima-
tion is appropriate below the glass transition temper-
ature, in the slow dynamics regime [108]. These re-
sults also seem to indicate a transition from a harmonic
regime below the crossover temperature to an anhar-
monic regime above it, but it is unclear whether this is
true in general.
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4. Schemes for sampling the PEL

One of the principal difficulties in modelling amor-
phous solids is the construction of microscopic struc-
tural models that are representative of the physical
reality. Amorphous materials are more difficult to
characterise experimentally, since structural disorder
causes broadening of spectral features that could be
used to identify the atomic structure. In many cases,
it is unclear whether a glass is disordered on the atomic
level, or whether it has some form of superatomic unit,
or shows signs of medium-range (quasicrystal-like) or-
der. Our aims are twofold: firstly, we want to map out
the PEL such that we can determine whether the sys-
tem is a glass- or crystal-former, and secondly, we need
to develop physically representative models that can be
used to perform computer experiments on specific ma-
terials. In this section, we discuss several methods of
achieving these goals.

4.1. Reverse Monte Carlo (RMC)

The reverse Monte Carlo technique employs exper-
imental data in the form of structure factors, the
Fourier transform of the radial distribution function,
to create a consistent structural model. The pair dis-
tribution function of a random configuration of experi-
mental density is used to compute the structure factor,
and the difference between the model and experimen-
tal structure factors is used to define a generalised cost
function. A single atom is moved in the model configu-
ration, and the move accepted or rejected according to
a probability distribution determined by the cost func-
tion. This algorithm will converge the model struc-
ture factor to the experimental structure factor [109].
RMC does not generate a unique structure, but a set
of structures determined by constraints imposed by ex-
perimental data. This may include structures with un-
physical coordinations, but which are otherwise consis-
tent with the experimental data. In extension to this
method, experimentally constrained molecular relax-
ation (ECMR), ab initio simulation methods are used
to obtain a model that is consistent between the ex-
perimentally generated RMC data and the simulated
system [110].

4.2. Molecular dynamics: aging versus equilibrium

When a liquid is cooled, it falls out of equilibrium
at the glass transition, i.e. the dynamics become
so slow that it is impossible to equilibrate; beyond
this point the structure relaxes so slowly that it is
extremely difficult to determine the functional form
of the relaxation on an experimental timescale. This
experimentally imperceptible structural relaxation is
known as “aging.” Cathedral glass panes which are



thicker at the bottom are a common and most probably
apocryphal example of glass flow on long timescales;
in fact, it is highly unlikely that such glasses age on a
human timescale [111]. Fossilised amber, aged for 20
million years presents a more convincing case for aging:
it has a density 2.1% higher than thermally rejuvenated
amber, and provides evidence that the relaxation may
take a form that is not described well by the most
widely used models, including VFT [112]. In fact,
analysis of data for glass forming liquids has largely
discredited VFT [113], and the best fit for relaxation
in amber is the parabolic law model of Elmastad et
al. [114, 115]. This not only brings into question the
validity of the VFT law, but it also throws doubt on
dependent theoretical paradigms such as the Adam-
Gibbs formalism, and the existence of the Kauzmann
temperature, which arises naturally from the VFT
form.

Molecular dynamics in principle allows the
computation of time-dependent properties of a system,
and should be the best method of modelling the
liquid-glass transition. However, while it would be
of great benefit to be able to model the evolution of
the system in real time, given the structural disorder,
it is prohibitively expensive to run simulations for
long enough to capture the slow dynamics of a glass.
The time step must be chosen to be smaller than the
shortest vibrational time period of the system, i.e.
of the order of femtoseconds, which severely limits
the potential length of simulations to milliseconds
for classical molecular dynamics and nanoseconds for
ab initio simulations.  Longer timescales can be
achieved using accelerated or coarse-grained molecular
dynamics, but this also adds to the uncertainties.

Kob and Andersen [28] performed molecular
dynamics simulations on a binary Lennard-Jones
mixture with a 4:1 ratio of atomic species and forcefield
parameters, both chosen to avoid crystallisation, the
80:20 BLJ system. They observe that in many
glass-transition simulations, certain thermodynamic
quantities such as the potential energy per particle
display a discontinuity with respect to temperature,
denoted T;. This simulation temperature is often
much higher than the laboratory glass transition
temperature T,. In fact, Ty is indicative of the
system falling out of equilibrium, with an equilibration
timescale greater than that of the simulation, i.e.
a glass transition. 7y depends on the cooling rate
and the thermal history of the system. Moreover,
monitoring the system via simple time-dependent
variables such as energy or pressure might suggest that
the system is in equilibrium, as their values stabilise; a
more careful examination using a two-point correlation
function such as non-equilibrium generalisation of the
incoherent scattering function C, suggests an aging
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process [116].

N
1 )
Cq(tw,tw + t) = N < E eZQ'[Ti(tw+t)_Ti(tu1)]> (42)
i=1

Here, t,, is the time since the quench at ¢ = 0, and ¢q
is a wave vector.

The van Hove self correlation function describes
the probability of finding a particle at distance r from
its original (¢ = 0) location at time ¢:

1 N

Ga(rt) = 5 D_{3(Iri(t) = r(0)[ = 7)),

i=1

(43)

and is essentially a time-dependent radial distribution
function. Its spatial Fourier transform is the self
intermediate scattering function Fy(k,t) (identical
to the dynamical structure factor described in
section 2.1). Using the same Lennard-Jones binary
mixture Sastry et al. were able to associate the
onset of the non-exponential relaxation characteristic
of the glass transition with a well-defined temperature
which corresponds to the trapping of the system in the
deepest accessible basin on the PEL [117]. Defining
the relaxation time 7 as the time when F(k,t) reaches
a value of 1/e, they identify three distinct temperature
regimes: the first is the high temperature regime,
in which the system has sufficient kinetic energy to
surmount activation barriers and explore configuration
space, and F; has an exponential form. As the
temperature decreases to the “landscape-influenced”
regime, a stretched exponential form Fy(k,t) =
exp[(—t/7(T))?™)] (where 0 < B < 1) becomes
a better fit. In the “landscape-dominated”, which
corresponds to just above Tycr, small secondary
peaks are observed in Gy, implying the occurrence of
rare jumps by particles over a distance of about the
interparticle separation. Thus at high temperatures,
the system explores parts of the PEL with low minima
between basins, and at temperatures close to Tyvcr,
minima separated by considerably higher barriers are
explored. In the PEL picture, the dynamics become
dominated by the landscape at a crossover temperature
close to Tyer [118].

Most studies have the explicit aim of examining
equilibrium properties, but one in particular uses
non-equilibrium molecular dynamics to describe the
aging process in a glass [119], notably demonstrating
using the 80:20 BLJ system, that non-equilibrium
dynamics are dominated by the connectivity of the
basins in configuration space, and by extension, the
height of the barriers separating them. The aging
of the system is shown to be determined by a
time-dependent effective temperature 7., defined by
inverting the time-dependence of the temperature-
dependent basin energy ¢.(T) to get Te(¢dn). As



the system ages, it locates deeper basins, reducing its
value of T, until it reaches the point when the barrier
heights become of the order of k1. At this point
the exploration of configuration space changes from
moving along unstable modes to an activated process
in which barriers must be surmounted. This activated
process is considerably less efficient for exploring the
PEL. Aging can thus be considered the exploration of
progressively deeper basins in the PEL picture; this
concept has been extended by considering the shape
of the basins during aging, and its dependence on
the temperature to which the system is quenched.
Specifically, for the 80/20 binary Lennard-Jones
system, basins of a higher curvature (and therefore
higher vibrational frequency) are explored below the
Tumer [120].  In the case of supercooled molecular
liquids, it has been shown that rotations occur over a
longer timescale than translations, and the time taken
for rotational correlations to reach equilibrium is more
strongly temperature-dependent than for translational
correlations [121]. Lempesis et al. introduce a variation
on the familiar disconnectivity graph, the temporal
disconnectivity graph. A time (or equivalently
temperature) axis is added to a disconnectivity graph
to turn it into a 3D plot, and demonstrate the effects
of aging on inter-basin communication [122].

