
   

Potential energy 
In one dimension, we treated the case of a force

F(x) which depended only on the position x.  It
proved very useful to write the force as the
negative derivative of a function called the poten-
tial energy:

F ( x )   =  – dV( x ) 
dx

 .

This equation says that the force is in the
direction in which V decreases, and is larger, the
faster V decreases.

In one dimension, there always exists an appro-
priate potential energy function:

V ( x )   =   − 
x 

I 
x 0 

F ( x ́ )  dx́   ,

where the integral starts at some arbitrary initial
point x0.

In more than one dimension, however, the
situation is quite different.  It turns out not
always to be possible to find a suitable potential
energy function.  We will see why this is so.

Before beginning, however, we need to know
how the force and the potential energy should be
related in more than one dimension.  The answer

is

F P ( r P )   =   – 
ä 

ã 
å å å 
å x ˆ 

∂ V 
∂ x 

+ y ˆ 
∂ V 
∂ y 

+ z ˆ 
∂ V 
∂ z 

ë 

í 
ì ì ì 
ì   ≡   – ∇ P V ( r P )   .

Let’s motivate and explain this, bit by bit.  The
first thing to notice is that while the force is a
vector, the potential energy is a scalar function.
This means that its value at any point is a number
(with the units of energy), and not a vector.
(Scalar and vector fields were introduced in an
earlier section.)

How can you picture such a function?  If there
are only two dimensions, you can plot the value
of the potential energy on the vertical axis.  For
example:
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Or, you can make a contour plot.  Here is a
contour plot of the same function:
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If there are three dimensions, it’s a little harder to
picture a scalar function.  You can imagine some
smoke in a room - the density of the smoke is a
scalar function.  In some places the density is
high and in other places not so high.

What about the direction of the force?  How do
we get something with a direction from a scalar
field?  We do this by applying the negative of the
gradient operator onto V , as shown on the right-
hand side of the last equation. This obviously
gives something that is a vector field.  What are
its properties?

In the one-dimensional case, the force at any
point is in the direction in which the potential
energy decreases away from that point.  Now it’s
a little more complicated, because the potential

energy can decrease in several different direc-
tions away from a given point.  The three blue
arrows in the previous figure all point in direc-
tions in which the potential energy decreases.

So, we should make a rule that says that the force
is in the direction in which the potential energy
decreases the fastest . It turns out that this is
exactly what the negative of the gradient operator
does!  (You might learn this later in a mathe-
matics course.  Just accept it, for now.)

Now we can return to explaining why not every
force in more than one dimension can be
described by the negative gradient of a potential
energy function.  Here is the reason:

in more than one dimension, it is possible to have
a force which circles around like this:

Suppose we try to find a potential energy



function V such that this particular force always
points in the direction of fastest decrease in V.
Then we would have a problem, because V would
have to decrease all the way around a closed path
like this:
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There’s no way for V to do this, and still remain
single-valued.  At each point, V would have to
take on many values, so it would not be an
ordinary function.  A potential energy function
that takes on more than one value is not of much
use to us.

(One is reminded of a painting by M.C. Escher in
which he manages to distort reality enough so
that a staircase appears always to be descending!)

Under what conditions will it be possible to find
a potential energy function?  Obviously, the force
can’t curl around anywhere.  It turns out that
there is a mathematical theorem that says that

this is the only requirement on the force.  

Theorem

If the curl of the force is zero everywhere, then
there exists a potential energy function.

Believe it or not, the curl of a force is a well-
defined mathematical quantity.  We’ll start by
giving the full-blown definition in three
dimensions, and then show how it makes sense in
a special two-dimensional case.  Don’t worry if
you don’t understand the next bit of mathematics
- you already know the physical ideas.

Suppose that the force, written in components, is

F P ( r P )   =   x ˆ F 
x 
  +   y ˆ F 

y 
  +   z ˆ F 

z 
  .

Then the definition of the curl, in components, is
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where we have used a shorthand for the partial
derivative

∂ 
x 
  =   ∂ 

∂ x 
   etc.

The curl is easiest to remember if you notice the
cyclic nature of the first terms of each pair:
(x,y,z)→(y,z,x)→(z,x,y).



The definition of the curl looks pretty
complicated, but if you are given the force, you
can easily work out what the curl is.  Here is an
example which is worth remembering:

F P   =   − x ˆ y   +   y ˆ x   .

This is the prototype vector field with nonzero
curl:

curl F P   =   z ˆ 
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( – y ) 
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í 
ì ì ì 
ì   =   2 z ˆ   .

Here is a plot of this field in red, with its curl
shown in blue:
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Notice that the curl points perpendicular to the
plane in which the force curls around.  Its

direction is given by the right-hand rule :

You wrap the fingers of your right hand around
in the same sense as the vector field, and stick
out your thumb.  Then the curl of the vector field
is in the direction of your thumb.

The big equation defining the curl in three
dimensions shown above contains some magic. It
takes any vector field and gives its curl in accor-
dance with the right-hand rule, no matter what
direction the curl points in or how strongly it
curls.  

