
Answer to Essential Question 8.3: The direction of the gravitational field at a particular point is 
represented by the direction of the field vector at that point (or the ones near it if the point does 
not correspond exactly to the location of a field vector). The relative strength of the field is 
indicated by the darkness of the arrow. The larger the field’s magnitude, the darker the arrow.

8-4 Gravitational Potential Energy

The expression we have been using for gravitational potential energy up to this point, 
, applies when the gravitational field is uniform. In general, the equation for 

gravitational potential energy is:

. (Equation 8.4: Gravitational potential energy, in general)

This gives the energy associated with the gravitational interaction between two objects, of 
mass m and M, separated by a distance r. The minus sign tells us the objects attract one another.

Consider the differences between the mgh equation for gravitational potential energy and 
the more general form. First, when using Equation 8.4 we are no longer free to define the 
potential energy to be zero at some convenient point. Instead, the gravitational potential energy is 
zero when the two objects are infinitely far apart. Second, when using Equation 8.4 we find that 
the gravitational potential energy is always negative, which is certainly not what we found with 
mgh. That should not worry us, however, because what is critical is how potential energy 
changes as objects move with respect to one another. If you drop your pen and it falls to the floor, 
for instance, both forms of the gravitational potential energy equation give consistent results for 
the change in the pen’s gravitational potential energy.

Equation 8.4 also reinforces the idea that, when two objects are interacting via gravity, 
neither object has its own gravitational potential energy. Instead, gravitational potential energy is 
associated with the interaction between the objects.

EXPLORATION 8.4 – Calculate the total potential energy in a system
Three balls, of mass m, 

2m, and 3m, are placed in a line, 
as shown in Figure 8.9. What is 
the total gravitational potential 
energy of this system?

To determine the total 
potential energy of the system, 
consider the number of interacting pairs. In this case there are three ways to pair up the objects, so 
there are three terms to add together to find the total potential energy. Because energy is a scalar, 
we do not have to worry about direction. Using a subscript of 1 for the ball of mass m, 2 for the 
ball of mass 2m, and 3 for the ball of mass 3m, we get:

.

Key ideas for gravitational potential energy: Potential energy is a scalar. The total gravitational 
potential energy of a system of objects can be found by adding up the energy associated with 
each interacting pair of objects.                      Related End-of-Chapter Exercises: 25, 29, 40.
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Figure 8.9: Three equally spaced balls placed in a line.



EXAMPLE 8.4 – Applying conservation ideas
A ball of mass 1.0 kg and a ball of mass 3.0 kg are initially separated by 4.0 m in a region 

of space in which they interact only with one another. When the balls are released from rest, they 
accelerate toward one another. When they are separated by 2.0 m, how fast is each ball going?

SOLUTION
Figure 8.10 shows the balls 

at the beginning and when they are 
separated by 2.0 m. Analyzing 
forces, we find that the force on 
each ball increases as the distance 
between the balls decreases. This 
makes it difficult to apply a force 
analysis. Energy conservation is a 
simpler approach. Our energy equation 
is:

.

In this case, there are no non-conservative forces acting, and in the initial state the kinetic 
energy is zero because both objects are at rest. This gives . The final kinetic energy 

represents the kinetic energy of the system, the sum of the kinetic energies of the two objects.

Let’s solve this generally, using a mass of m and a final speed of for the 1.0 kg ball, 
and a mass of 3m and a final speed of  for the 3.0 kg ball. The energy equation becomes:

.

Canceling factors of m gives: .

Multiplying through by 2, and combining terms, gives: .

Because there is no net external force, the system’s momentum is conserved. There is no 
initial momentum. For the net momentum to remain zero, the two momenta must always be 
equal-and-opposite. Defining right to be positive, momentum conservation gives:

, which we can simplify to .

Substituting this into the expression we obtained from applying energy conservation:

This gives , and .

Using m = 1.0 kg, we get and .

Related End-of-Chapter Exercises: Problems 43 – 45.

Essential Question 8.4: Return to Example 8.4. If you repeat the experiment with balls of mass 
2.0 kg and 6.0 kg instead, would the final speeds change? If so, how?
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Figure 8.10: The initial situation shows the balls at rest. 
The force of gravity causes them to accelerate toward one 
another.