Tsalikis et al. also present results describing three
distinct temperature regimes, but these are of a
different nature. High above T,, the sampling of
the PEL is ergodic, and is relatively computationally
inexpensive. In the second regime, in the vicinity
of Ty, the sampling is inefficient, and in the third,
below T}, the system is essentially trapped indefinitely
[123]. The most interesting conclusion of this work
is that the nature of the glass formed is strongly
dependent on the time spent by the system in the
second temperature regime. They conclude that the
cooling rate, particularly when it is conducted in
a stepwise manner as in most molecular dynamics
simulations, is not sufficient to define the resulting
glass, since the time spent at each temperature has
an extremely non-linear effect.

La Nave et al. used instantaneous normal mode
analysis (see section 5.3) to estimate the fraction of
diffusive directions fqig of equilibrated representative
configurations of silica at temperatures both above
and below the crossover [124]. A direction on the
PEL is considered to be diffusive if, when displaced
in that direction, the system moves into a different
basin, and fgig is defined as the ensemble average
(Ny,/3N), where N, is the number of directions with
negative eigenmodes excluding those displaying signs
of anharmonicity. It quantifies the amount of time the
system spends on the ridges of the PEL between basins.
faier 1s seen to decrease as the temperature decreases,
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and vanishes at Tycr, implying that the number of
directions leading to a different basin decrease with
temperature, which makes sense given that below T,
the system is trapped in a single basin. Moreover,
for silica, they find the direct relationship Scons o<
log faig between the configurational entropy Scont,
which essentially enumerates the number of distinct
basins explored by the system, and fgig. This seems
to be system-independent, and holds for both strong
and fragile dynamics.

Similar studies lead to some even stronger
conclusions. Saddle points on the PEL are classified
according to the number of imaginary modes in
the Hessian matrix, ng(T"), and the energy of that
configuration, es(7T"). At Tmcer, ns vanishes, and at
higher temperatures it increases with a well defined
functional form. This makes ns; a good choice of
parameter for describing the dynamics of supercooled
liquids, and it can be used to calculate TyicT without
using mode-coupling theory. In addition, the results
suggest that above Tyicr, the dynamics are entropy
driven rather than activated, with the system following
a path through saddle points with a progressively
decreasing value of n, [125, 126]. This finding
supports the validity of the “potential energy landscape
ensemble” paradigm [127, 128] (see section 5.5). Since
the Hessians are known at all saddle points, it is
possible to compute the partition function at the
saddles, which can be used in transition state theory
[126].

“Melt-quench” molecular dynamics is the tra-
ditional method of generating structural models of
glasses [129-131]. A crystalline phase simulated us-
ing molecular dynamics is heated to well over its melt-
ing temperature, and the resulting liquid is equili-
brated. The temperature is then gradually lowered
in a stepwise manner, equilibrating at each temper-
ature increment, until the glass transition is reached
and the structure will no longer equilibrate on a rea-
sonable timescale. However, the ability of this method
to generate representative amorphous structures is de-
batable. In principle, the instantaneous structure of a
liquid is indistinguishable from that of a glass; how-
ever, the use of a single trajectory to generate many
quenched configurations may introduce unwanted cor-
relations. Moreover, glasses are formed at low cool-
ing rates in practice, and the simulation timescales
required for such low cooling rates are impractical
for both classical and ab initio molecular dynamics.
Whilst it is possible to simulate a low cooling rate using
small temperature drops followed by periods of equi-
libration, the cooling rate is still orders of magnitude
higher than in practice, and it is unclear whether the
resulting configurations represent those found experi-
mentally. A further caveat is that this method is only



useful if the local structure of the liquid phase is sim-
ilar to that of the amorphous solid phase; this is true
in the case of SiO, and GeSe,, but does not hold for
amorphous silicon, which is tetrahedrally coordinated
as an amorphous solid, but sixfold coordinated as a
liquid [132]. This discrepancy does not appear in the
structure factor of amorphous Si generated by melt-
quench, which tends to contain the wrong density of
coordination defects regardless of the level of theory
used in the potential [133]. This serves as a caution
against careless application of melt-quench molecular
dynamics.

4.3. Density of states Monte Carlo

Monte Carlo sampling allows a time-independent
sampling of the PEL. This has the advantage of
sidestepping the slow dynamics and equilibration
issues. Yan et al. perform Monte Carlo simulations
in the “multimicrocanonical ensemble,” in which the
particle number and volume are constant, but the
total energy is allowed to fluctuate over a range
[134]. A random particle is displaced slightly, and
the move is accepted with a probability determined
by the difference in energy between the states, as
per the standard Metropolis Monte Carlo algorithm.
Since the density of states is not known a priori,
it is computed iteratively. The heat capacity can
then be computed from the density of states. The
results of simulations on a 50:50 binary Lennard-
Jones mixture show the peak in heat capacity and
sharp drop in inherent structure energy as a function
of temperature characteristic of a glass transition.
Crucially, the results conflict with direct molecular
dynamics simulations [56] which used a power law
to extrapolate the entropy of the liquid to low
temperatures and determine the intersection with the
entropy of the disordered solid. The Monte Carlo
simulations suggests that the power law does not
hold at low temperatures, and that there is no such
crossover (Kauzmann) temperature.

4.4. Continuous Random Networks (CRN)

Continuous random networks were originally conceived
to generate structural models for amorphous Si and
Ge, by preserving local order, while randomising
bond lengths and angles. Starting from a supercell
of a periodic diamond structure, bonds are locally
rearranged by “rewiring” bonds which are modelled
with a naive “spring” potential, maintaining the
average coordination, but introducing five- and seven-
rings in addiction to the six- and eight-rings in the
crystalline structure. The structure is then allowed
to relax to within the constraints of the new nearest-
neighbour list. This is repeated until the structure is
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deemed to be sufficiently random [135].

Variations on this technique involve starting
from a crystalline melt or a random four-coordinated
configuration, and using a Metropolis-type algorithm
to accept or reject moves [136]. This method has
been applied successfully in modelling, for example,
amorphous silicon [137] and silica [138], but its
application is limited to strong liquids, i.e. glass-
forming materials where the atoms have a very definite
coordination number and form distinct covalent bonds.

4.5. Stochastic Quenching (SQ)

The SQ method bears some similarity to melt-
quench molecular dynamics, but instead of rapidly
quenching snapshot configurations from a potentially
expensive and time consuming equilibrium molecular
dynamics simulation of the respective liquid phase,
a “sensible” random initial configuration is quenched
infinitely fast. ‘Constrained stochastic’ configurations
are generated by randomly distributing atoms in
a cubic box with periodic boundary conditions,
subject to the constraint that no two atoms may
be too close, since this may interfere with electronic
structure optimisation, and cause instability in
geometry optimisation algorithms. Each configuration
is optimized to the potential energy local minimum
[139]. In materials where the characteristic length
scale is unknown, a similar process can be performed,
randomly placing superatomic units in the unit cell
instead of atoms; this may be appropriate when
the crystal structure consists of easily identifiable
superatomic units.

SQ is thought to be valid because it has been
demonstrated that, for a monatomic liquid, the vast
majority of all structures are random, and the normal
mode frequencies are essentially the same for all
random structures. The distribution of frequencies
takes the form of a Gaussian distribution with a
variance that is independent of temperature [104, 140].
Thus any randomly generated structure should in
principle have the same structural properties.

SQ has been shown to accurately reproduce
structural and chemical features of even complex
amorphous systems such as ZrSiC. Disagreements
between theory and experiment have been attributed
to the fact that SQ is effectively a quench with
an infinitely fast cooling rate [141]. However, this
agreement may be a result of insufficient analytical
rigour. In the case of GeSe, glasses, the structure
factors for stochastic quenched structures are very
similar to those for structures formed from a new
melt quench technique in which the Ge atoms are
localised in either a sphere or a slab embedded in
amorphous Se. The NMR spectra tell a different story:
when compared with experimental NMR spectra,



stochastic quenching leads to an overly homogeneous
structure, suggesting that the glass may be comprised
of superatomic units that only form during a melt [142].
If it is possible to identify these superatomic units, it
may be more accurate to perform stochastic quenching
by randomly placing them in the cell rather than single
atoms.

This method is very similar to ab initio random
structure searching (AIRSS) [84, 143], in which
ensembles of sensible stochastic configurations in
considerably smaller cells are quenched at zero
temperature to determine crystal structures. The key
difference in AIRSS is the exploration of the enthalpy
landscape rather than the potential energy landscape
as in the SQ method.