Example: the gravitational potential

What about thegravitational force?  Can it be
described by a potential energy function?

Let’s put a body of mass M at the origin of our
coordinate system.  Then the force on a body of
mass m located at position

r P   =   x ˆ x +   y ˆ y +   z ˆ z 

is

F P ( r P )   =   – 
GMm

r 2 r ̂    ,    where   r ̂   ≡ r P 
r P 

  .

This force points inwards towards M , and
decreases with the square of the distance between
the bodies.  It is spherically symmetric about M ,
and there’s no apparent “curly” nature about this



force.  Hence, we might expect it to be described
by a potential energy function.

Here is a picture of the gravitational force, with
the body of mass M shown in red:

To check that the curl is zero, we must re-write
the force in terms of the coordinates x,y,z .  We
find

F P   =   − GMm

á x 2 + y 2 + z 2 é 3 / 2 
á   x ˆ x +   y ˆ y +   z ˆ z é   .

Let’s just work out the z-component of the curl
(the others are similar):
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  =   0   .

Hence, there will be a potential energy function.
It is called

the gravitational potential energy

 V( r P )   =   – 
GMm

r 
  

  .

(Note that a constant can always be added.  We
have set it to zero by choosing V → 0 as r → ∞.)

We will see how to actually derive this ex-
pression later. For now, you should just check
that the negative gradient of this function does
indeed give the gravitational force.

V is a function which decreases as the distance
between the bodies decreases, and its value
depends only on the distance.  Surfaces of
constant V are concentric spheres:



   

 V decreasing

Another way to view the potential V is to plot its
values on a slice through the origin in the x-y
plane, for example.  The result shows why one
often talks about a “potential well”:
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Another representation is simply a plot of V
versus r :
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We will consider the problem of motion in this
potential in our section ongravity.

   

Path-independence

What about the expression we had in one
dimension giving the potential energy explicitly
in terms of the force

V ( x )   =   − 
x 

I 
x 0 

F ( x ́ )  dx́      ?

How does it get generalized in more than one
dimension?

In words, the above equation says “add up all the
little pieces of (force times distance) in the
direction of motion of a body which starts at
some arbitrary initial position and ends up at x .
Take the negative of the result.”

We should try to copy this procedure in the



present situation.  But we’ll have to do some
modifications to take the directions into account.
Let’s take a path   s P ( r P N )  between some arbitrary
initial position   r P 0    and r P .  The first complication
that occurs is that the path need not be a straight
line:
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The second complication is that the force at some
intermediate point   r P N    need not be in the same
direction as the path element d s P ( r P N )  at that point.

It is pretty obvious that we should take the
component of the force in the direction of the
path element, and add that up along the path:

 V( r P )   =   − 
r P 
I 
r P 

0 

F P ( r P N ) A d s P ( r P N ) 
  .

This kind of integral is called a line integral or a
path integral.  You will study them in detail in a
later mathematics course.  

You can see that there’s a problem, however. 

The potential energy V is supposed to depend
only on position, not on how the position was
reached.  But what happens if the integral
depended on the path?  Then, the potential would
not be well-defined at all.

There’s a mathematical theorem that tells us
under what conditions the line integral will be
independent of the path:

Theorem:

If the curl of a vector field is zero, then the line
integral of the vector field is independent of the
path.

We began this section by talking about the
conditions under which a potential energy exists.
The result was that it exists only if the curl of the
force is zero.  Here we see the same result, stated
using slightly different language.

So now suppose a body is acted upon by a force
which depends on the position r P  in a known way:

F P = F P ( r P )  ,

and whose curl is zero. The differential equation
which determines the path r P ( t )  is

m 
d 2 r P ( t ) 
dt2   =   F P ( r P ( t ) )   .

Consider the quantity V ( r P ( t ) ) , which is well



defined because the curl of the force is zero.
How does it change as time goes on? 

Differentiating, we find

d 
dt

V ( r P )   =   − d r P 
dt

A L P V ( r P ) 

=   − v P A F P 

=   −   v P A m a P 

=   −   d 
dt
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(The dependence on t has been suppressed in the
above calculation.) So, we have shown that the
quantity

 E =   1 
2 

m v P 2 + V ( r P )   
 

is constant in time.  We recognize the first term
as the

kinetic energy

T =   1 
2 

m v P 2  ,

and the second is the potential energy.  Their
sum E is called the total energy.  

A force which does not depend on velocity or

time and which is represented by a potential is
called conservative, and the total energy of a
body of constant mass is conserved in an inertial
frame.  This means that the energy does not
change in time.

Example: the gravitational potential energy

Let’s see how to calculate the gravitational
potential energy at r P , given the expression for the
force and the fact that its curl is zero. We can
take any initial point we want, so for simplicity
we will take a point at infinity in the direction of
r P . We can also take any path we want, so for
simplicity we will take a straight line.

The line element is

 d s P ( r P N ) = r ̂ N drN .

(The sign is tricky: for the path we have chosen,
drN is negative, and the line element points
opposite to r ̂ N .)

We can now calculate the potential energy:
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We thus arrive at the expression for the grav-
itational potential energy stated before.