4.6. Activation-Relazation Technique (ART)

ART [144, 145] employs a completely different
method of exploring the PEL by taking into account
the activation barriers between basins. Molecular
dynamics simulations are incapable of sampling the
configuration space since significant structural changes
happen on a timescale that is considerably longer than
experiments, let alone simulation. In a glass, the
system is essentially confined to vibrational motion
within a basin.

Starting from a quenched configuration at a basin
minimum, a single atom is displaced slightly such that
the total force is non-zero. The configuration is then
pushed to a saddle point by following the PEL in a
direction of increasing force (essentially the inverse of
a geometry optimisation); this may involve the motion
of any number of atoms. Rather than using forces
computed from the full dynamical Hessian matrix as
in a phonon calculation, a “redefined” force G is used.

o
1+ Az

G=F— {1 - } (F - Az)Ax (44)
Here, F' is a 3N-dimensional force vector derived
from the gradient of the potential energy, Az is
displacement vector of the single atom from the local
minimum and « is a parameter determining the rate
of ascent to the saddle point.

From the saddle point, the system is quenched
into a different local minimum. The net result is
the system hops from one basin to another. This
process is repeated to explore the potential energy
landscape.  This method has the advantage that
its efforts are concentrated in the tiny region of
configuration space that is accessible (since most
of configuration space is comprised of unphysical
structures); on the other hand, it could be argued
that a bias is introduced by limiting the volume
of configuration space explored in this way. ART
is good at locating transitions between metabasins
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(funnels) compared with molecular dynamics, in which
transitions are weighted heavily by a Boltzmann factor
[146].

4.7. Discussion

There are several methods for generating structural
models of glasses, but all have advantages and
disadvantages. Melt-quench molecular dynamics is
by far the most widely used in spite of the fact
that there are many reasons not to blindly trust it.
In the cases where the liquid and crystalline phases
have different first-neighbour coordination numbers,
for example amorphous silicon, it fails miserably [133].
The fact that there is a time-dependence between
configurations may introduce unwanted correlations,
and it is impossible to reach cooling rates close
to experiments due to the compuatational expense.
Moreover, it is only physically representative of one
method of producing glasses (cooling a liquid), and not
vapour deposition, which is a highly non-equilibrium
process.

The CRN method intriguingly works well situa-
tions in which melt-quench molecular dynamics invari-
ably fails (amorphous Si). This leads to the suggestion
that bond rewiring may be representative of the under-
lying physics — indeed, it appears that bond switching
events actually happen frequently over long timescales
[145]. On the other hand, CRN is clearly inappropriate
for fragile glass-formers such as bulk metallic glasses,
where there are no strong directional bonds.

When compared with stochastic quenching, melt-
quench molecular dynamics consistently generates
lower energy configurations; however, unlike in crystal
structure prediction, we are not searching for the
thermodynamic ground state. In fact, experiments
comparing a quenched glass with a ultrastable vapour-
deposited glass for the metallic glass Zrg;Cuy, Al 5
demonstrate that the ultrastable glass has a T, that is
11 K higher, but has a considerably higher enthalpy [9].
This is a point that is rarely considered and remains
an open question; similarly, when using stochastic
quenching, it raises the question of how to choose the
most representative structure from an ensemble.

5. Theoretical characterisation of glassy
structures

In this section, we shift the emphasis from generating
structural models of glasses to analysing them. Since
these amorphous configurations lack the order of
crystals, we need rigorous statistical methods for
describing their structure and dynamics.



5.1. Structure and packing

It is commonly argued in the literature that it is
impossible to describe the glass transition using only
static structural models, and that it is necessary to
describe the dynamic heterogeneity of the system,
i.e. the inhomogeneous distribution of frozen and
cooperatively mobile regions as in RFOT (section 2.2).
Instead of asking which aspects of the structure give
rise to the dynamic heterogeneity, a question that has
yvet to be answered, Widmer-Cooper et al. ask which
aspects of the dynamic heterogeneity arise from the
structure [147]. In a two-dimensional system of soft
discs, they find that while the initial configuration of
a dynamical system does not directly determine the
locations of diffusive regions, it does determine the
propensity of particles to undergo large displacements,
where the propensity is defined as the ensemble average
of mean-squared displacements of a particle.

Traditionally, microscopic models of amorphous
solids have been based on random arrangements of
hard-sphere atoms, the dense random-packed model.
However, the microscopic structure of a glass locally
resembles the crystalline state of the same composition,
with a non-periodic packing of the same polyhedral
building blocks [148]. Attempts to describe liquids as
disordered crystals and dense gases have both failed,
suggesting that a liquid is a well-defined phase. This
is evidenced by the fact that simple liquids can be
supercooled well below their melting point without
crystallising proving the existence of interphase energy
in the form of the Gibbs free energy of crystallisation,
and therefore the difference in liquid and solid structure
[149].

A notable feature of metallic glasses is that they
have a high density relative to the crystalline phase,
up to 99.5% of the crystalline density in the case
of the best glass forming systems. This highlights
the importance of efficient atomic packing, which
can be best achieved with efficiently packing solute-
centred clusters such as tetrahedra and octahedra. The
relative sizes of the constituent atoms are critical in
this regard [150]. Two ranges of order are present
in this scenario: short range order, namely ordering
in the first coordination shell of the particles, and
medium-range order, the ordering between the notional
clusters resulting from the short range ordering. Such
a paradigm requires efficient space-filling on two levels,
and it has been shown that icosahedral medium-range
ordering is a general feature regardless of the type of
short range ordering present [151].

Frank was the first to suggest that atoms in
a liquid cluster in the form of an atom-centred
deformable icosahedra [152]. It is impossible to fill
space with regular tetrahedra, so any attempt to
fill space must involve distorted tetrahedra which
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introduces strain into the system. This accounts
for the larger strain energies in liquids. Considering
clusters relaxes the space-filling criterion, so smaller
clusters favour liquid-like polyhedral packings [153].
The most favourable polytetrahedral packing consists
of icosahedra, which enhances the short range packing
(in contrast with the face-centred cubic and hexagonal
close packed crystal systems, which improve the long
range packing) [149]. This goes some way towards
explaining the resistance of supercooled liquids to
crystallisation — it requires a substantial atomic
rearrangement. Moreover, five-fold symmetry is
forbidden in crystals and is a barrier to crystallisation,
but has been observed, for example, in simple
monatomic liquid lead [154]. Icosahedral ordering has
also been demonstrated from a model of binary alloy,
amorphous Ni-Ag, constructed using reverse Monte
Carlo [155]. Experimental studies have also reported
icosahedral clustering in quaternary bulk metallic
glasses, where the addition of a fourth species greatly
increases glass-forming ability — in such systems, the
ratio of atomic sizes between solute and solvent is
the most important factor [156]. Whilst there is
a broad spectrum of polyhedra present in metallic
glasses, the dominant species varies with the atomic
size ratio [151]. There is evidence that the proportion
of icosahedral structures in a glass is an indicator of
glass-forming ability. For example, lower cooling rates
result in configurations containing more full icosahedra
[157], and the glass-forming alloy Cuy;Zr,;Ag;, has
a higher proportion of icosahedron-like clusters [158].
However, the characteristics of such glasses are not only
dependent on topology, but are also highly dependent
on the chemistry of the constituent elements. Although
density changes in amorphous solids experimentally
correlate with glass forming ability, existing dense
packing models have failed to predict the glass forming
compositions of the CuZr system, for example [159].

Based on X-ray and neutron scattering experi-
ments, Ma et al. propose a fractal packing scheme
for metallic glasses [160]. The polyhedral units of a
quasicrystal cannot tessellate to fill space due to sym-
metries (such as five-fold) forbidden in crystalline lat-
tices, but instead tessellate to form a structure without
translational symmetry, and are fractals with a dimen-
sion of 2.72. Similarly, the icosahedral solute-centred
clusters that form metallic glasses cannot develop any
order beyond a few cluster lengths, i.e. medium-range
order. This results in a fractal network with a dimen-
sionality of 2.31, lower than that of a quasicrystal since
space-filling is more difficult in a glass.

The solute-centred quasi-equivalent cluster model
is distinct from the simpler solute-centred model
detailed above in that there is no orientational order
between the clusters, so that the solvent atoms occupy



random positions [161]. It is capable of predicting the
number of solute atoms in the first coordination shell
of a particular solvent atom, allowing the calculation of
atomic concentrations in bulk metallic glasses. There
is also recent experimental evidence to support this
model [162].

These solute centred clusters are often defined
using Voronoi tessellation analysis [163, 164]. The
Voronoi cell or polyhedron of an atom contains the set
of points that are closer to that atom than any other,
and is analogous to the Wigner-Seitz cell in crystalline
structures. The coordination of the central atom
is described by the Voronoi index (ns, n4,ns,ng,...),
where n; is the number of i-edged polyhedra and ), n;
is the coordination number [2]. Voronoi tessellation
analysis provides a rigorous definition of the free
volume of an atom, i.e. the space into which an
atom is capable of moving, namely the volume of
its Voronoi polyhedron. By comparing the volumes
of Voronoi polyhedra between liquids, glasses and
crystals, it has been shown that it is not possible
to distinguish a static snapshot of a crystal from a
liquid or amorphous solid using distributions of free
volume [165, 166]. Modelling a 2D system of soft
discs, Widmer-Cooper and Harrowell conclude that the
mobility of a particle as characterised by its Debye-
Waller factor (essentially the mean-squared deviation
of a particle from its equilibrium position, averaged
over all particles) is not dependent on its geometrical
free volume, since particles with a high free volume
are uncorrelated with particles with a high Debye-
Waller factor — free volume is a strictly single-particle
property, and as such fails to capture the cooperative
dynamics over even short timescales. [167].

Free volume models are an attractive idea,
supporting the notion that the critical point in the
glass transition is when the structure changes to
such a degree that there is no longer enough free
volume for atoms or molecules to percolate through the
amorphous matrix. Free volume is just one element
of the description of percolation, but in order to
distinguish between phases, one also needs to take
collective motion into account. It now seems that past
successes of this model [168] may have resulted from
an inconsistent definition of free volume.

5.2. Density of states

The configurational density of states (DOS) G(Eig)
enumerates the frequency of local minima (inherent
states) of energy Fis. The canonical partition function
can be written as a function of the density of states,

G(Ers) [169]:

= ex _{Fs)
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(45)
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and G(E) can be written as a function of the
configurational entropy Scont(EF) [29]:

Sconf(EIS) ) : (46)

G(Ers) = exp ( "

and it should be noted that this excludes the
vibrational contribution from all minima. The density
of states can be constructed by sampling the PEL and
constructing a histogram of inherent state energies.
G(Ers) is commonly approximated as a Gaussian
probability distribution, according to the random
energy model [169-171]:

exp(aN) B2
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where P(Fg) is the probability of finding an inherent
structure in the range Eis — Fig + 0E, exp(aN) is an
estimate of the total number of basins as in equation
(20), and o is the Gaussian width. This approximation
does not hold for low energies, since the density of
states of a glass former is characterised by a fat tail,
such that there is a non-trivial probability of finding
a structure with an energy close to the crystalline
ground state. This feature is not limited to amorphous
systems, however [172], but it may be possible to
distinguish a glass-forming PEL from a crystal forming
PEL from the functional form of the low-energy tail.

A comparison between a fragile liquid, a binary
Lennard-Jones mixture, and a strong liquid, SiO,,
shows a clear distinction in their respective DOS: SiO,,
has a well defined cutoff energy, below which the
density of states suddenly falls to zero, while the BLJ
system has a smooth G(E) that falls to zero as a
Gaussian [173].

Whilst it is impossible to directly sample the
total number of local minima in a configuration space,
a recent study on hard spheres has demonstrated
that it is possible to estimate it by calculating the
hypervolumes of basin minima [174]. Given the basin
volume, it is possible to calculate the entropy of the
distinct minima, and thus the number of distinct
states.

P(Es) =

5.8. Normal mode analysis

The application of normal mode analysis to liquids
and glasses allows access to a wealth of thermody-
namic information, including the barrier-crossing rate
and hence the diffusion constants. Most significantly,
it presents the possibility of describing the dynamic
heterogeneity of glasses from a static picture. Simu-
lations on a 2D system of soft discs suggest that the
locations of regions of irreversible structural reorgani-
sation (i.e. diffusion) are strongly correlated with the



positions of the local and non-local low frequency nor-
mal modes of the initial configuration. Furthermore,
positions of these low frequency modes persists over
changes in inherent structure [175]. These diffusive re-
gions may correspond to the dynamic heterogeneities
that are thought to be necessary to describe glasses in
random first-order transition theory [22].

Stillinger and Weber used local minima to describe
the topology of the PEL, essentially ignoring the
saddles that separate them. One can also describe
the PEL in terms of the density of saddles. The
calculation of the normal modes of a static snapshot
of a dynamic trajectory is known as instantaneous
normal mode analysis (INM). In contrast to a crystal
structure, liquids and glasses possess both stable
(real) and unstable (imaginary) modes, such that the
total density of vibrational states can be decomposed
into a sum of stable (ps) and unstable (p,) modes
[176].  These unstable modes are thought to be
transition pathways between basins. Zwanzig proposed
a relationship between the basin-hopping frequency
wp, and self-diffusion constant D(T) [177] based on
the PEL formalism, and Keyes related the hopping
frequency to quantities measurable in numerical
simulations, namely normal mode frequencies, and the
subset of normal mode frequencies that are unstable
[178]. We define the frequency of a one-dimensional
configuration escaping a minimum of frequency w,, via
a barrier of frequency w as we:

We = f(wa wm)eiﬂEA (48)

where f(w,w,) is a rate constant. Generalising this to
an escape from a minimum on a 3/N-dimensional PEL,
we need to take into account the cross-section of the
3N — 1-dimensional barrier v(w) and the volume of the
minimum v,,.

e = (“’) (“‘”) Fw,wm)e BB (49)
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Then the hopping frequency wy, is the integral of this
expression over all minima and saddles.

an = [ (ojjn) ((:)) F w0, wm)sn(e) ),
(50)

The sn(w) term integrates to the number of saddles
s connecting the minima. Using assumptions similar
to the Adam-Gibbs law, the density of unstable
vibrational states p, can be expressed,
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Here «/3z is the fraction of the 3z directions with
downward curvature corresponding to an unstable
mode. The similarity in pre-factors suggests a
relationship between wy and the p,, which can be
evaluated by fitting a numerically computed density of
unstable states to a functional form; the troublesome
saddle point terms are also eliminated in this way.
However, it should be noted that there may be
imaginary modes in a crystal at finite temperature,
i.e. non-diffusive unstable modes, and by extension
these exist in liquids and glasses. The problem with
INM is determining which of these unstable modes are
diffusive [179].

5.4. Activated dynamics

Aging is a phenomenon that occurs on a timescale
orders of magnitude beyond what is accessible from
molecular dynamics simulation; diffusive processes
that occur beyond experimental timescales allow a
glassy system to find lower thermodynamics states. In
the PEL paradigm, diffusion in a supercooled liquid
can be described in terms of cage-breaking (i.e. a
particle breaking out of a cage formed of its nearest
neighbours). Productive, or non-reversed, cage-breaks
correspond to transitions between metabasins, whereas
non-cage-breaking process correspond to non-diffusive
processes occurring within a metabasin [180]. Below
the glass transition, the former are strongly suppressed,
resulting in super-Arrhenius relaxation. This issue can
be circumvented by considering trajectories through
configuration space as discrete transitions between
local minima. The problem of dynamics on the PEL
can be greatly simplified by considering a transition
between two connected local minima as a two state
transition problem. When there is an energy barrier
of height F4 (an activated process), the statistics of
transitions between microstates can be modelled using
(for example) an Arrhenius-type rate equation, where
the transition rate is proportional to e~ £4 [181].

We now turn to how this enables dynamical
simulations to be coarse grained and therefore
performed on larger systems. Instead of using brute
force molecular dynamics, the slow dynamics of a glass
can be modelled as a Poisson process of elementary
transitions between local minima, controlled by a rate
parameter \ quantifying the expected number of events
per unit time [123]. Such a (Markovian) process has no
“memory” of the previous states of the system, much
like radioactive decay. An “event” is defined as the
transition of the configuration from one basin to a
neighbouring basin of higher energy. The cumulative
probability P(t) is of the form,

1 — e—AMt—to)
P@):{ e t >t (53)
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where g is the time of the last event. Then the gradient
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where n is the total number of transitions, t; is
the residence time of transition k& and r; is the first
data point to consider when calculating the slope
(since the Poisson approximation does not hold at
short times). Tsalikis et al. [182] validated this
method by comparing the results of the Poisson
process with the mean squared deviation for the
molecular dynamics simulations used to determine
the rate constant. This approach recovers the two-
timescale behaviour that typifies glassy systems: short
timescale transitions occur within metabasins, and
long timescale transitions occur between metabasins.
Moreover, these transitions can be related with
the separation of the local minima in configuration
space as parameterised by the FEuclidean norm:
intrametabasin and intermetabasin transitions have
different characteristic “lengths”. These long distance
transitions correspond to collective rearrangements,
whereas short distance transitions correspond to
isolated cage-breaking events. It has been proposed
to use this methodology to identify metabasins “on the
fly” during parallel microcanonical molecular dynamics
simulations [183]. This model has been superimposed
onto a network model (see section 5.5) of the PEL in
order to simulate aging dynamics [184]. A combination
of metadynamics [185] with the Markovian network
model has been adapted to compute the viscosity of
glasses, a feat which was previously impossible due to
the long-timescale dynamics [186].

A related approach employs continuous time
random walks (CTRW), which are differentiated from
random walks by characterising each step by a variable
waiting time 7, during which the walker is stationary,
followed by an instantaneous displacement Azx. It has
been shown that such a scheme can be numerically
derived for a glass-forming system [187]. The CTRW
scheme requires coarse-graining in order to apply it
to the analysis of molecular dynamics simulations
for two reasons: firstly, the particles are constantly
moving, rather than being stationary before each
“jump;” thus it is necessary to carefully define what
constitutes a jump. Secondly, a jump occurs over a
finite time, rather than instantaneously as assumed
by the model. Warren and Rottler demonstrated the
viability of CTRW as a variation of the “cage” or
“trap” model by parameterising it using ultra-long
term MD simulations of a binary Lennard-Jones glass.
They observe that the key feature is that trap states
are uncorrelated, and the trap energy is chosen from
an exponential distribution at each step [188, 189].
Helfferich et al. detail the implementation of such a

A (54)

23

scheme, adding the further constraints that particles
may not loop back to their starting positions, or
oscillate between two states [190, 191]. It should be
noted that this coarse graining makes CTRW capable
of describing the long-timescale S-relaxation (in the
parlance of MCT) of the system, when a particle
breaks out of its cage, but not the short-timescale a-
relaxations.

5.5. Network topology

The PEL can be described as a set of local
minima connected by transition pathways, forming
an undirected complex network [192]. Such networks
are described by a variety of metrics, one of which
is the degree distribution, i.e. the distribution of
probabilities of a minimum (vertex, in the language
of networks) having a certain number of connections
(edges). Potential energy landscapes are found to have
a power law degree distribution, a so-called “scale-free”
network (a common motif in many fields that employ
graph theory), and there is a strong link between
the distribution of basin hypervolumes in the PEL
and the fractal packing of Apollonian hyperspheres
[193]. In contrast with a random network, which has
an exponential degree distribution, the power-law tail
means there is a non-trivial chance of finding a vertex
with abnormally many edges, a “hub”. This feature
leads to the phenomenon of small-world networks: the
geodesic between two points is shorter in scale free
networks than for random networks, since hubs act
as conduits. As an example, the degree distribution
of several Lennard-Jones clusters is shown in figure 8,
showing a power law degree distribution for the larger
clusters. This feature is exploited in crystal structure
prediction, where the hubs are generally associated
with low energy configurations and metabasins. There
is a strong correlation between the degree of a
minimum and its potential energy (the global minimum
is generally the most connected vertex) for Lennard-
Jones clusters. This can be explained by the large
hyperarea surrounding lower minima, which means
there is a higher probability of finding a transition
pathway to them [192].

Beyond the degree distribution, there is a rich
phenomenology of complex networks that allows many
different analyses and many parameters that can
potentially be used to describe PELs. One example
is the “community” structure, or clustering of hubs
within a landscape — the tendency of of local minima
to aggregate in metabasins, and metabasins to form
basins of metabasins. One such study identified
varying degrees of community structure in Lennard-
Jones clusters [194]. One feature of scale free networks
is preferential attachment: when the network grows
upon adding more atoms and as a result more inherent
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Figure 8. Cumulative degree distribution for Lennard-Jones
clusters 9-14 (Reproduced with permission from J. Chem. Phys.
122, 84105 (©2005, AIP Publishing LLC [192]). k is the degree
of a graph vertex, i.e. the number of connected edges. The graph
gets progressively closer to a power law distribution with slope
—(y — 1), and v = 2.78 (straight line). Since the behaviour
does not hold for the smaller clusters, the system is not truly
scale free, but for larger clusters, there is a power law degree
distribution.

states, the power law tail of the degree distribution
arises from a tendency of new edges to be formed
by preferentially attaching to verticies with a higher
degree. It transpires that this behavior can be
influenced by varying the range of the Lennard-
Jones potential by adjusting the exponents (which
are usually 12 and 6). A shorter range potential
(smaller exponents) is known to result in a more
complex, rougher PEL with more vertices and edges in
its network, since the weaker interaction from distant
particles leads to a larger number of stable packings.
The effect of increasing the range of the potential can
be more rigorously explained using catastrophe theory
[195]. Since the number of edges increases faster than
the number of nodes, and these new edges undergo
preferential attachment, leading to a scale free network
[196].

Up to this point, the construction of the network
has dispensed with all notions of activation barriers;
however, it is possible to generalise this approach for a
treatment of dynamics by, for example, superimposing
a master equation onto the network [197, 198]. The
problem with this approach is defining connectivity:
in order to find connections between local minima,
eigenvector-following algorithms are often employed in
order to locate saddle points along the paths between
basins with the lowest barrier. In this context, the
definition of a connection between two minima is not
well defined, and moreover, there is evidence to suggest
that it is incorrect to use minima of the gradient of
the total energy, since the majority of points where
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|[VE|? = 0 are non-stationary points of the potential
energy [172]. In light of this finding, a different
approach may be necessary.

In a related approach, Wang et al. [127] propose
the “potential energy landscape ensemble”, which is
defined as the set of configurations for which the
potential energy is less than or equal to some constant
“landscape energy”, Ej. This has the effect of de-
emphasising the concept of dynamics between basins
as a process of surmounting activation barriers. In
this picture, slow dynamics below the glass transition
temperature is a result of the long and tortuous,
but effectively barrierless, routes between basins —
i.e. the glass transition is dictated by entropic rather
than energetic considerations (figure 9). This can be
physically justified by the exponential dependence of
barrier height on the probability of a barrier transition:
crossing many low barriers is far more likely than
crossing one high barrier.

In the case of an extremely low E7,, it is possible
to envisage disconnected regions of the ensemble with
no connected pathways, which corresponds to the
transition to the non-ergodic regime. The extension
that configurations follow geodesic paths between
basins [128] may provide a more natural definition
for network connectivity than the more common
model of activated dynamics. In the case of the
binary Lennard-Jones mixture, it has been shown
that as the temperature decreases, geodesics increase
as paths between minima become progressively more
convoluted, much more so for glass-forming liquids
[128]. Intriguingly, they observe the same behaviour
(and successfully predict the onset of dynamic
heterogeneity) for a hard sphere system, which has
no inherent states or intervening barriers [199], raising
the question of how much of the behaviour can be
attributed to dynamics unique to a hard sphere system,
which differs from more realistic soft potentials in some
very important ways. The potential energy landscape
ensemble paradigm has stimulated interest in NVU
(constant potential energy) dynamics. Physically,
NVU dynamics is a manifestation of Newton’s second
law: it models a system moving at constant velocity
with zero friction, such that the force is always normal
to the surface and thus does no work, conserving
kinetic energy. It has been shown that NVU dynamics
is equivalent to microcanonical (NVE) in the limit
of large N [200], and its results are as good as for
canonical (NVT) and stochastic dynamics (such as
Monte Carlo) [201].

5.6. Discussion

The general trend in the literature is to conclude that
the glass transision can only be described in terms
of non-local, collective rearrangement of atoms, rather



Figure 9. A two-dimensional illustration of the potential
energy landscape ensemble (adapted from reference [128]). The
ensemble consists of configurations with V(R) < Er. As Ef,
is decreased, the forbidden regions (red) become larger, and
the paths between minima become longer and more tortuous,
resulting in slow dynamics; the potential energy landscape
problem essentially recasts an activated process as an entropic
process.

than localised events or the static structure. There is,
however, evidence to suggest that there are strong links
between the potential energy landscape and dynamics,
and that aspects of the dynamic heterogeneity arise
from the static structure [147].

Single-structure descriptions of glasses do not in
general tell the whole story. In terms of dynamical
heterogeneity, free volume models of glasses are a
generally unreliable descriptor, since free volume is a
single particle property. Similarly, describing glasses
as “disordered crystals” consisting of polyhedral units
of the crystalline structure also fail when the local
coordination in the liquid phase differs from the
crystalline phase. Voronoi tesselation offers a useful,
rigorous definition of free volume that demonstrates
icosahedral short-range ordering in metallic glasses,
where weak orientational constraints on the first
coordination sphere turn the glass structure in to a
hard sphere packing problem rather than a chemical
bonding problem.

By introducing the PEL, we examine not only
the static structure, but the whole ensemble of stable
structures. A transition between two points on the
PEL generally involves the movement of more than one
particle, so such an approach is capable of describing
collective motion. Just by looking at the structural
density of states of randomly generated structures, it
can be seen that glass-formers and crystal-formers have
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very different PELs: glass-formers are characterised
by a low energy “long tail”, that is, a high density
of states close to the crystalline minimum. We can
refine this picture by additionally considering either
entropic or activated transition pathways between the
local minima. Thus far, most analyses of this type
on glassy systems have been primarily qualitative, so
there is a need for more work treating network models
of glasses quantitatively. One way of achieving this
is by mapping minima and transition paths of a PEL
to the vertices and edges of a complex network and
performing statistical analysis on this simplified model.
The converse can also be achieved, starting from a
network model of a glass as a means of coarse-graining,
and modelling a real-time trajectory between the local
minima using a rate equation.

The dynamics of the system are implicit in the
PEL. The dynamical matrix can be computed, which in
turn can be used to determine the mechanical stability
and properties of any configuration. Such methods
may also be used to describe the the aging of glassy
systems over timescales inaccessible to simulation using
transition state theory, and unstable and diffusive
modes offer an alternative definition of transition
pathways. In such a way, modelling techniques that
may be individually insufficient can be combined to
offer a better understanding of glasses through a very
simple paradigm, the PEL.

6. Model glass-forming systems

Ideally, we want to use fully transferable ab initio
potentials generated “on the fly” wusing density
functional theory (DFT) [202, 203] to characterise
the difference between good and bad glass formers.
However, there is a wealth of research in the literature
employing computationally cheap, idealised forcefield
models to study potential energy landscapes. In this
section, we summarise these results.

6.1. The binary Lennard-Jones (BLJ) glass

The binary Lennard-Jones mixture is one of the most
commonly used model systems for glass formation,
aptly described as ‘the “drosophila” of computational
studies of glass-forming systems’ [122].  Classical
forcefields are computationally cheap, and allow
molecular dynamics simulations on a timescale of
milliseconds (compared with nanoseconds for ab initio
molecular dynamics). Moreover, a judicious choice
of forcefield parameters and composition results in
the tendency towards crystallisation to be suppressed.
Many studies in the literature employ a potential
similar to that of Kob and Andersen, a binary mixture
of Lennard-Jones particles with the same mass in an
80:20 ratio [28]. The forcefield parameters were chosen



to be similar to amorphous NigyP,, in Weber and
Stillinger’s earlier model [204] to avoid crystallisation
at low temperatures. Above its melting temperature,
the BLJ is a fragile liquid and is good glass former. It
is well characterised in the literature, with a known
Kauzmann temperature [205], and it undergoes a
second order phase transition to a glassy state at its
mode-coupling temperature.

An explicit computation of the density of states
of this system as a function of temperature reveals
that the curve of logarithm of the density of states
becomes steeper as the energy decreases [206]. This is
not unexpected, and confirms that as the temperature
decreases, the number of accessible states becomes
smaller. Moreover, the number of pathways between
minima decreases as the temperature decreases, an
effect which is more pronounced for fragile systems,
facilitating the super-Arrhenius behaviour of glasses.
This can be linked to the cage picture, in which a
particle is trapped in a cage formed by its nearest
neighbours, such that a considerable barrier must
be overcome for it to break out [207]. The self-
diffusion constant for individual atoms show Arrhenius
behaviour over short timescales, and super-Arrhenius
behaviour is recovered after averaging over all atoms
over an ergodic timescale. This results not from
the distribution of barriers, but from the negative
correlation in atomic displacements over successive
timesteps, i.e. reversals in direction, which may
be analogous to non-productive cage-breaking (see
section 5.4) [208, 209].

In the PEL picture, relaxations on two timescales
are demonstrated by the BLJ mixture: high fre-
quency a«-process, corresponding to transitions be-
tween minima within a metabasin, and a low-
frequency [-process, corresponding to transitions be-
tween metabasins. Above T\icr, the liquid is a multi-
trap system, for which the barriers separating inherent
structures are small compared to the kinetic energy,
and a single-trap system below it, when the barriers
become large [210]; in this way it is possible to rigor-
ously define metabasins in the context of a numerical
simulation. Metabasins can be divided into liquid- and
solid-like categories based on the “waiting time” 7 of
the configuration therein: solid-like metabasins have a
waiting time 7 > 7%, where 7x is a crossover value,
and vice versa for liquid-like metabasins [211]. This is
further evidence that the dynamical heterogeneity may
have a static structural origin.

For small periodic BLJ systems such as the 32
atom system described in reference [83], or small
BLJ clusters, it is possible to almost completely map
the minima of the PEL; however, such systems are
subject to finite size effects. The surface effects present
in clusters are well known, but it has been shown
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that that finite size effects are insignificant for N >
60 [212]. Since BLJ simulations are so cheap and
can be productively performed on a modern desktop
computer, it is tempting to examine larger systems,
but there is a caveat: Doliwa and Heuer demonstrate
that a 130 atom BLJ system essentially behaves as
two weakly coupled 65-atom BLJ subsystems [213].
If the subsystems are sufficiently weakly correlated, it
therefore makes sense to simulate only one subsystem
to avoid obfuscating the information contained in the
PEL [214]. Transitions between local minima are
frequently modelled as a random walk, but this turns
out not to be the case for hops between single basins;
however hops between basins within a metabasin
strongly resemble a random walk [215].

A simple thermodynamic model suggests that the
fragility of a liquid is proportional to the logarithm of
the number of states [216]. Sastry uses a BLJ mixture
to establish a quantitative connection between fragility
and the PEL [217]. In addition to the multiplicity
of states (encoded in the configurational entropy),
the fragility also depends on the variance of the
distribution of states and the variation of vibrational
frequencies (i.e. entropy) between the lowest and
highest basins.

A phenomenological observation associated with
the fragile BLJ liquid is the tendency for correlated
rearrangements of clusters at temperatures above
Tyver which are accessible by molecular dynamics.
Particle displacements appear to happen along string-
like clusters [118, 218]. In a glass, most atomic motion
takes the form of small amplitude vibrations, but the
structure is jammed on a diffusive timescale. A region
of jammed molecules can only become mobile if it is
adjacent to an unjammed region, a process which forms
distinct chains [219)].

Recently, a new molecular dynamics technique
using a BLJ model was used to attempt to generate
a model glass with the characteristics of ultrastable
organic and bulk metallic glasses synthesised by vapour
deposition. Groups of particles were introduced to
a simulation cell some distance above a constrained
substrate layer, followed by an equilibration phase
and finally an energy minimisation. The resulting
glass was found to have the properties of a vapour
deposited equilibrium supercooled liquid, and it was
noted that the optimal temperature for preparation of
these ultrastable glasses corresponds to the Kauzmann
temperature [10]. It is notable that the radial
distribution function of this model ultrastable glass
is indistinguishable from an ordinary quench glass;
instead, the stability has been explained in terms of the
cage picture. In a bulk glass, the motion of a particle is
strongly constrained by the cage formed by its nearest
neighbours; however, on the surface, it is free to “roll”
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Figure 10. Schematic of the effects of cooling rate versus
vapour deposition on glass stability (Reprinted by permission
from Macmillan Publishers Ltd: Nature Mater. 12, 94, ©2013
[220]). When a liquid is cooled, it falls out of equilibrium at a
temperature that depends on the cooling rate. Lower cooling
rates allow the system to explore lower energy metabasins, while
vapour deposition and the molecular dynamics technique of
Parisi et al. make extremely deep and narrow minima accessible.

with a reduced free energy cost, enhancing its mobility
and allowing a more extensive exploration of the PEL
[220] (figure 10). It should, however, be noted that
this pciture is at odds with experiments suggesting
that ultrastable metallic glasses are not necessarily the
lowest thermodynamic state, but are kinetically very
stable [9]. The question of whether ultrastable glasses
are in fact the most thermodyanmically stable remains
an open question in the literature.

As a final note, ring-polymer molecular dynamics
(RPMD), which goes beyond Born-Oppenheimer
molecular dynamics and simulates nuclei as quantum
mechanical particles, has been used in conjunction with
a BLJ mixture [221]. The degree of “quantumness”
is controlled by the A* parameter, which is the
ratio of the de Broglie wavelength to the particle
size. Interestingly, the quantum mechanical glass is
much less structured than the classical, since quantum
mechanical tunneling across PEL barriers is permitted.
Moreover, the diffusivity decreases as a function of A*
until the size of the quantum wave packet becomes
comparable to the radius of the cage enclosing the
particle in the glass (at approximately A* = 1, i.e. ade
Broglie wavelength comparable to the particle size), at
which point it can tunnel through the cage, resulting
in a sharp increase in diffusivity. Whilst this is a nice
illustration of a theoretical quantum glass, this effect is
unlikely to affect a real glass, for which the temperature
regime will be too high, and the atoms too massive
unless it contains hydrogen. More recent calculations
suggest that quantum effects tend to broaden the glass
transition regime [222].
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6.2. Amorphous silica

Silica (SiO,) is important not only because of
its ubiquity in natural and man-made amorphous
materials, but also because it is an extreme case of
a strong liquid as can be seen by its position on the
Angell plot (figure 1). Molecular dynamics simulations
at varying pressures demonstrate that silica is a strong
liquid at ambient pressure, when the silicon atoms are
largely four-coordinated, but as the pressure increases,
they become five- and six-coordinated, signalling the
onset of fragility [223]; this was recently confirmed
experimentally [224].

The availability of a reliable classical potential
that has been validated against ab initio models, the
van Beest-Kramer-van Santen (BKS) potential [225],
means it has been very well studied. A study on the
PEL topology of BKS silica suggests a characteristic
temperature T, =3500K, above which the system
explores anharmonic basins, but below which there is
no sign of anharmonicity [226]. Silica is also notable for
its transition from a fragile liquid to a strong liquid as
the temperature decreases below a crossover point, T,
which is found to be around 3300 K [227] for the BKS
model. This transition has been attributed to a low
energy cutoff in the density of structural states, which
coincides with the vanishing of the number of three-
and five-coordination defects [228]. The similarity of
the two aforementioned crossover temperatures suggest
that there is a possible connection between basin
anharmonicity and liquid fragility. T, coincides with
a peak in the specific heat Cy/, the maximum density
and a maximum in the isothermal compressibility K,
phenomena which are associated with a polyamorphic
transition in glasses, i.e. the transition from a low-
density glass to a high-density glass. This suggests
that the fragile-strong transition is associated with a
polyamorphic transition, and moreover that all strong
liquids are candidates for polyamorphism [229]. This
can be physically justified by the existence of two
different arrangements of particles in tetrahedrally
coordinated materials resulting in two characteristic
interparticle distances. For example, low density
ice Th and the compact high pressure phases in the
case of water [37], which also displays a fragile-
strong liquid transition [230]. Kushima et al. [231]
extend this to all viscous liquids, suggesting that
there are two crossover temperatures for all glass
formers: upon cooling from high temperature, there
is a strong to fragile transition, followed by a fragile
regime, and finally a fragile to strong transition. The
difference between fragile and strong liquids lies in the
rearrangement processes that occur between basins.
Bond switching processes have high activation barriers
prevalent at high temperatures, compared with
processes involving dangling bonds which dominate at



low temperatures. In the cage entrapment paradigm,
high-barrier mechanisms correspond to cage-breaking,
while low barrier mechanisms are related to the
redistribution of free volume [207]. However, the
barrier height is in general independent of temperature,
except in a limited “intermediate” temperature range,
over which the barrier changes with temperature, and
the liquid is fragile [231].

6.3. Hard sphere model

A system of hard spheres is arguably the simplest
system that displays fluid-solid coexistence and a glass
transition. Hard spheres are essentially particles with
short range repulsive interactions, and without longer
range dispersive interactions; they do not interact
unless they overlap. A hard sphere model places the
emphasis on efficient packing rather than chemical
bonding, and is often used to describe the glass
transition as a “jamming” transition as in the case
of granular materials, the point at which a system
develops a yield stress in a disordered state [232].

This model has a single control parameter, the
dimensionless density n* = pgo>, where py is the
average density in the crystalline phase and o is the
hard sphere diameter. Increasing nx has the same
effect as increasing the temperature [97]. A hard sphere
system will remain structurally disordered if cooled
fast enough, and under further compression it will jam
into one of a multitude of possible packings with a
minimal free volume, reaching the limit of “random
close packing” at an infinite compression rate [233].

A study on devitrification (crystallisation from a
glassy or amorphous phase) shows in order to form
crystallites, particles undergo a short range “shuffling”
motion, for which the mean displacement is less
than a diameter — i.e. crystallisation occurs in spite
of the arrest of diffusive motion [234]. The hard
sphere free energy landscape undergoes a pressure-
induced ‘roughness transition’, at which point basins
become aggregates of sub-basins in a fractal manner
(figure 11), representing a multitude of marginally
stable states [235]. Expanding on these interesting
results using more realistic models may eventually
reveal the microscopic root of glass-forming ability in
comparison with crystal-forming ability.

O’Hern et al. demonstrate that a hard sphere
system undergoes a jamming transition, defined as
the point at which the bulk and shear moduli
simultaneously become non-zero, at a critical density,
and proceed to show that this transition point has a
variety of interesting properties, such as a diverging
radial distribution function and an excess of low-
frequency normal modes. [232]. This supports the
notion of cooperatively rearranging regions, since soft
degrees of freedom are collective. Moreover, fewer and
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Figure 11. The pressure-induced transition to a fractal free
energy landscape for hard spheres (Reprinted by permission from
Macmillan Publishers Ltd: Nature Comm. 5, 3725 (©2014 [235]).
As the control parameter (packing fraction ¢) is increased above
its glass transition point g4, basins divide fractally into sub-
basins and sub-sub-basins representing marginally mechanically
stable states close to a jamming transition.

fewer modes participate in structural rearrangement
as the density approaches its critical value, perhaps
suggesting cooperative regions that are growing in size
[236].

At first glance, the hard sphere model appears to
be somewhat academic, since real systems always have
long range attractive forces. It does, however, remain a
useful model, since all realistic systems have a distinct
short-range repulsion cutoff, such as the minimum of a
6-12 Lennard-Jones potential. Moreover, at the density
of solids, the primary effect of long-range attractions
is to maintain the density of the solid such that the
repulsions can have an effect [232]. Moreover, hard
spheres are surprisingly good at explaining the glass-
forming ability of bulk metallic glasses, which are
characterised by weak, non-directional interactions. In
a binary hard sphere system, the best glass formers
have an atomic size ratio that compromises between
two competing pressures: minimising it to improve the
packing efficiency, and maximising it to prevent phase
separation [233].

A comprehensive review of hard sphere glasses can
be found in reference [237].

6.4. Discussion

We have described model systems that describe very
different types of glasses. On one hand, we have a
binary Lennard-Jones model of amorphous silica, an
example of a strong liquid that forms a glass with
bonding network with high covalent character. At
the other end of the spectrum, hard spheres are an
idealisation of metallic glasses, derived from fragile
liquids which lack the orientational constraints of
strong liquids. The structure of such glasses becomes a
question of filling space with spheres of different sizes,



and a mechanical jamming transition, as opposed to
the structure of a more rigid covalent bonding network.

The binary Lennard-Jones mixture is a good
general choice of model system, since its glass-forming
ability can be controlled via the composition, and
its fragility can be controlled either by adjusting
the hardness of the potential, or changing the
particle density, which has essentially the same effect.
Moreover, it is well characterised in the literature, and
its mode-coupling temperature has been calculated for
certain compositions and parameterisations.

An important point that arises from these cheap
calculations is the effect of system size. One might
naively assume that in order to capture medium-range
ordering, it is necessary, due to the lack of symmetry,
to use the largest supercell possible. This is not
necessarily the case, as it has been demonstrating that
once a critical system size is exceeded, the supercell can
be decomposed in to weakly interacting subsystems,
the effect of which may mask the properties of real
interest.

7. Ab initio models

In addition to providing a more reliable and trans-
ferable structural model, ab initio methods are capa-
ble of describing electronic structure. Just as trans-
lational symmetry in crystals gives rise to Bloch elec-
tronic states which are delocalised, disorder in amor-
phous solids gives rise to localised states that can
be more naturally described using Wannier functions
[238]. Tight binding calculations on amorphous silicon
manifest electronic states which appear as sparse but
highly localised “islands” of electron density, and are
caused by rare, major distortions in the local structure.
These are often connected by “filaments” [239]. These
structural filaments are related to the Urbach tail in
amorphous silicon, the exponentially decaying density
of states at the band edge [240, 241]. There is also a
strong correlation between the degree of electronic lo-
calisation and the sensitivity of the electrons to lattice
vibrations, i.e. strong localisation is associated with a
larger electron-phonon coupling, as has been demon-
strated for hydrogenated amorphous silicon [242, 243].

In fact, the paucity of ab initio calculations
on glasses reflects a general neglect of the effect of
electronic structure on glass forming ability. There is
evidence that glass forming ability is correlated with
the electronic density of states. Al is a common
component of bulk metallic glasses as a dopant,
although it is rare to find Al-rich (>30%) glasses. It
has been suggested that this is because Al has more
free electrons (3) than most other metals, enhancing
the density of states at the Fermi level and reducing
the free energy of the amorphous state [244].
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Icosahedral short range ordering is favoured by
non-directional metallic bonds, but electronic structure
calculations show that Pd,yNi,oP,y achieves a superior
packing ratio via a “hybrid” scheme involving
both metal-centred icosahedra and highly directional
covalently bound metalloid-centred tricapped trigonal
prisms [245]. This is further evidence of the importance
of electronic structure in glass-formation, since density
functional theory is capable of transferably modelling
glasses formed from both strong and fragile liquids.

A note of caution is in order when it comes to using
local and semilocal DFT in the context of amorphous
structures. When a defect is introduced into a crystal
structure, it can introduce states into the band gap.
These are manifested physically as localised states.
Since glasses are very structurally disordered, there
are many of these localised states, and in general
local and semilocal exchange-correlation functionals
will fail to capture the non-locality and correlations.
This effect can be mitigated using hybrid exchange-
correlation functionals, but in the absence of any form
of symmetry, these will be extremely expensive. One
would expect to see qualitative as well as quantitative
changes in the electronic structure as a result of this
effect, which can have significant knock-on effects.

8. Glass-forming ability versus crystal-forming
ability

Glass forming ability is a difficult quantity to
characterise experimentally, since crystal nucleation
depends on a variety of factors including temperature,
pressure and composition, not to mention external
factors such as chemical and physical impurities,
container wall effects and shear flow condition in
the liquid. To date, glass-forming ability has been
described somewhat phenomenologically, for example,
in the form of time-temperature-transformation curves
(TTT) [246, 247]); other empirical formulae use
the liquidus, crystallisation and glass transition
temperatures to derive a parameter capable of
predicting whether a bulk metallic glass has a high
glass forming ability [13-15].

Experimentally, it has been possible to map
the glass-forming ability of a 5-component alloy in
composition space. Glass forming ability is controlled
by two competing thermally activated processes:
the Gibbs free energy barrier to the formation
of a critical nucleus W and the barrier to the
configurational rearrangement of the liquid AG. This
can be summarised in the following expression for
the characteristic nucleation time 7, of the crystalline
phase a [248].

1

T (55)
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Willow Palm Banyan

Figure 12. Disconnectivity graphs corresponding to three
archetypal PELs (adapted from reference [251])

Here, the Gibbs free energy barriers W and AG are
functions of temperature and composition (¢), and 7 is
a transition attempt frequency.

Whilst there are many empirical guidelines for
determining the glass-forming ability of compounds
such as bulk metallic glasses, a microscopic rationale
remains lacking [249]. Recent molecular dynamics
simulations suggest a significant difference in the
liquid-crystal interface between good and poor glass
formers suggesting that a difference in heterogeneous
susceptibilities may be responsible for the difference
[250]. They can also be distinguished qualitatively
by the “shape” of their respective PELs, although
how to visualise such a high-dimensional space is
a challenge in itself. Despa et al. achieve this by
categorising disconnectivity graphs into three distinct
motifs (figure 12): “weeping willow”, in which the
barriers are large compared with the relative energies
of the basins, “palm tree”, in which the barriers
are small compared with the relative energies of the
basins, and “banyan tree”, which is characterised
by many degenerate minima[251]. A glass former
requires sufficiently high barriers below T}, and a high
degeneracy near the global minimum. In principle, the
banyan and possibly willow tree motifs might be used
to identify good glass formers.

The identification of compositions that would
make good bulk metallic glasses used to be a time
consuming trial and error procedure in which one
composition could be generated per day. Recent
developments have made the searching of composition
space much more efficient [252], but gaps in the
physical justification remain, and a theoretical method
for generating glass forming compositions would
streamline the process considerably.

9. Conclusions and perspectives

Over the course of this review, we have made the
case that the PEL is a valid and useful paradigm
for understanding glass formation. The dynamics
of the system slow beyond any experimental, let
alone computational timescale when the temperature
is lowered to the point when glass transition
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intervenes and the system falls out of equilibrium.
Thus stochastic sampling methods such as stochastic
quenching and Monte Carlo are necessary to probe the
energy landscape below the transition temperature.

Much of the work on energy landscapes has em-
ployed computationally cheap, and specialised or non-
transferable models (in particular, binary Lennard-
Jones and hard sphere systems), limiting the predic-
tive power of the PEL. Sampling using relatively ex-
pensive ab initio techniques would facilitate theoretical
predictions; calculations on this scale are certainly pos-
sible now, for periodic systems large enough to avoid
finite size and small enough to avoid decoupling into
non-interacting subsystems (around 60 atoms). This is
true for atomic glasses, including bulk metallic glasses
and amorphous thin films synthesised via vapour de-
position, but perhaps not for more complex molecu-
lar, polymeric and organic glasses yet. These ab initio
models can in turn be used to generate coarse-grained
models using activated dynamics and graph theory to
further improve predictive power.

A criticism of PEL analysis is that it paints
a largely static picture of glasses, and is incapable
of describing the glass transition via, for example,
a dynamic heterogeneity or a space-time phase
transition. It can give us a wealth of information on the
thermodynamically stable and metastable structure,
and transitions between them, but can it tell us
anything about the transition from a supercooled liquid
to a glass? PEL analysis allows the development
of structural models of glasses, but a static analysis
is not likely to be sufficient to describe the glass
transition — for example the static correlations are
essentially identical between liquids and glasses, and no
convincing connection has been made between diffusion
and free volume in glass-forming liquids. However,
there is evidence that the dynamic hetereogeneity may
have a structural origin. One example is the correlation
of the low frequency modes of a system with the
propensity of particles to undergo large displacements;
another is the observation of critical-like fluctuations
in static structural order near the glass transition.
Normal modes in particular are routinely derived from
static structures via phonon calculations, and their
application to more realistic models could be a fruitful
area of research.

There are two key areas in which PEL analysis
is likely to prove particularly useful: firstly in the
generation of high quality structural models of glasses,
and secondly in the identification of good glass-
forming compositions of metallic and vapour-deposited
thin film glasses. = The former can be achieved
through some variation of stochastic quenching, and
the latter through analysis of the density of states
and network topology of the DFT energy landscape



REFERENCES

of real materials. At a fundamental level, it offers an
attractive route to understanding the microscopic basis
of glass formation.
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